-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathLValue.h
659 lines (549 loc) · 24.8 KB
/
LValue.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
//===--- LValue.h - Logical LValue Representation ---------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// A storage structure for keeping track of logical lvalues during SILGen.
//
// In general, only the routines in SILGenLValue.cpp should actually be
// accessing LValues and their components. Everything else should just
// pass them around opaquely.
//
//===----------------------------------------------------------------------===//
#ifndef SWIFT_LOWERING_LVALUE_H
#define SWIFT_LOWERING_LVALUE_H
#include "FormalEvaluation.h"
#include "SILGenFunction.h"
#include "Scope.h"
#include "swift/Basic/Assertions.h"
namespace swift {
namespace Lowering {
class ArgumentSource;
class LogicalPathComponent;
class ManagedValue;
class PhysicalPathComponent;
class SILGenFunction;
class TranslationPathComponent;
/// Information about the type of an l-value.
struct LValueTypeData {
/// The abstraction pattern of the l-value.
///
/// The type-of-rvalue should always be the substituted formal type
/// lowered under this abstraction pattern.
AbstractionPattern OrigFormalType = AbstractionPattern::getInvalid();
/// The substituted formal object type of the l-value.
///
/// Tn the most common case, this is the type of an l-value
/// expression as recorded in the AST, only with the
/// LValueType/InOutType stripped off.
CanType SubstFormalType;
/// The lowered type of value that should be stored in the l-value.
///
/// On physical path components, projection yields an address of
/// this type. On logical path components, materialize yields an
/// address of this type, set expects a value of this type, and
/// get yields an object of this type.
CanType TypeOfRValue;
SGFAccessKind AccessKind;
LValueTypeData() = default;
LValueTypeData(SGFAccessKind accessKind, AbstractionPattern origFormalType,
CanType substFormalType, CanType typeOfRValue)
: OrigFormalType(origFormalType), SubstFormalType(substFormalType),
TypeOfRValue(typeOfRValue), AccessKind(accessKind) {
assert(substFormalType->isMaterializable());
}
SGFAccessKind getAccessKind() const { return AccessKind; }
};
/// An l-value path component represents a chunk of the access path to
/// an object. Path components may be either "physical" or "logical".
/// A physical path involves elementary address manipulations; these
/// address manipulations may be in some way dynamic, but they are
/// ultimately just pointer arithmetic. A logical path requires
/// getter/setter logic.
///
/// This divide between physical/logical is closely related to the
/// fragile/resilient split, with two primary differences:
/// - Any sort of implementation can be fragile. For example, a
/// computed variable can still be fragile, meaning that it is known
/// to be implemented with a getter/setter. The known
/// implementation must be a direct offset in order to qualify as
/// physical.
/// - A path component's implementation can be resilient and yet
/// still qualify for physical access if we are in a privileged
/// component.
class PathComponent {
LValueTypeData TypeData;
friend class LValue;
unsigned AllocatedSize;
public:
enum KindTy {
// Physical lvalue kinds
RefElementKind, // ref_element_addr
TupleElementKind, // tuple_element_addr
StructElementKind, // struct_element_addr
OptionalObjectKind, // optional projection
OpenOpaqueExistentialKind, // opened opaque existential
AddressorKind, // var/subscript addressor
CoroutineAccessorKind, // coroutine accessor
ValueKind, // random base pointer as an lvalue
PhysicalKeyPathApplicationKind, // applying a key path
BorrowValueKind, // load_borrow the base rvalue for a projection
// Logical LValue kinds
GetterSetterKind, // property or subscript getter/setter
MaterializeToTemporaryKind,
OwnershipKind, // weak pointer remapping
AutoreleasingWritebackKind, // autorelease pointer on set
WritebackPseudoKind, // a fake component to customize writeback
OpenNonOpaqueExistentialKind, // opened class or metatype existential
LogicalKeyPathApplicationKind, // applying a key path
InitAccessorKind, // init accessor
// Translation LValue kinds (a subtype of logical)
OrigToSubstKind, // generic type substitution
SubstToOrigKind, // generic type substitution
UncheckedConversionKind, // unchecked_X_cast
FirstLogicalKind = GetterSetterKind,
FirstTranslationKind = OrigToSubstKind,
};
private:
const KindTy Kind : 8;
// This anchor method serves three purposes: it aligns the class to
// a pointer boundary, it makes the class a primary base so that
// subclasses will be at offset zero, and it anchors the v-table
// to a specific file.
virtual void _anchor();
PathComponent(const PathComponent &) = delete;
PathComponent &operator=(const PathComponent &) = delete;
protected:
PathComponent(LValueTypeData typeData, KindTy Kind)
: TypeData(typeData), Kind(Kind) {}
public:
virtual ~PathComponent() {}
/// Returns sizeof(the final type), plus any extra storage required.
size_t allocated_size() const { return AllocatedSize; }
/// Is this component physical or logical? If physical, this will
/// be a subclass of PhysicalPathComponent. If logical, this will
/// be a subclass of LogicalPathComponent.
bool isPhysical() const { return Kind < FirstLogicalKind; }
bool isLogical() const { return Kind >= FirstLogicalKind; }
bool isTranslation() const { return Kind >= FirstTranslationKind; }
// These are implemented inline after the respective class declarations.
