-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathGenReflection.cpp
1899 lines (1610 loc) · 65 KB
/
GenReflection.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- GenReflection.cpp - IR generation for nominal type reflection ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation of type metadata for struct/class
// stored properties and enum cases for use with reflection.
//===----------------------------------------------------------------------===//
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsIRGen.h"
#include "swift/AST/GenericEnvironment.h"
#include "swift/AST/IRGenOptions.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Mangler.h"
#include "swift/Basic/Platform.h"
#include "swift/IRGen/Linking.h"
#include "swift/Parse/Lexer.h"
#include "swift/RemoteInspection/MetadataSourceBuilder.h"
#include "swift/RemoteInspection/Records.h"
#include "swift/SIL/SILModule.h"
#include "ConstantBuilder.h"
#include "Explosion.h"
#include "Field.h"
#include "GenClass.h"
#include "GenDecl.h"
#include "GenEnum.h"
#include "GenHeap.h"
#include "GenMeta.h"
#include "GenProto.h"
#include "GenType.h"
#include "GenValueWitness.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenMangler.h"
#include "IRGenModule.h"
#include "LoadableTypeInfo.h"
#include "MetadataRequest.h"
using namespace swift;
using namespace irgen;
using namespace reflection;
class MetadataSourceEncoder
: public MetadataSourceVisitor<MetadataSourceEncoder> {
llvm::raw_ostream &OS;
public:
MetadataSourceEncoder(llvm::raw_ostream &OS) : OS(OS) {}
void
visitClosureBindingMetadataSource(const ClosureBindingMetadataSource *CB) {
OS << 'B';
OS << CB->getIndex();
}
void
visitReferenceCaptureMetadataSource(const ReferenceCaptureMetadataSource *RC){
OS << 'R';
OS << RC->getIndex();
}
void
visitMetadataCaptureMetadataSource(const MetadataCaptureMetadataSource *MC) {
OS << 'M';
OS << MC->getIndex();
}
void
visitGenericArgumentMetadataSource(const GenericArgumentMetadataSource *GA) {
OS << 'G';
OS << GA->getIndex();
visit(GA->getSource());
OS << '_';
}
void visitSelfMetadataSource(const SelfMetadataSource *S) {
OS << 'S';
}
void
visitSelfWitnessTableMetadataSource(const SelfWitnessTableMetadataSource *S) {
OS << 'W';
}
};
class PrintMetadataSource
: public MetadataSourceVisitor<PrintMetadataSource, void> {
llvm::raw_ostream &OS;
unsigned Indent;
llvm::raw_ostream &indent(unsigned Amount) {
for (unsigned i = 0; i < Amount; ++i)
OS << ' ';
return OS;
}
llvm::raw_ostream &printHeader(std::string Name) {
indent(Indent) << '(' << Name;
return OS;
}
template<typename T>
llvm::raw_ostream &printField(std::string name, const T &value) {
if (!name.empty())
OS << " " << name << "=" << value;
else
OS << " " << value;
return OS;
}
void printRec(const reflection::MetadataSource *MS) {
OS << "\n";
Indent += 2;
visit(MS);
Indent -= 2;
}
void closeForm() {
OS << ')';
}
public:
PrintMetadataSource(llvm::raw_ostream &OS, unsigned Indent)
: OS(OS), Indent(Indent) {}
void
visitClosureBindingMetadataSource(const ClosureBindingMetadataSource *CB) {
printHeader("closure-binding");
printField("index", CB->getIndex());
closeForm();
}
void
visitReferenceCaptureMetadataSource(const ReferenceCaptureMetadataSource *RC){
printHeader("reference-capture");
printField("index", RC->getIndex());
closeForm();
}
void
visitMetadataCaptureMetadataSource(const MetadataCaptureMetadataSource *MC){
printHeader("metadata-capture");
printField("index", MC->getIndex());
closeForm();
}
void
visitGenericArgumentMetadataSource(const GenericArgumentMetadataSource *GA) {
printHeader("generic-argument");
printField("index", GA->getIndex());
printRec(GA->getSource());
closeForm();
}
void
visitSelfMetadataSource(const SelfMetadataSource *S) {
printHeader("self");
closeForm();
}
void
visitSelfWitnessTableMetadataSource(const SelfWitnessTableMetadataSource *S) {
printHeader("self-witness-table");
closeForm();
}
};
std::optional<llvm::VersionTuple>
getRuntimeVersionThatSupportsDemanglingType(CanType type) {
enum VersionRequirement {
None,
Swift_5_2,
Swift_5_5,
Swift_6_0,
Swift_6_1,
// Short-circuit if we find this requirement.
