-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathParseIfConfig.cpp
1062 lines (931 loc) · 36.9 KB
/
ParseIfConfig.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- ParseIfConfig.cpp - Swift Language Parser for #if directives -----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Conditional Compilation Block Parsing and AST Building
//
//===----------------------------------------------------------------------===//
#include "swift/Parse/Parser.h"
#include "swift/AST/ASTBridging.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/DiagnosticSuppression.h"
#include "swift/AST/DiagnosticsParse.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/LangOptions.h"
#include "swift/Basic/Version.h"
#include "swift/Parse/Lexer.h"
#include "swift/Parse/ParseVersion.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/SaveAndRestore.h"
using namespace swift;
namespace {
/// Get PlatformConditionKind from platform condition name.
static std::optional<PlatformConditionKind>
getPlatformConditionKind(StringRef Name) {
return llvm::StringSwitch<std::optional<PlatformConditionKind>>(Name)
#define PLATFORM_CONDITION(LABEL, IDENTIFIER) \
.Case(IDENTIFIER, PlatformConditionKind::LABEL)
#include "swift/AST/PlatformConditionKinds.def"
.Default(std::nullopt);
}
/// Get platform condition name from PlatformConditionKind.
static StringRef getPlatformConditionName(PlatformConditionKind Kind) {
switch (Kind) {
#define PLATFORM_CONDITION(LABEL, IDENTIFIER) \
case PlatformConditionKind::LABEL: return IDENTIFIER;
#include "swift/AST/PlatformConditionKinds.def"
}
llvm_unreachable("Unhandled PlatformConditionKind in switch");
}
/// Extract source text of the expression.
static StringRef extractExprSource(SourceManager &SM, Expr *E) {
CharSourceRange Range =
Lexer::getCharSourceRangeFromSourceRange(SM, E->getSourceRange());
return SM.extractText(Range);
}
static bool isValidPrefixUnaryOperator(std::optional<StringRef> UnaryOperator) {
return UnaryOperator != std::nullopt &&
(UnaryOperator.value() == ">=" || UnaryOperator.value() == "<");
}
static bool isValidVersion(const version::Version &Version,
const version::Version &ExpectedVersion,
StringRef UnaryOperator) {
if (UnaryOperator == ">=")
return Version >= ExpectedVersion;
if (UnaryOperator == "<")
return Version < ExpectedVersion;
llvm_unreachable("unsupported unary operator");
}
static llvm::VersionTuple getCanImportVersion(ArgumentList *args,
SourceManager &SM,
DiagnosticEngine *D,
bool &underlyingVersion) {
llvm::VersionTuple result;
if (args->size() != 2) {
if (D) {
D->diagnose(args->getLoc(), diag::canimport_two_parameters);
}
return result;
}
auto label = args->getLabel(1);
auto subE = args->getExpr(1);
if (label.str() == "_version") {
underlyingVersion = false;
} else if (label.str() == "_underlyingVersion") {
underlyingVersion = true;
} else {
if (D) {
D->diagnose(subE->getLoc(), diag::canimport_label);
}
return result;
}
StringRef verText;
if (auto *sle = dyn_cast<StringLiteralExpr>(subE)) {
verText = sle->getValue();
} else {
// Use the raw text for every non-string-literal expression. Versions with
// just two components are parsed as number literals, but versions with more
// components are parsed as unresolved dot expressions.
verText = extractExprSource(SM, subE);
}
if (verText.empty()) {
if (D) {
D->diagnose(subE->getLoc(), diag::canimport_empty_version, label.str());
}
return result;
}
// VersionTuple supports a maximum of 4 components.
ssize_t excessComponents = verText.count('.') - 3;
if (excessComponents > 0) {
do {
verText = verText.rsplit('.').first;
} while (--excessComponents > 0);
if (D) {
D->diagnose(subE->getLoc(), diag::canimport_version_too_many_components,
verText);
}
}
if (result.tryParse(verText)) {
if (D) {
D->diagnose(subE->getLoc(), diag::canimport_invalid_version, verText);
}
}
return result;
}
static Expr *getSingleSubExp(ArgumentList *args, StringRef kindName,
DiagnosticEngine *D) {
if (args->empty())
return nullptr;
if (auto *unary = args->getUnlabeledUnaryExpr())
return unary;
// canImport() has an optional second parameter.
if (kindName == "canImport") {
return args->getExpr(0);
}
return nullptr;
}
/// Returns \c true if the condition is a version check.
static bool isVersionIfConfigCondition(Expr *Condition);
/// Evaluate the condition.