PhysicalPathComponent &asPhysical();
const PhysicalPathComponent &asPhysical() const;
LogicalPathComponent &asLogical();
const LogicalPathComponent &asLogical() const;
TranslationPathComponent &asTranslation();
const TranslationPathComponent &asTranslation() const;
/// Apply this component as a projection to the given base component,
/// producing something usable as the base of the next component.
virtual ManagedValue project(SILGenFunction &SGF,
SILLocation loc,
ManagedValue base) && = 0;
/// Is this some form of open-existential component?
bool isOpenExistential() const {
return getKind() == OpenOpaqueExistentialKind ||
getKind() == OpenNonOpaqueExistentialKind;
}
/// Is loading a value from this component guaranteed to have no observable
/// side effects?
virtual bool isLoadingPure() const {
// By default, don't assume any component is pure; components must opt-in.
return false;
}
virtual bool isRValue() const { return false; }
/// Returns the logical type-as-rvalue of the value addressed by the
/// component. This is always an object type, never an address.
SILType getTypeOfRValue() const {
return SILType::getPrimitiveObjectType(TypeData.TypeOfRValue);
}
AbstractionPattern getOrigFormalType() const {
return TypeData.OrigFormalType;
}
CanType getSubstFormalType() const { return TypeData.SubstFormalType; }
const LValueTypeData &getTypeData() const { return TypeData; }
SGFAccessKind getAccessKind() const { return getTypeData().getAccessKind(); }
KindTy getKind() const { return Kind; }
void dump() const;
virtual void dump(raw_ostream &OS, unsigned indent = 0) const = 0;
};
/// An abstract class for "physical" path components, i.e. path
/// components that can be accessed as address manipulations. See the
/// comment for PathComponent for more information.
///
/// The only operation on this component is `project`.
class PhysicalPathComponent : public PathComponent {
virtual void _anchor() override;
std::optional<ActorIsolation> ActorIso;
protected:
PhysicalPathComponent(LValueTypeData typeData, KindTy Kind,
std::optional<ActorIsolation> actorIso = std::nullopt)
: PathComponent(typeData, Kind), ActorIso(actorIso) {
assert(isPhysical() && "PhysicalPathComponent Kind isn't physical");
}
public:
/// Obtains and consumes the actor-isolation required for any loads of
/// this component.
std::optional<ActorIsolation> takeActorIsolation() {
std::optional<ActorIsolation> current = ActorIso;
ActorIso = std::nullopt;
return current;
}
void set(SILGenFunction &SGF, SILLocation loc,
ArgumentSource &&value, ManagedValue base) &&;
/// Determines whether this component has any actor-isolation.
bool hasActorIsolation() const { return ActorIso.has_value(); }
};
inline PhysicalPathComponent &PathComponent::asPhysical() {
assert(isPhysical());
return static_cast<PhysicalPathComponent&>(*this);
}
inline const PhysicalPathComponent &PathComponent::asPhysical() const {
assert(isPhysical());
return static_cast<const PhysicalPathComponent&>(*this);
}
/// An abstract class for "logical" path components, i.e. path
/// components that require getter/setter methods to access. See the
/// comment for PathComponent for more information.
class LogicalPathComponent : public PathComponent {
protected:
LogicalPathComponent(LValueTypeData typeData, KindTy Kind)
: PathComponent(typeData, Kind) {
assert(isLogical() && "LogicalPathComponent Kind isn't logical");
}
/// Read the value of this component, producing the right kind of result
/// for the given access kind (which is always some kind of read access).
ManagedValue projectForRead(SILGenFunction &SGF, SILLocation loc,
ManagedValue base, SGFAccessKind kind) &&;
public:
/// Clone the path component onto the heap.
virtual std::unique_ptr<LogicalPathComponent>
clone(SILGenFunction &SGF, SILLocation l) const = 0;
/// Set the property.