Latest = Swift_6_1
};
VersionRequirement latestRequirement = None;
auto addRequirement = [&](VersionRequirement req) -> bool {
if (req > latestRequirement) {
latestRequirement = req;
return req == Latest;
}
return false;
};
(void) type.findIf([&](CanType t) -> bool {
if (auto fn = dyn_cast<AnyFunctionType>(t)) {
auto isolation = fn->getIsolation();
auto sendingResult = fn->hasSendingResult();
// The Swift 6.1 runtime fixes a bug preventing successful demangling
// when @isolated(any) or global actor isolation is combined with a
// sending result.
if (sendingResult &&
(isolation.isErased() || isolation.isGlobalActor()))
return addRequirement(Swift_6_1);
// The Swift 6.0 runtime is the first version able to demangle types
// that involve typed throws, @isolated(any), or a sending result, or
// for that matter to represent them at all at runtime.
if (!fn.getThrownError().isNull() ||
isolation.isErased() ||
sendingResult)
return addRequirement(Swift_6_0);
// The Swift 5.5 runtime is the first version able to demangle types
// related to concurrency.
if (fn->isAsync() ||
fn->isSendable() ||
!isolation.isNonIsolated())
return addRequirement(Swift_5_5);
return false;
}
if (auto opaqueArchetype = dyn_cast<OpaqueTypeArchetypeType>(t)) {
// Associated types of opaque types weren't mangled in a usable
// form by the Swift 5.1 runtime, so we needed to add a new
// mangling in 5.2.
if (opaqueArchetype->getInterfaceType()->is<DependentMemberType>())
return addRequirement(Swift_5_2);
// Although opaque types in general were only added in Swift 5.1,
// declarations that use them are already covered by availability
// guards, so we don't need to limit availability of mangled names
// involving them.
}
/// Any nominal type that has an inverse requirement in its generic
/// signature uses NoncopyableGenerics. Since inverses are mangled into
/// symbols, a Swift 6.0+ runtime is generally needed to demangle them.
///
/// We make an exception for types in the stdlib, like Optional, since the
/// runtime should still be able to demangle them, based on the availability
/// of the type.
if (auto nominalTy = dyn_cast<NominalOrBoundGenericNominalType>(t)) {
auto *nom = nominalTy->getDecl();
if (auto sig = nom->getGenericSignature()) {
SmallVector<InverseRequirement, 2> inverses;
SmallVector<Requirement, 2> reqs;
sig->getRequirementsWithInverses(reqs, inverses);
if (!inverses.empty() && !nom->getModuleContext()->isStdlibModule()) {
return addRequirement(Swift_6_0);
}
}
}
// Any composition with an inverse will need the 6.0 runtime to demangle.
if (auto pct = dyn_cast<ProtocolCompositionType>(t)) {
if (pct->hasInverse())
return addRequirement(Swift_6_0);
}
return false;
});
switch (latestRequirement) {
case Swift_6_1: return llvm::VersionTuple(6, 1);
case Swift_6_0: return llvm::VersionTuple(6, 0);
case Swift_5_5: return llvm::VersionTuple(5, 5);
case Swift_5_2: return llvm::VersionTuple(5, 2);
case None: return std::nullopt;
}
llvm_unreachable("bad kind");
}
// Produce a fallback mangled type name that uses an open-coded callback
// to form the metadata. This is useful for working around bugs in older
// runtimes, or supporting new type system features when deploying back.
//
// Note that this functionality is limited, because the demangler callback
// mechanism can only produce complete metadata. It can't be used in situations
// where completing the metadata during demangling might cause cyclic
// dependencies.
static std::pair<llvm::Constant *, unsigned>
getTypeRefByFunction(IRGenModule &IGM,
CanGenericSignature sig,
CanType t) {
IRGenMangler mangler(IGM.Context);
std::string symbolName =
mangler.mangleSymbolNameForMangledMetadataAccessorString(
"get_type_metadata", sig, t);
auto constant = IGM.getAddrOfStringForMetadataRef(symbolName, /*align*/2,
/*low bit*/false,
[&](ConstantInitBuilder &B) {
llvm::Function *accessor;
// Otherwise, we need to emit a helper function to bind the arguments
// out of the demangler's argument buffer.