/// \c true if success, \c false if failed.
static bool evaluateIfConfigCondition(Expr *Condition, ASTContext &Context);
/// The condition validator.
class ValidateIfConfigCondition :
public ExprVisitor<ValidateIfConfigCondition, Expr*> {
ASTContext &Ctx;
DiagnosticEngine &D;
bool HasError;
/// Get the identifier string of the UnresolvedDeclRefExpr.
std::optional<StringRef> getDeclRefStr(Expr *E, DeclRefKind Kind) {
auto UDRE = dyn_cast<UnresolvedDeclRefExpr>(E);
if (!UDRE ||
!UDRE->hasName() ||
UDRE->getRefKind() != Kind ||
UDRE->getName().isCompoundName())
return std::nullopt;
return UDRE->getName().getBaseIdentifier().str();
}
/// True for expressions representing either top level modules
/// or nested submodules.
bool isModulePath(Expr *E) {
auto UDE = dyn_cast<UnresolvedDotExpr>(E);
if (!UDE)
return getDeclRefStr(E, DeclRefKind::Ordinary).has_value();
return UDE->getFunctionRefInfo().isUnappliedBaseName() &&
isModulePath(UDE->getBase());
}
Expr *diagnoseUnsupportedExpr(Expr *E) {
D.diagnose(E->getLoc(),
diag::unsupported_conditional_compilation_expression_type);
return nullptr;
}
// Support '||' and '&&' operator. The precedence of '&&' is higher than '||'.
// Invalid operator and the next operand are diagnosed and removed from AST.
Expr *foldSequence(Expr *LHS, ArrayRef<Expr*> &S, bool isRecurse = false) {
assert(!S.empty() && ((S.size() & 1) == 0));
auto getNextOperator = [&]() -> std::optional<StringRef> {
assert((S.size() & 1) == 0);
while (!S.empty()) {
auto Name = getDeclRefStr(S[0], DeclRefKind::BinaryOperator);
if (Name.has_value() && (*Name == "||" || *Name == "&&"))
return Name;
auto DiagID = isa<UnresolvedDeclRefExpr>(S[0])
? diag::unsupported_conditional_compilation_binary_expression
: diag::unsupported_conditional_compilation_expression_type;
D.diagnose(S[0]->getLoc(), DiagID);
HasError |= true;
// Consume invalid operator and the immediate RHS.
S = S.slice(2);
}
return std::nullopt;
};
// Extract out the first operator name.
auto OpName = getNextOperator();
if (!OpName.has_value())
// If failed, it's not a sequence anymore.
return LHS;
Expr *Op = S[0];
// We will definitely be consuming at least one operator.
// Pull out the prospective RHS and slice off the first two elements.
Expr *RHS = S[1];
S = S.slice(2);
while (true) {
// Pull out the next binary operator.
auto NextOpName = getNextOperator();
bool IsEnd = !NextOpName.has_value();
if (!IsEnd && *OpName == "||" && *NextOpName == "&&") {
RHS = foldSequence(RHS, S, /*isRecurse*/true);
continue;
}
// Apply the operator with left-associativity by folding the first two
// operands.
LHS = BinaryExpr::create(Ctx, LHS, Op, RHS, /*implicit*/ false);
// If we don't have the next operator, we're done.
if (IsEnd)
break;
if (isRecurse && *OpName == "&&" && *NextOpName == "||")
break;
OpName = NextOpName;
Op = S[0];
RHS = S[1];
S = S.slice(2);
}
return LHS;
}
public:
ValidateIfConfigCondition(ASTContext &Ctx, DiagnosticEngine &D)
: Ctx(Ctx), D(D), HasError(false) {}
// Explicit configuration flag.
Expr *visitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *E) {
if (!getDeclRefStr(E, DeclRefKind::Ordinary).has_value())
return diagnoseUnsupportedExpr(E);
return E;
}
// 'true' or 'false' constant.
Expr *visitBooleanLiteralExpr(BooleanLiteralExpr *E) {
return E;
}
// '0' and '1' are warned, but we accept it.
Expr *visitIntegerLiteralExpr(IntegerLiteralExpr *E) {
if (E->isNegative() ||
(E->getDigitsText() != "0" && E->getDigitsText() != "1")) {
return diagnoseUnsupportedExpr(E);
}
// "#if 0" isn't valid, but it is common, so recognize it and handle it
// with a fixit.
StringRef replacement = E->getDigitsText() == "0" ? "false" :"true";
D.diagnose(E->getLoc(), diag::unsupported_conditional_compilation_integer,
E->getDigitsText(), replacement)
.fixItReplace(E->getLoc(), replacement);
return E;
}
// Platform conditions.