///
/// \param base - always an address, but possibly an r-value
virtual void set(SILGenFunction &SGF, SILLocation loc,
ArgumentSource &&value, ManagedValue base) && = 0;
/// Get the property.
///
/// \param base - always an address, but possibly an r-value
virtual RValue get(SILGenFunction &SGF, SILLocation loc,
ManagedValue base, SGFContext c) && = 0;
/// The default implementation of project performs a get or materializes
/// to a temporary as necessary.
ManagedValue project(SILGenFunction &SGF, SILLocation loc,
ManagedValue base) && override;
struct AccessStorage {
AbstractStorageDecl *Storage;
bool IsSuper;
const PreparedArguments *Indices;
ArgumentList *ArgListForDiagnostics;
};
/// Get the storage accessed by this component.
virtual std::optional<AccessStorage> getAccessStorage() const = 0;
/// Perform a writeback on the property.
///
/// \param base - always an address, but possibly an r-value
virtual void writeback(SILGenFunction &SGF, SILLocation loc,
ManagedValue base,
MaterializedLValue materialized,
bool isFinal);
};
inline LogicalPathComponent &PathComponent::asLogical() {
assert(isLogical());
return static_cast<LogicalPathComponent&>(*this);
}
inline const LogicalPathComponent &PathComponent::asLogical() const {
assert(isLogical());
return static_cast<const LogicalPathComponent&>(*this);
}
/// An abstract class for components which translate values in some way.
class TranslationPathComponent : public LogicalPathComponent {
protected:
TranslationPathComponent(LValueTypeData typeData, KindTy kind)
: LogicalPathComponent(typeData, kind) {
assert(isTranslation() &&
"TranslationPathComponent kind isn't value translation");
}
public:
std::optional<AccessStorage> getAccessStorage() const override {
return std::nullopt;
}
RValue get(SILGenFunction &SGF, SILLocation loc,
ManagedValue base, SGFContext c) && override;
void set(SILGenFunction &SGF, SILLocation loc,
ArgumentSource &&value, ManagedValue base) && override;
/// Transform from the original pattern.
virtual RValue translate(SILGenFunction &SGF, SILLocation loc,
RValue &&value,
SGFContext ctx = SGFContext()) && = 0;
/// Transform into the original pattern.
virtual RValue untranslate(SILGenFunction &SGF, SILLocation loc,
RValue &&value,
SGFContext ctx = SGFContext()) && = 0;
};
inline TranslationPathComponent &PathComponent::asTranslation() {
assert(isTranslation());
return static_cast<TranslationPathComponent&>(*this);
}
inline const TranslationPathComponent &PathComponent::asTranslation() const {
assert(isTranslation());
return static_cast<const TranslationPathComponent&>(*this);
}
/// An lvalue represents a reference to storage holding a value
/// of a type, as opposed to an rvalue, which is an actual value
/// of the type.
class LValue {
std::vector<std::unique_ptr<PathComponent>> Path;
public:
LValue() = default;
LValue(const LValue &other) = delete;
LValue(LValue &&other) = default;
LValue &operator=(const LValue &) = delete;
LValue &operator=(LValue &&) = default;
static LValue forValue(SGFAccessKind accessKind, ManagedValue value,
CanType substFormalType);
static LValue forAddress(SGFAccessKind accessKind, ManagedValue address,
std::optional<SILAccessEnforcement> enforcement,
AbstractionPattern origFormalType,
CanType substFormalType);
bool isValid() const { return !Path.empty(); }
/// Is loading a value from this lvalue guaranteed to have no observable side
/// effects?
bool isLoadingPure() {
assert(isValid());
for (auto &component : Path)
if (!component->isLoadingPure())
return false;
return true;
}
/// Is this lvalue purely physical?
bool isPhysical() const {
assert(isValid());
for (auto &component : Path)
if (!component->isPhysical())
return false;
return true;
}
/// Is the lvalue's final component physical?
bool isLastComponentPhysical() const {
assert(isValid());
return Path.back()->isPhysical();
}
/// Is the lvalue's final component a translation component?
bool isLastComponentTranslation() const {
assert(isValid());
return Path.back()->isTranslation();
}
/// Given that the last component is a translation component,
/// return it.
TranslationPathComponent &getLastTranslationComponent() & {
assert(isLastComponentTranslation());
return Path.back()->asTranslation();
}
/// Given that the last component is a translation component,
/// peel it off.
void dropLastTranslationComponent() & {
assert(isLastComponentTranslation());
Path.pop_back();
}
/// Assert that the given component is the last component in the
/// l-value, drop it.
void dropLastComponent(PathComponent &component) & {
assert(&component == Path.back().get());
Path.pop_back();
}
/// Pop the last component off this LValue unsafely. Validates that the
/// component is of kind \p kind as a soundness check.