auto fnTy = llvm::FunctionType::get(IGM.TypeMetadataPtrTy,
{IGM.Int8PtrTy}, /*vararg*/ false);
accessor =
llvm::Function::Create(fnTy, llvm::GlobalValue::PrivateLinkage,
symbolName, IGM.getModule());
accessor->setAttributes(IGM.constructInitialAttributes());
SmallVector<GenericRequirement, 4> requirements;
auto *genericEnv = sig.getGenericEnvironment();
enumerateGenericSignatureRequirements(sig,
[&](GenericRequirement reqt) { requirements.push_back(reqt); });
{
IRGenFunction IGF(IGM, accessor);
if (IGM.DebugInfo)
IGM.DebugInfo->emitArtificialFunction(IGF, accessor);
auto bindingsBufPtr = IGF.collectParameters().claimNext();
auto substT = genericEnv
? genericEnv->mapTypeIntoContext(t)->getCanonicalType()
: t;
// If a type is noncopyable, lie about the resolved type unless the
// runtime is sufficiently aware of noncopyable types.
if (substT->isNoncopyable()) {
// Darwin-based platforms have ABI stability, and we want binaries
// that use noncopyable types nongenerically today to be forward
// compatible with a future OS runtime that supports noncopyable
// generics. On other platforms, a new Swift compiler and runtime
// require recompilation anyway, so this dance is unnecessary, and
// for now, we can unconditionally lie.
bool useForwardCompatibility =
IGM.Context.LangOpts.Target.isOSDarwin();
llvm::Instruction *br = nullptr;
llvm::BasicBlock *supportedBB = nullptr;
if (useForwardCompatibility) {
llvm::Value *runtimeSupportsNoncopyableTypesSymbol = nullptr;
// This is weird. When building the stdlib, we don't have access to
// the swift_runtimeSupportsNoncopyableTypes symbol in the Swift.o,
// so we'll emit an adrp + ldr to resolve the GOT address. However,
// this symbol is defined as an abolsute in the runtime object files
// to address 0x0 right now and ld doesn't quite understand how to
// fixup this GOT address when merging the runtime and stdlib. Just
// unconditionally fail the branch.
//
// Note: When the value of this symbol changes, this MUST be
// updated.
if (IGM.getSwiftModule()->isStdlibModule()) {
runtimeSupportsNoncopyableTypesSymbol
= llvm::ConstantInt::get(IGM.Int8Ty, 0);
} else {
runtimeSupportsNoncopyableTypesSymbol
= IGM.Module.getOrInsertGlobal(
"swift_runtimeSupportsNoncopyableTypes", IGM.Int8Ty);
cast<llvm::GlobalVariable>(runtimeSupportsNoncopyableTypesSymbol)
->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
}
auto runtimeSupportsNoncopyableTypes
= IGF.Builder.CreateIsNotNull(runtimeSupportsNoncopyableTypesSymbol,
"supports.noncopyable");
supportedBB = IGF.createBasicBlock("does.support.noncopyable");
auto unsupportedBB = IGF.createBasicBlock("does.not.support.noncopyable");
br = IGF.Builder.CreateCondBr(runtimeSupportsNoncopyableTypes,
supportedBB,
unsupportedBB);
IGF.Builder.emitBlock(unsupportedBB);
}
// If the runtime does not yet support noncopyable types, lie that the
// field is an empty tuple, so the runtime doesn't try to do anything
// with the actual value.
auto phonyRet = IGF.emitTypeMetadataRef(IGM.Context.TheEmptyTupleType);
IGF.Builder.CreateRet(phonyRet);
if (!useForwardCompatibility) {
goto done_building_function;
}
// Emit the type metadata normally otherwise.
IGF.Builder.SetInsertPoint(br);
IGF.Builder.emitBlock(supportedBB);
}
SubstitutionMap subs;
if (genericEnv)
subs = genericEnv->getForwardingSubstitutionMap();
bindFromGenericRequirementsBuffer(
IGF, requirements,
Address(bindingsBufPtr, IGM.Int8Ty, IGM.getPointerAlignment()),
MetadataState::Complete, subs);
auto ret = IGF.emitTypeMetadataRef(substT);
IGF.Builder.CreateRet(ret);
}
done_building_function:
// Form the mangled name with its relative reference.
auto S = B.beginStruct();
S.setPacked(true);
S.add(llvm::ConstantInt::get(IGM.Int8Ty, 255));
S.add(llvm::ConstantInt::get(IGM.Int8Ty, 9));
S.addCompactFunctionReference(accessor);
// And a null terminator!