Expr *visitCallExpr(CallExpr *E) {
auto KindName = getDeclRefStr(E->getFn(), DeclRefKind::Ordinary);
if (!KindName.has_value()) {
D.diagnose(E->getLoc(), diag::unsupported_platform_condition_expression);
return nullptr;
}
Expr *Arg = getSingleSubExp(E->getArgs(), *KindName, &D);
if (!Arg) {
if (E->getArgs()->empty()) {
D.diagnose(E->getLoc(), diag::platform_condition_expected_argument);
} else {
SourceLoc DiagLoc = E->getArgs()->front().getStartLoc();
assert(DiagLoc.isValid() && "parsed Argument should have a location");
D.diagnose(DiagLoc, diag::platform_condition_expected_one_argument);
}
return nullptr;
}
SourceLoc ArgLoc = Arg->getStartLoc();
// '_compiler_version' '(' string-literal ')'
if (*KindName == "_compiler_version") {
if (auto SLE = dyn_cast<StringLiteralExpr>(Arg)) {
auto ValStr = SLE->getValue();
if (ValStr.empty()) {
D.diagnose(SLE->getLoc(), diag::empty_version_string);
return nullptr;
}
auto Val = VersionParser::parseCompilerVersionString(SLE->getValue(),
SLE->getLoc(), &D);
if (!Val.has_value())
return nullptr;
return E;
}
}
// 'swift' '(' ('>=' | '<') float-literal ( '.' integer-literal )* ')'
// 'compiler' '(' ('>=' | '<') float-literal ( '.' integer-literal )* ')'
// '_compiler_version' '(' ('>=' | '<') float-literal ( '.' integer-literal )* ')'
if (*KindName == "swift" || *KindName == "compiler" ||
*KindName == "_compiler_version") {
auto PUE = dyn_cast<PrefixUnaryExpr>(Arg);
std::optional<StringRef> PrefixName =
PUE ? getDeclRefStr(PUE->getFn(), DeclRefKind::PrefixOperator)
: std::nullopt;
if (!isValidPrefixUnaryOperator(PrefixName)) {
D.diagnose(
ArgLoc, diag::unsupported_platform_condition_argument,
"a unary comparison '>=' or '<'; for example, '>=2.2' or '<2.2'");
return nullptr;
}
auto versionString = extractExprSource(Ctx.SourceMgr, PUE->getOperand());
auto Val = VersionParser::parseVersionString(
versionString, PUE->getOperand()->getStartLoc(), &D);
if (!Val.has_value())
return nullptr;
return E;
}
if (*KindName == "canImport") {
if (!E->getArgs()->isUnary()) {
bool underlyingVersion;
// Diagnose canImport(_:_version:) syntax.
(void)getCanImportVersion(E->getArgs(), Ctx.SourceMgr, &D,
underlyingVersion);
}
if (!isModulePath(Arg)) {
D.diagnose(ArgLoc, diag::unsupported_platform_condition_argument,
"module name");
return nullptr;
}
return E;
}
if (*KindName == "hasFeature") {
if (!getDeclRefStr(Arg, DeclRefKind::Ordinary)) {
D.diagnose(ArgLoc, diag::unsupported_platform_condition_argument,
"feature name");
return nullptr;
}
return E;
}
if (*KindName == "hasAttribute") {
if (!getDeclRefStr(Arg, DeclRefKind::Ordinary)) {
D.diagnose(ArgLoc, diag::unsupported_platform_condition_argument,
"attribute name");
return nullptr;
}
return E;
}
// ( 'os' | 'arch' | '_endian' | '_pointerBitWidth' | '_runtime' | '_hasAtomicBitWidth' ) '(' identifier ')''
auto Kind = getPlatformConditionKind(*KindName);
if (!Kind.has_value()) {
D.diagnose(E->getLoc(), diag::unsupported_platform_condition_expression);
return nullptr;
}
auto ArgStr = getDeclRefStr(Arg, DeclRefKind::Ordinary);
if (!ArgStr.has_value()) {
D.diagnose(ArgLoc, diag::unsupported_platform_condition_argument,
"identifier");
return nullptr;
}
PlatformConditionKind suggestedKind = *Kind;
std::vector<StringRef> suggestedValues;
if (!LangOptions::checkPlatformConditionSupported(*Kind, *ArgStr,
suggestedKind, suggestedValues)) {
if (Kind == PlatformConditionKind::Runtime) {
// Error for _runtime()
D.diagnose(ArgLoc,
diag::unsupported_platform_runtime_condition_argument);
return nullptr;
}
// Just a warning for other unsupported arguments.