///
/// Please be careful when using this!
void unsafelyDropLastComponent(PathComponent::KindTy kind) & {
assert(kind == Path.back()->getKind());
Path.pop_back();
}
/// Add a new component at the end of the access path of this lvalue.
template <class T, class... As>
void add(As &&... args) {
Path.emplace_back(new T(std::forward<As>(args)...));
}
// NOTE: Optional<ActorIsolation> inside of LValues
// Some path components carry an ActorIsolation value, which is an indicator
// that the access to that component must be performed by switching to the
// given actor's isolation domain. If the indicator is not present, that
// only means that a switch does not need to be emitted during the access.
void addNonMemberVarComponent(
SILGenFunction &SGF, SILLocation loc, VarDecl *var, SubstitutionMap subs,
LValueOptions options, SGFAccessKind accessKind, AccessStrategy strategy,
CanType formalRValueType,
std::optional<ActorIsolation> actorIso = std::nullopt);
/// Add a member component to the access path of this lvalue.
void addMemberComponent(SILGenFunction &SGF, SILLocation loc,
AbstractStorageDecl *storage,
SubstitutionMap subs,
LValueOptions options,
bool isSuper,
SGFAccessKind accessKind,
AccessStrategy accessStrategy,
CanType formalRValueType,
PreparedArguments &&indices,
ArgumentList *argListForDiagnostics);
void
addMemberVarComponent(SILGenFunction &SGF, SILLocation loc, VarDecl *var,
SubstitutionMap subs, LValueOptions options,
bool isSuper, SGFAccessKind accessKind,
AccessStrategy accessStrategy, CanType formalRValueType,
bool isOnSelf = false,
std::optional<ActorIsolation> actorIso = std::nullopt);
void addMemberSubscriptComponent(
SILGenFunction &SGF, SILLocation loc, SubscriptDecl *subscript,
SubstitutionMap subs, LValueOptions options, bool isSuper,
SGFAccessKind accessKind, AccessStrategy accessStrategy,
CanType formalRValueType, PreparedArguments &&indices,
ArgumentList *argListForDiagnostics, bool isOnSelfParameter = false,
std::optional<ActorIsolation> actorIso = std::nullopt);
/// Add a subst-to-orig reabstraction component. That is, given
/// that this l-value trafficks in values following the substituted
/// abstraction pattern, make an l-value trafficking in values
/// following the original abstraction pattern.
void addSubstToOrigComponent(AbstractionPattern origType,
SILType loweredResultType);
/// Add an orig-to-subst reabstraction component. That is, given
/// that this l-value trafficks in values following the original
/// abstraction pattern, make an l-value trafficking in values
/// following the substituted abstraction pattern.
void addOrigToSubstComponent(SILType loweredResultType);
typedef std::vector<std::unique_ptr<PathComponent>>::iterator iterator;
typedef std::vector<std::unique_ptr<PathComponent>>::const_iterator
const_iterator;
iterator begin() { return Path.begin(); }
iterator end() { return Path.end(); }
const_iterator begin() const { return Path.begin(); }
const_iterator end() const { return Path.end(); }
const LValueTypeData &getTypeData() const {
return Path.back()->getTypeData();
}
/// Return the access kind that this l-value was emitted for.
SGFAccessKind getAccessKind() const { return getTypeData().getAccessKind(); }
/// Returns the type-of-rvalue of the logical object referenced by
/// this l-value. Note that this may differ significantly from the
/// type of l-value.
SILType getTypeOfRValue() const {
return SILType::getPrimitiveObjectType(getTypeData().TypeOfRValue);
}
CanType getSubstFormalType() const { return getTypeData().SubstFormalType; }
AbstractionPattern getOrigFormalType() const {
return getTypeData().OrigFormalType;
}
/// Returns true when the other access definitely does not begin a formal
/// access that would conflict with this the accesses begun by this
/// LValue. This is a best-effort attempt; it may return false in cases
/// where the two LValues do not conflict.
bool isObviouslyNonConflicting(const LValue &other,
SGFAccessKind selfAccess,
SGFAccessKind otherAccess);
SWIFT_DEBUG_DUMP;
void dump(raw_ostream &os, unsigned indent = 0) const;
};
/// RAII object used to enter an inout conversion scope. Writeback scopes formed
/// during the inout conversion scope will be no-ops.
class InOutConversionScope {
SILGenFunction &SGF;
public:
InOutConversionScope(SILGenFunction &SGF);
~InOutConversionScope();
};
// FIXME: Misnomer. This class is used for both shared (read) and exclusive
// (modify) formal borrows.