S.addInt(IGM.Int8Ty, 0);
return S.finishAndCreateFuture();
});
return {constant, 6};
}
bool swift::irgen::mangledNameIsUnknownToDeployTarget(IRGenModule &IGM,
CanType type) {
if (auto runtimeCompatVersion = getSwiftRuntimeCompatibilityVersionForTarget(
IGM.Context.LangOpts.Target)) {
if (auto minimumSupportedRuntimeVersion =
getRuntimeVersionThatSupportsDemanglingType(type)) {
if (*runtimeCompatVersion < *minimumSupportedRuntimeVersion) {
return true;
}
}
}
return false;
}
static std::pair<llvm::Constant *, unsigned>
getTypeRefImpl(IRGenModule &IGM,
CanType type,
CanGenericSignature sig,
MangledTypeRefRole role) {
bool useFlatUnique = false;
switch (role) {
case MangledTypeRefRole::FlatUnique:
useFlatUnique = true;
break;
case MangledTypeRefRole::FieldMetadata: {
// We want to keep fields of noncopyable type from being exposed to
// in-process runtime reflection libraries in older Swift runtimes, since
// they more than likely assume they can copy field values, and the language
// support for noncopyable types as dynamic or generic types isn't yet
// implemented as of the writing of this comment. If the type is
// noncopyable, use a function to emit the type ref which will look for a
// signal from future runtimes whether they support noncopyable types before
// exposing their metadata to them.
Type contextualTy = type;
if (sig) {
contextualTy = sig.getGenericEnvironment()->mapTypeIntoContext(type);
}
bool isAlwaysNoncopyable = false;
if (contextualTy->isNoncopyable()) {
isAlwaysNoncopyable = true;
// If the contextual type has any archetypes in it, it's plausible that
// we could end up with a copyable type in some instances. Look for those
// so we can permit unsafe reflection of the field, by assuming it could
// be Copyable.
if (contextualTy->hasArchetype()) {
// If this is a nominal type, check whether it can ever be copyable.
if (auto nominal = contextualTy->getAnyNominal()) {
// If it's a nominal that can ever be Copyable _and_ it's defined in
// the stdlib, assume that we could end up with a Copyable type.
if (nominal->canBeCopyable()
&& nominal->getModuleContext()->isStdlibModule())
isAlwaysNoncopyable = false;
} else {
// Assume that we could end up with a Copyable type somehow.
// This allows you to reflect a 'T: ~Copyable' stored in a type.
isAlwaysNoncopyable = false;
}
}
}
// The getTypeRefByFunction strategy will emit a forward-compatible runtime
// check to see if the runtime can safely reflect such fields. Otherwise,
// the field will be artificially hidden to reflectors.
if (isAlwaysNoncopyable) {
IGM.IRGen.noteUseOfTypeMetadata(type);
return getTypeRefByFunction(IGM, sig, type);
}
}
LLVM_FALLTHROUGH;
case MangledTypeRefRole::DefaultAssociatedTypeWitness:
case MangledTypeRefRole::Metadata:
// Note that we're using all of the nominal types referenced by this type,
// ensuring that we can always reconstruct type metadata from a mangled name
// in-process.
IGM.IRGen.noteUseOfTypeMetadata(type);
// If the minimum deployment target's runtime demangler wouldn't understand
// this mangled name, then fall back to generating a "mangled name" with a
// symbolic reference with a callback function.
if (mangledNameIsUnknownToDeployTarget(IGM, type)) {
return getTypeRefByFunction(IGM, sig, type);
}
break;
case MangledTypeRefRole::Reflection:
// For reflection records only used for out-of-process reflection, we do not
// need to force emission of runtime type metadata.