StringRef DiagName;
switch (*Kind) {
case PlatformConditionKind::OS:
DiagName = "operating system"; break;
case PlatformConditionKind::Arch:
DiagName = "architecture"; break;
case PlatformConditionKind::Endianness:
DiagName = "endianness"; break;
case PlatformConditionKind::PointerBitWidth:
DiagName = "pointer bit width"; break;
case PlatformConditionKind::CanImport:
DiagName = "import conditional"; break;
case PlatformConditionKind::TargetEnvironment:
DiagName = "target environment"; break;
case PlatformConditionKind::PtrAuth:
DiagName = "pointer authentication scheme"; break;
case PlatformConditionKind::HasAtomicBitWidth:
DiagName = "has atomic bit width"; break;
case PlatformConditionKind::Runtime:
llvm_unreachable("handled above");
}
D.diagnose(ArgLoc, diag::unknown_platform_condition_argument, DiagName,
*KindName);
if (suggestedKind != *Kind) {
auto suggestedKindName = getPlatformConditionName(suggestedKind);
D.diagnose(ArgLoc, diag::note_typo_candidate, suggestedKindName)
.fixItReplace(E->getFn()->getSourceRange(), suggestedKindName);
}
for (auto suggestion : suggestedValues)
D.diagnose(ArgLoc, diag::note_typo_candidate, suggestion)
.fixItReplace(Arg->getSourceRange(), suggestion);
}
else if (!suggestedValues.empty()) {
// The value the user gave has been replaced by something newer.
assert(suggestedValues.size() == 1 && "only support one replacement");
auto replacement = suggestedValues.front();
D.diagnose(ArgLoc, diag::renamed_platform_condition_argument, *ArgStr,
replacement)
.fixItReplace(Arg->getSourceRange(), replacement);
}
return E;
}
// Grouped condition. e.g. '(FLAG)'
Expr *visitParenExpr(ParenExpr *E) {
E->setSubExpr(validate(E->getSubExpr()));
return E;
}
// Prefix '!'. Other prefix operators are rejected.
Expr *visitPrefixUnaryExpr(PrefixUnaryExpr *E) {
auto OpName = getDeclRefStr(E->getFn(), DeclRefKind::PrefixOperator);
if (!OpName.has_value() || *OpName != "!") {
D.diagnose(E->getLoc(),
diag::unsupported_conditional_compilation_unary_expression);
return nullptr;
}
E->setOperand(validate(E->getOperand()));
return E;
}
Expr *visitBinaryExpr(BinaryExpr *E) {
auto OpName = getDeclRefStr(E->getFn(), DeclRefKind::BinaryOperator);
if (auto lhs = validate(E->getLHS())) {
// If the left-hand side is a versioned condition, skip evaluation of
// the right-hand side if it won't ever affect the result.
if (OpName && isVersionIfConfigCondition(lhs)) {
assert(*OpName == "&&" || *OpName == "||");
bool isLHSTrue = evaluateIfConfigCondition(lhs, Ctx);
if (isLHSTrue && *OpName == "||")
return lhs;
if (!isLHSTrue && *OpName == "&&")
return lhs;
}
E->getArgs()->setExpr(0, lhs);
}
if (auto rhs = validate(E->getRHS()))
E->getArgs()->setExpr(1, rhs);
return E;
}
// Fold sequence expression for non-Swift3 mode.
Expr *visitSequenceExpr(SequenceExpr *E) {
ArrayRef<Expr*> Elts = E->getElements();
Expr *foldedExpr = Elts[0];
Elts = Elts.slice(1);
foldedExpr = foldSequence(foldedExpr, Elts);
assert(Elts.empty());
return validate(foldedExpr);
}
// Other expression types are unsupported.
Expr *visitExpr(Expr *E) {
return diagnoseUnsupportedExpr(E);
}
Expr *validate(Expr *E) {
if (auto E2 = visit(E))
return E2;
HasError |= true;
return E;
}
bool hasError() const {
return HasError;
}
};
/// Validate and modify the condition expression.
/// Returns \c true if the condition contains any error.
static bool validateIfConfigCondition(Expr *&condition,
ASTContext &Context,
DiagnosticEngine &D) {
ValidateIfConfigCondition Validator(Context, D);
condition = Validator.validate(condition);
return Validator.hasError();
}
/// The condition evaluator.
/// The condition must be validated with validateIfConfigCondition().
class EvaluateIfConfigCondition :
public ExprVisitor<EvaluateIfConfigCondition, bool> {
ASTContext &Ctx;
/// Get the identifier string from an \c Expr assuming it's an
/// \c UnresolvedDeclRefExpr.