struct LLVM_LIBRARY_VISIBILITY ExclusiveBorrowFormalAccess : FormalAccess {
std::unique_ptr<LogicalPathComponent> component;
ManagedValue base;
MaterializedLValue materialized;
~ExclusiveBorrowFormalAccess() {}
ExclusiveBorrowFormalAccess(ExclusiveBorrowFormalAccess &&) = default;
ExclusiveBorrowFormalAccess &
operator=(ExclusiveBorrowFormalAccess &&) = default;
ExclusiveBorrowFormalAccess(SILLocation loc,
std::unique_ptr<LogicalPathComponent> &&comp,
ManagedValue base,
MaterializedLValue materialized,
CleanupHandle cleanup)
: FormalAccess(sizeof(*this), FormalAccess::Exclusive, loc, cleanup),
component(std::move(comp)), base(base), materialized(materialized) {}
void diagnoseConflict(const ExclusiveBorrowFormalAccess &rhs,
SILGenFunction &SGF) const;
void performWriteback(SILGenFunction &SGF, bool isFinal) {
Scope S(SGF.Cleanups, CleanupLocation(loc));
component->writeback(SGF, loc, base, materialized, isFinal);
}
void finishImpl(SILGenFunction &SGF) override {
performWriteback(SGF, /*isFinal*/ true);
component.reset();
}
};
struct LLVM_LIBRARY_VISIBILITY UnenforcedAccess {
// Make sure someone called `endAccess` before destroying this.
struct DeleterCheck {
void operator()(BeginAccessInst *) {
llvm_unreachable("access scope must be ended");
}
};
typedef std::unique_ptr<BeginAccessInst, DeleterCheck> BeginAccessPtr;
BeginAccessPtr beginAccessPtr;
UnenforcedAccess() = default;
UnenforcedAccess(const UnenforcedAccess &other) = delete;
UnenforcedAccess(UnenforcedAccess &&other) = default;
UnenforcedAccess &operator=(const UnenforcedAccess &) = delete;
UnenforcedAccess &operator=(UnenforcedAccess &&other) = default;
// Return the a new begin_access if it was required, otherwise return the
// given `address`.
SILValue beginAccess(SILGenFunction &SGF, SILLocation loc, SILValue address,
SILAccessKind kind);
// End the access and release beginAccessPtr.
void endAccess(SILGenFunction &SGF);
// Emit the end_access (on a branch) without marking this access as ended.
void emitEndAccess(SILGenFunction &SGF);
};
/// Pseudo-formal access that emits access markers but does not actually
/// require enforcement. It may be used for access to formal memory that is
/// exempt from exclusivity checking, such as initialization, or it may be used
/// for accesses to local memory that are indistinguishable from formal access
/// at the SIL level. Adding the access markers in these cases gives SIL address
/// users a structural property that allows for exhaustive verification.
struct LLVM_LIBRARY_VISIBILITY UnenforcedFormalAccess : FormalAccess {
static SILValue enter(SILGenFunction &SGF, SILLocation loc, SILValue address,
SILAccessKind kind);
// access.beginAccessPtr is either the begin_access or null if no access was
// required.
UnenforcedAccess access;
UnenforcedFormalAccess(SILLocation loc, UnenforcedAccess &&access,
CleanupHandle cleanup)
: FormalAccess(sizeof(*this), FormalAccess::Unenforced, loc, cleanup),
access(std::move(access)) {}
// Emit the end_access (on a branch) without marking this access as ended.
void emitEndAccess(SILGenFunction &SGF);
// Only called at the end formal evaluation scope. End this access.
void finishImpl(SILGenFunction &SGF) override;
};
// A formal access that keeps an LValue alive across an expression that uses an
// unsafe pointer into that LValue. This supports emitLValueToPointer, which
// handles InoutToPointerExpr. This formal access is nested within whatever
// formal access is needed for the LValue itself and emits a fix_lifetime
// instruction after the apply.
struct LLVM_LIBRARY_VISIBILITY LValueToPointerFormalAccess : FormalAccess {
static SILValue enter(SILGenFunction &SGF, SILLocation loc, SILValue address);
SILValue address;
LValueToPointerFormalAccess(SILLocation loc, SILValue address,
CleanupHandle cleanup)
: FormalAccess(sizeof(*this), FormalAccess::Unenforced, loc, cleanup),
address(address) {}
// Only called at the end formal evaluation scope. Emit fix_lifetime.
void finishImpl(SILGenFunction &SGF) override;
};
} // namespace Lowering
} // namespace swift
#endif