IGM.IRGen.noteUseOfFieldDescriptors(type);
break;
}
IRGenMangler Mangler(IGM.Context);
auto SymbolicName =
useFlatUnique ? Mangler.mangleTypeForFlatUniqueTypeRef(sig, type)
: Mangler.mangleTypeForReflection(IGM, sig, type);
return {IGM.getAddrOfStringForTypeRef(SymbolicName, role),
SymbolicName.runtimeSizeInBytes()};
}
std::pair<llvm::Constant *, unsigned>
IRGenModule::getTypeRef(CanType type, CanGenericSignature sig,
MangledTypeRefRole role) {
type = substOpaqueTypesWithUnderlyingTypes(type);
return getTypeRefImpl(*this, type, sig, role);
}
std::pair<llvm::Constant *, unsigned>
IRGenModule::getTypeRef(Type type, GenericSignature genericSig,
MangledTypeRefRole role) {
return getTypeRef(type->getReducedType(genericSig),
genericSig.getCanonicalSignature(), role);
}
std::pair<llvm::Constant *, unsigned>
IRGenModule::getLoweredTypeRef(SILType loweredType,
CanGenericSignature genericSig,
MangledTypeRefRole role) {
auto substTy =
substOpaqueTypesWithUnderlyingTypes(loweredType, genericSig);
auto type = substTy.getASTType();
return getTypeRefImpl(*this, type, genericSig, role);
}
/// Emit a mangled string referencing a specific protocol conformance, so that
/// the runtime can fetch its witness table.
///
/// TODO: Currently this uses a stub mangling that just refers to an accessor
/// function. We need to fully develop the mangling with the ability to refer
/// to dependent conformances to be able to use mangled strings.
llvm::Constant *
IRGenModule::emitWitnessTableRefString(CanType type,
ProtocolConformanceRef conformance,
GenericSignature origGenericSig,
bool shouldSetLowBit) {
std::tie(type, conformance)
= substOpaqueTypesWithUnderlyingTypes(type, conformance);
auto origType = type;
auto genericSig = origGenericSig.getCanonicalSignature();
SmallVector<GenericRequirement, 4> requirements;
enumerateGenericSignatureRequirements(genericSig,
[&](GenericRequirement reqt) { requirements.push_back(reqt); });
auto *genericEnv = genericSig.getGenericEnvironment();
IRGenMangler mangler(Context);
std::string symbolName =
mangler.mangleSymbolNameForMangledConformanceAccessorString(
"get_witness_table", genericSig, type, conformance);
return getAddrOfStringForMetadataRef(symbolName, /*alignment=*/2,
shouldSetLowBit,
[&](ConstantInitBuilder &B) {
// Build a stub that loads the necessary bindings from the key path's
// argument buffer then fetches the metadata.
auto fnTy = llvm::FunctionType::get(WitnessTablePtrTy,
{Int8PtrTy}, /*vararg*/ false);
auto accessorThunk =
llvm::Function::Create(fnTy, llvm::GlobalValue::PrivateLinkage,
symbolName, getModule());
accessorThunk->setAttributes(constructInitialAttributes());
{
IRGenFunction IGF(*this, accessorThunk);
if (DebugInfo)
DebugInfo->emitArtificialFunction(IGF, accessorThunk);
if (type->hasTypeParameter()) {
auto bindingsBufPtr = IGF.collectParameters().claimNext();
bindFromGenericRequirementsBuffer(
IGF, requirements,
Address(bindingsBufPtr, Int8Ty, getPointerAlignment()),
MetadataState::Complete, genericEnv->getForwardingSubstitutionMap());
type = genericEnv->mapTypeIntoContext(type)->getCanonicalType();
}
if (origType->hasTypeParameter()) {
conformance = conformance.subst(origType,
genericEnv->getForwardingSubstitutionMap());
}
auto ret = emitWitnessTableRef(IGF, type, conformance);
IGF.Builder.CreateRet(ret);
}
// Form the mangled name with its relative reference.
auto S = B.beginStruct();
S.setPacked(true);
S.add(llvm::ConstantInt::get(Int8Ty, 255));
S.add(llvm::ConstantInt::get(Int8Ty, 9));
S.addCompactFunctionReference(accessorThunk);
// And a null terminator!
S.addInt(Int8Ty, 0);
return S.finishAndCreateFuture();
});
}
llvm::Constant *IRGenModule::getMangledAssociatedConformance(
const NormalProtocolConformance *conformance,
const AssociatedConformance &requirement) {
// Figure out the name of the symbol to be used for the conformance.