StringRef getDeclRefStr(Expr *E) {
return cast<UnresolvedDeclRefExpr>(E)->getName().getBaseIdentifier().str();
}
public:
EvaluateIfConfigCondition(ASTContext &Ctx) : Ctx(Ctx) {}
bool visitBooleanLiteralExpr(BooleanLiteralExpr *E) {
return E->getValue();
}
bool visitIntegerLiteralExpr(IntegerLiteralExpr *E) {
return E->getDigitsText() != "0";
}
bool visitUnresolvedDeclRefExpr(UnresolvedDeclRefExpr *E) {
auto Name = getDeclRefStr(E);
if (Name.empty())
return false;
if (Name.starts_with("$") && Ctx.LangOpts.hasFeature(Name.drop_front()))
return true;
return Ctx.LangOpts.isCustomConditionalCompilationFlagSet(Name);
}
bool visitCallExpr(CallExpr *E) {
auto KindName = getDeclRefStr(E->getFn());
auto *Arg = getSingleSubExp(E->getArgs(), KindName, nullptr);
if (KindName == "_compiler_version" && isa<StringLiteralExpr>(Arg)) {
auto Str = cast<StringLiteralExpr>(Arg)->getValue();
auto Val =
VersionParser::parseCompilerVersionString(Str, SourceLoc(), nullptr)
.value();
auto thisVersion = version::getCurrentCompilerVersion();
return thisVersion >= Val;
} else if ((KindName == "swift") || (KindName == "compiler") ||
(KindName == "_compiler_version")) {
auto PUE = cast<PrefixUnaryExpr>(Arg);
auto PrefixName = getDeclRefStr(PUE->getFn());
auto Str = extractExprSource(Ctx.SourceMgr, PUE->getOperand());
auto Val = VersionParser::parseVersionString(Str, SourceLoc(), nullptr)
.value();
version::Version thisVersion;
if (KindName == "swift") {
thisVersion = Ctx.LangOpts.EffectiveLanguageVersion;
} else if (KindName == "compiler") {
thisVersion = version::Version::getCurrentLanguageVersion();
} else if (KindName == "_compiler_version") {
thisVersion = version::getCurrentCompilerVersion();
} else {
llvm_unreachable("unsupported version conditional");
}
return isValidVersion(thisVersion, Val, PrefixName);
} else if (KindName == "canImport") {
auto Str = extractExprSource(Ctx.SourceMgr, Arg);
bool underlyingModule = false;
llvm::VersionTuple version;
if (!E->getArgs()->isUnlabeledUnary()) {
version = getCanImportVersion(E->getArgs(), Ctx.SourceMgr, nullptr,
underlyingModule);
}
ImportPath::Module::Builder builder(Ctx, Str, /*separator=*/'.',
Arg->getStartLoc());
return Ctx.canImportModule(builder.get(), E->getLoc(), version,
underlyingModule);
} else if (KindName == "hasFeature") {
auto featureName = getDeclRefStr(Arg);
return Ctx.LangOpts.hasFeature(featureName);
} else if (KindName == "hasAttribute") {
auto attributeName = getDeclRefStr(Arg);
return hasAttribute(Ctx.LangOpts, attributeName);
}
auto Val = getDeclRefStr(Arg);
auto Kind = getPlatformConditionKind(KindName).value();
return Ctx.LangOpts.checkPlatformCondition(Kind, Val);
}
bool visitPrefixUnaryExpr(PrefixUnaryExpr *E) {
return !visit(E->getOperand());
}
bool visitParenExpr(ParenExpr *E) {
return visit(E->getSubExpr());
}
bool visitBinaryExpr(BinaryExpr *E) {
auto OpName = getDeclRefStr(E->getFn());
if (OpName == "||") return visit(E->getLHS()) || visit(E->getRHS());
if (OpName == "&&") return visit(E->getLHS()) && visit(E->getRHS());
llvm_unreachable("unsupported binary operator");
}
bool visitExpr(Expr *E) { llvm_unreachable("Unvalidated condition?"); }
};
/// Evaluate the condition.
/// \c true if success, \c false if failed.
static bool evaluateIfConfigCondition(Expr *Condition, ASTContext &Context) {
return EvaluateIfConfigCondition(Context).visit(Condition);
}
/// Version condition checker.
class IsVersionIfConfigCondition :
public ExprVisitor<IsVersionIfConfigCondition, bool> {
/// Get the identifier string from an \c Expr assuming it's an
/// \c UnresolvedDeclRefExpr.
