-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathDominance.cpp
179 lines (155 loc) · 5.22 KB
/
Dominance.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
//===--- Dominance.cpp - SIL basic block dominance analysis ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/Assertions.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/Dominance.h"
#include "llvm/Support/GenericDomTreeConstruction.h"
using namespace swift;
template class llvm::DominatorTreeBase<SILBasicBlock, false>;
template class llvm::DominatorTreeBase<SILBasicBlock, true>;
template class llvm::DomTreeNodeBase<SILBasicBlock>;
namespace llvm {
namespace DomTreeBuilder {
template void Calculate<SILDomTree>(SILDomTree &DT);
template void Calculate<SILPostDomTree>(SILPostDomTree &DT);
} // namespace DomTreeBuilder
} // namespace llvm
/// Compute the immediate-dominators map.
DominanceInfo::DominanceInfo(SILFunction *F)
: DominatorTreeBase() {
assert(!F->isExternalDeclaration() &&
"Make sure the function is a definition and not a declaration.");
recalculate(*F);
}
DominanceInfo::~DominanceInfo() {
}
bool DominanceInfo::properlyDominates(SILInstruction *a, SILInstruction *b) {
auto aBlock = a->getParent(), bBlock = b->getParent();
// If the blocks are different, it's as easy as whether A's block
// dominates B's block.
if (aBlock != bBlock)
return properlyDominates(a->getParent(), b->getParent());
// Otherwise, they're in the same block, and we just need to check
// whether B comes after A. This is a non-strict computation.
auto aIter = a->getIterator();
auto bIter = b->getIterator();
auto fIter = aBlock->begin();
while (bIter != fIter) {
--bIter;
if (aIter == bIter)
return true;
}
return false;
}
/// Does value A properly dominate instruction B?
bool DominanceInfo::properlyDominates(SILValue a, SILInstruction *b) {
if (auto *Inst = a->getDefiningInstruction()) {
return properlyDominates(Inst, b);
}
if (auto *Arg = dyn_cast<SILArgument>(a)) {
return dominates(Arg->getParent(), b->getParent());
}
return false;
}
SILBasicBlock *DominanceInfo::getLeastCommonAncestorOfUses(SILValue value) {
SILBasicBlock *lca = nullptr;
for (auto *use : value->getUses()) {
auto *block = use->getParentBlock();
lca = lca ? findNearestCommonDominator(lca, block) : block;
}
return lca;
}
void DominanceInfo::verify() const {
// Recompute.
auto *F = getRoot()->getParent();
DominanceInfo OtherDT(F);
// And compare.
if (errorOccurredOnComparison(OtherDT)) {
llvm::errs() << "DominatorTree is not up to date!\nComputed:\n";
print(llvm::errs());
llvm::errs() << "\nActual:\n";
OtherDT.print(llvm::errs());
abort();
}
}
/// Compute the immediate-post-dominators map.
PostDominanceInfo::PostDominanceInfo(SILFunction *F)
: PostDominatorTreeBase() {
assert(!F->isExternalDeclaration() &&
"Cannot construct a post dominator tree for a declaration");
recalculate(*F);
}
bool
PostDominanceInfo::
properlyDominates(SILInstruction *I1, SILInstruction *I2) {
SILBasicBlock *BB1 = I1->getParent(), *BB2 = I2->getParent();
// If the blocks are different, it's as easy as whether BB1 post dominates
// BB2.
if (BB1 != BB2)
return properlyDominates(BB1, BB2);
// Otherwise, they're in the same block, and we just need to check
// whether A comes after B.
for (auto II = I1->getIterator(), IE = BB1->end(); II != IE; ++II) {
if (&*II == I2) {
return false;
}
}
return true;
}
bool PostDominanceInfo::properlyDominates(SILValue A, SILInstruction *B) {
if (auto *Inst = A->getDefiningInstruction()) {
return properlyDominates(Inst, B);
}
if (auto *Arg = dyn_cast<SILArgument>(A)) {
return dominates(Arg->getParent(), B->getParent());
}
return false;
}
void PostDominanceInfo::verify() const {
// Recompute.
//
// Even though at the SIL level we have "one" return function, we can have
// multiple exits provided by no-return functions.
auto *F = (*root_begin())->getParent();
PostDominanceInfo OtherDT(F);
// And compare.
if (errorOccurredOnComparison(OtherDT)) {
llvm::errs() << "PostDominatorTree is not up to date!\nComputed:\n";
print(llvm::errs());
llvm::errs() << "\nActual:\n";
OtherDT.print(llvm::errs());
abort();
}
}
void swift::computeDominatedBoundaryBlocks(
SILBasicBlock *root, DominanceInfo *domTree,
SmallVectorImpl<SILBasicBlock *> &boundary) {
assert(boundary.empty());
DominanceOrder domOrder(root, domTree);
while (SILBasicBlock *block = domOrder.getNext()) {
DominanceInfoNode *domNode = domTree->getNode(block);
if (!domNode->isLeaf()) {
domOrder.pushChildren(block);
continue;
}
if (block->getNumSuccessors() == 0) {
boundary.push_back(block);
continue;
}
auto *succ = block->getSingleSuccessorBlock();
if (!domTree->properlyDominates(root, succ)) {
boundary.push_back(block);
}
}
}