StringRef getDeclRefStr(Expr *E) {
return cast<UnresolvedDeclRefExpr>(E)->getName().getBaseIdentifier().str();
}
public:
IsVersionIfConfigCondition() {}
bool visitBinaryExpr(BinaryExpr *E) {
auto OpName = getDeclRefStr(E->getFn());
if (OpName == "||") return visit(E->getLHS()) && visit(E->getRHS());
if (OpName == "&&") return visit(E->getLHS()) || visit(E->getRHS());
llvm_unreachable("unsupported binary operator");
}
bool visitCallExpr(CallExpr *E) {
auto KindName = getDeclRefStr(E->getFn());
return KindName == "_compiler_version" || KindName == "swift" ||
KindName == "compiler";
}
bool visitPrefixUnaryExpr(PrefixUnaryExpr *E) {
return visit(E->getOperand());
}
bool visitParenExpr(ParenExpr *E) { return visit(E->getSubExpr()); }
bool visitExpr(Expr *E) { return false; }
};
static bool isVersionIfConfigCondition(Expr *Condition) {
return IsVersionIfConfigCondition().visit(Condition);
}
/// Get the identifier string from an \c Expr if it's an
/// \c UnresolvedDeclRefExpr, otherwise the empty string.
static StringRef getDeclRefStr(Expr *E) {
if (auto *UDRE = dyn_cast<UnresolvedDeclRefExpr>(E)) {
return UDRE->getName().getBaseIdentifier().str();
}
return "";
}
static bool isPlatformConditionDisjunction(Expr *E, PlatformConditionKind Kind,
ArrayRef<StringRef> Vals) {
if (auto *Or = dyn_cast<BinaryExpr>(E)) {
if (getDeclRefStr(Or->getFn()) == "||") {
return (isPlatformConditionDisjunction(Or->getLHS(), Kind, Vals) &&
isPlatformConditionDisjunction(Or->getRHS(), Kind, Vals));
}
} else if (auto *P = dyn_cast<ParenExpr>(E)) {
return isPlatformConditionDisjunction(P->getSubExpr(), Kind, Vals);
} else if (auto *C = dyn_cast<CallExpr>(E)) {
if (getPlatformConditionKind(getDeclRefStr(C->getFn())) != Kind)
return false;
if (auto *Arg = C->getArgs()->getUnlabeledUnaryExpr()) {
auto ArgStr = getDeclRefStr(Arg);
for (auto V : Vals) {
if (ArgStr == V)
return true;
}
}
}
return false;
}
// Search for the first occurrence of a _likely_ (but not definite) implicit
// simulator-environment platform condition, or negation thereof. This is
// defined as any logical conjunction of one or more os() platform conditions
// _strictly_ from the set {iOS, tvOS, watchOS} and one or more arch() platform
// conditions _strictly_ from the set {i386, x86_64}.
//
// These are (at the time of writing) defined as de-facto simulators in
// Platform.cpp, and if a user is testing them they're _likely_ looking for
// simulator-ness indirectly. If there is anything else in the condition aside
// from these conditions (or the negation of such a conjunction), we
// conservatively assume the user is testing something other than
// simulator-ness.
static Expr *findAnyLikelySimulatorEnvironmentTest(Expr *Condition) {
if (!Condition)
return nullptr;
if (auto *N = dyn_cast<PrefixUnaryExpr>(Condition)) {
return findAnyLikelySimulatorEnvironmentTest(N->getOperand());
} else if (auto *P = dyn_cast<ParenExpr>(Condition)) {
return findAnyLikelySimulatorEnvironmentTest(P->getSubExpr());
}
// We assume the user is writing the condition in CNF -- say (os(iOS) ||
// os(tvOS)) && (arch(i386) || arch(x86_64)) -- rather than DNF, as the former
// is exponentially more terse, and these conditions are already quite
// unwieldy. If field evidence shows people using other variants, possibly add
// them here.
auto isSimulatorPlatformOSTest = [](Expr *E) -> bool {
return isPlatformConditionDisjunction(
E, PlatformConditionKind::OS, {"iOS", "tvOS", "watchOS"});
};
auto isSimulatorPlatformArchTest = [](Expr *E) -> bool {
return isPlatformConditionDisjunction(
E, PlatformConditionKind::Arch, {"i386", "x86_64"});
};
if (auto *And = dyn_cast<BinaryExpr>(Condition)) {
if (getDeclRefStr(And->getFn()) == "&&") {
if ((isSimulatorPlatformOSTest(And->getLHS()) &&
isSimulatorPlatformArchTest(And->getRHS())) ||
(isSimulatorPlatformOSTest(And->getRHS()) &&
isSimulatorPlatformArchTest(And->getLHS()))) {
return And;
}
}
}
return nullptr;
}
} // end anonymous namespace
/// Call into the Swift implementation of #if condition evaluation.
///
/// \returns std::nullopt if the Swift implementation is not available, or
/// a pair (isActive, allowSyntaxErrors) describing whether the evaluated
/// condition indicates that the region is active and whether, if inactive,
/// the code in that region is allowed to have syntax errors.
static std::optional<std::pair<bool, bool>> evaluateWithSwiftIfConfig(
Parser &parser,
SourceRange conditionRange,
bool shouldEvaluate
) {
#if SWIFT_BUILD_SWIFT_SYNTAX
return evaluateOrDefault(
parser.Context.evaluator,
EvaluateIfConditionRequest{&parser.SF, conditionRange, shouldEvaluate},
std::pair(false, false));
#else
return std::nullopt;
#endif
}
/// Parse and populate a #if ... #endif directive.
/// Delegate callback function to parse elements in the blocks.
template <typename Result>
Result Parser::parseIfConfigRaw(
IfConfigContext ifConfigContext,
llvm::function_ref<void(SourceLoc clauseLoc, Expr *condition, bool isActive,
IfConfigElementsRole role)>
parseElements,
llvm::function_ref<Result(SourceLoc endLoc, bool hadMissingEnd)> finish) {
assert(Tok.is(tok::pound_if));
Parser::StructureMarkerRAII ParsingDecl(
*this, Tok.getLoc(), Parser::StructureMarkerKind::IfConfig);
// Find the region containing code completion token.
SourceLoc ideInspectionClauseLoc;
if (SourceMgr.hasIDEInspectionTargetBuffer() &&
SourceMgr.getIDEInspectionTargetBufferID() == L->getBufferID() &&
SourceMgr.isBeforeInBuffer(Tok.getLoc(),
SourceMgr.getIDEInspectionTargetLoc())) {
llvm::SaveAndRestore<std::optional<StableHasher>> H(CurrentTokenHash,
std::nullopt);
BacktrackingScope backtrack(*this);
do {
auto startLoc = Tok.getLoc();
consumeToken();
skipUntilConditionalBlockClose();
auto endLoc = PreviousLoc;
if (SourceMgr.rangeContainsTokenLoc(
SourceRange(startLoc, endLoc),
SourceMgr.getIDEInspectionTargetLoc())) {
ideInspectionClauseLoc = startLoc;
break;
}
} while (Tok.isNot(tok::pound_endif, tok::eof));
}
bool shouldEvaluate =
// Don't evaluate if it's in '-parse' mode, etc.
shouldEvaluatePoundIfDecls() &&
// If it's in inactive #if ... #endif block, there's no point to do it.
!InInactiveClauseEnvironment &&
// If this directive contains code completion location, 'isActive' is
// determined solely by which block has the completion token.
!ideInspectionClauseLoc.isValid();
// For constructing syntactic structures, we need AST nodes even for
// non-active regions.
bool allActive = SF.getParsingOptions().contains(
SourceFile::ParsingFlags::PoundIfAllActive);
bool foundActive = false;
bool isVersionCondition = false;
CharSourceRange activeBodyRange;
while (1) {
bool isElse = Tok.is(tok::pound_else);
SourceLoc ClauseLoc = consumeToken();
Expr *Condition = nullptr;
bool isActive = false;
if (!Tok.isAtStartOfLine() && isElse && Tok.is(tok::kw_if)) {
diagnose(Tok, diag::unexpected_if_following_else_compilation_directive)
.fixItReplace(SourceRange(ClauseLoc, consumeToken()), "#elseif");
isElse = false;
}
// Parse the condition. Evaluate it to determine the active
// clause unless we're doing a parse-only pass.
if (isElse) {
isActive = !foundActive && shouldEvaluate;
} else {
llvm::SaveAndRestore<bool> S(InPoundIfEnvironment, true);
ParserResult<Expr> result = parseExprSequence(diag::expected_expr,
/*isBasic*/true,
/*isForDirective*/true);
if (result.hasCodeCompletion())
return makeParserCodeCompletionStatus();
if (result.isNull())
return makeParserError();
Condition = result.get();
if (std::optional<std::pair<bool, bool>> evalResult =
evaluateWithSwiftIfConfig(*this,
Condition->getSourceRange(),
shouldEvaluate)) {
if (!foundActive) {
isActive = evalResult->first;
isVersionCondition = evalResult->second;
}
} else if (validateIfConfigCondition(Condition, Context, Diags)) {
// Error in the condition;
isActive = false;
isVersionCondition = false;
} else if (!foundActive) {
// Evaluate the condition only if we haven't found any active one and
// we're not in parse-only mode.
if (shouldEvaluate) {
isActive = evaluateIfConfigCondition(Condition, Context);
}
// Determine isVersionCondition regardless of whether we're active.
// This is necessary in some edge cases, e.g. where we're in a nested,
// inactive #if block, and we encounter an inactive `#if compiler` check,
// as we have to explicitly skip parsing in such edge cases.
isVersionCondition = isVersionIfConfigCondition(Condition);
}
}
// Treat the region containing code completion token as "active".
if (ideInspectionClauseLoc.isValid() && !foundActive)
isActive = (ClauseLoc == ideInspectionClauseLoc);
if (allActive)
isActive = true;
foundActive |= isActive;
if (!Tok.isAtStartOfLine() && Tok.isNot(tok::eof)) {
diagnose(Tok.getLoc(),
diag::extra_tokens_conditional_compilation_directive);
}
if (Expr *Test = findAnyLikelySimulatorEnvironmentTest(Condition)) {
diagnose(Test->getLoc(),
diag::likely_simulator_platform_condition)
.fixItReplace(Test->getSourceRange(),
"targetEnvironment(simulator)");
}
// Parse elements
auto bodyStart = Lexer::getLocForEndOfToken(SourceMgr, PreviousLoc);
llvm::SaveAndRestore<bool> S(InInactiveClauseEnvironment,
InInactiveClauseEnvironment || !isActive);
// Disable updating the interface hash inside inactive blocks.
std::optional<llvm::SaveAndRestore<std::optional<StableHasher>>> T;
if (!isActive)
T.emplace(CurrentTokenHash, std::nullopt);
if (isActive || !isVersionCondition) {
parseElements(
ClauseLoc, Condition, isActive, IfConfigElementsRole::Normal);
} else {
DiagnosticTransaction DT(Diags);
skipUntilConditionalBlockClose();
DT.abort();
parseElements(
ClauseLoc, Condition, isActive, IfConfigElementsRole::Skipped);
}
// We ought to be at the end of the clause, diagnose if not and skip to
// the closing token. `#if` + `#endif` are considered stronger delimiters
// than `{` + `}`, so we can skip over those too.
if (Tok.isNot(tok::pound_elseif, tok::pound_else, tok::pound_endif,
tok::eof)) {
if (Tok.is(tok::r_brace)) {
diagnose(Tok, diag::unexpected_rbrace_in_conditional_compilation_block);
} else if (ifConfigContext == IfConfigContext::PostfixExpr) {
diagnose(Tok, diag::expr_postfix_ifconfig_unexpectedtoken);
} else {
// We ought to never hit this case in practice, but fall back to a
// generic 'unexpected tokens' diagnostic if we weren't able to produce
// a better diagnostic during the parsing of the clause.
diagnose(Tok, diag::ifconfig_unexpectedtoken);
}
skipUntilConditionalBlockClose();
}
// Record the clause range info in SourceFile.
if (shouldEvaluate) {
auto kind = isActive ? IfConfigClauseRangeInfo::ActiveClause
: IfConfigClauseRangeInfo::InactiveClause;
SF.recordIfConfigClauseRangeInfo(
{ClauseLoc, bodyStart, Tok.getLoc(), kind});
}
if (Tok.isNot(tok::pound_elseif, tok::pound_else))
break;
if (isElse)
diagnose(Tok, diag::expected_close_after_else_directive);
}
SourceLoc EndLoc;
bool HadMissingEnd = parseEndIfDirective(EndLoc);
// Record the '#end' ranges in SourceFile.
if (!HadMissingEnd && shouldEvaluate) {
SourceLoc EndOfEndLoc = getEndOfPreviousLoc();
SF.recordIfConfigClauseRangeInfo({EndLoc, EndOfEndLoc, EndOfEndLoc,
IfConfigClauseRangeInfo::EndDirective});
}
return finish(EndLoc, HadMissingEnd);
}
// Parse and populate a #if ... #endif directive.
/// Delegate callback function to parse elements in the blocks.
ParserStatus Parser::parseIfConfig(
IfConfigContext ifConfigContext,
llvm::function_ref<void(bool)> parseElements) {
ParserStatus status = makeParserSuccess();
return parseIfConfigRaw<ParserStatus>(
ifConfigContext,
[&](SourceLoc clauseLoc, Expr *condition, bool isActive,
IfConfigElementsRole role) {
if (role != IfConfigElementsRole::Skipped)
parseElements(isActive);
},
[&](SourceLoc endLoc, bool hadMissingEnd) {
return status;
});
}