IRGenMangler mangler(Context);
auto symbolName =
mangler.mangleSymbolNameForAssociatedConformanceWitness(
conformance, requirement.getAssociation(),
requirement.getAssociatedRequirement());
// See if we emitted the constant already.
auto &entry = StringsForTypeRef[symbolName];
if (entry.second) {
return entry.second;
}
// Get the accessor for this associated conformance.
llvm::Function *accessor;
unsigned char kind;
if (conformance) {
kind = 7;
accessor = getAddrOfAssociatedTypeWitnessTableAccessFunction(conformance,
requirement);
} else {
kind = 8;
accessor = getAddrOfDefaultAssociatedConformanceAccessor(requirement);
}
// Form the mangled name with its relative reference.
ConstantInitBuilder B(*this);
auto S = B.beginStruct();
S.setPacked(true);
S.add(llvm::ConstantInt::get(Int8Ty, 255));
S.add(llvm::ConstantInt::get(Int8Ty, kind));
S.addCompactFunctionReference(accessor);
// And a null terminator!
S.addInt(Int8Ty, 0);
auto finished = S.finishAndCreateFuture();
auto var = new llvm::GlobalVariable(Module, finished.getType(),
/*constant*/ true,
llvm::GlobalValue::LinkOnceODRLinkage,
nullptr,
symbolName);
ApplyIRLinkage(IRLinkage::InternalLinkOnceODR).to(var);
var->setAlignment(llvm::MaybeAlign(2));
setTrueConstGlobal(var);
var->setSection(getReflectionTypeRefSectionName());
finished.installInGlobal(var);
// Drill down to the i8* at the beginning of the constant.
auto addr = llvm::ConstantExpr::getBitCast(var, Int8PtrTy);
// Set the low bit.
unsigned bit = ProtocolRequirementFlags::AssociatedTypeMangledNameBit;
auto bitConstant = llvm::ConstantInt::get(IntPtrTy, bit);
addr = llvm::ConstantExpr::getGetElementPtr(Int8Ty, addr, bitConstant);
// Update the entry.
entry = {var, addr};
return addr;
}
class ReflectionMetadataBuilder {
protected:
IRGenModule &IGM;
ConstantInitBuilder InitBuilder;
ConstantStructBuilder B;
ReflectionMetadataBuilder(IRGenModule &IGM)
: IGM(IGM), InitBuilder(IGM), B(InitBuilder.beginStruct()) {}
virtual ~ReflectionMetadataBuilder() {}
// Collect any builtin types referenced from this type.
void addBuiltinTypeRefs(CanType type) {
if (IGM.getSwiftModule()->isStdlibModule()) {
type.visit([&](CanType t) {
if (isa<BuiltinType>(t))
IGM.BuiltinTypes.insert(t);
});
}
}
/// Add a 32-bit relative offset to a mangled typeref string
/// in the typeref reflection section.
///
/// By default, we use MangledTypeRefRole::Reflection, which does not
/// force emission of any type metadata referenced from the typeref.
///
/// For reflection records which are demangled to produce type metadata
/// in-process, pass MangledTypeRefRole::Metadata instead.
void addTypeRef(Type type, GenericSignature genericSig,
MangledTypeRefRole role =
MangledTypeRefRole::Reflection) {
addTypeRef(type->getReducedType(genericSig),
genericSig.getCanonicalSignature(), role);
}
/// Add a 32-bit relative offset to a mangled typeref string
/// in the typeref reflection section.
///
/// By default, we use MangledTypeRefRole::Reflection, which does not
/// force emission of any type metadata referenced from the typeref.
///
/// For reflection records which are demangled to produce type metadata
/// in-process, pass MangledTypeRefRole::Metadata instead.
void addTypeRef(CanType type,
CanGenericSignature sig,
MangledTypeRefRole role =
MangledTypeRefRole::Reflection) {
B.addRelativeAddress(IGM.getTypeRef(type, sig, role).first);
addBuiltinTypeRefs(type);
}
void
addLoweredTypeRef(SILType loweredType,
CanGenericSignature genericSig,
MangledTypeRefRole role = MangledTypeRefRole::Reflection) {
B.addRelativeAddress(
IGM.getLoweredTypeRef(loweredType, genericSig, role).first);
addBuiltinTypeRefs(loweredType.getASTType());
}
/// Add a 32-bit relative offset to a mangled nominal type string
/// in the typeref reflection section.
///
/// See above comment about 'role'.
void addNominalRef(const NominalTypeDecl *nominal,
MangledTypeRefRole role =
MangledTypeRefRole::Reflection) {
if (auto proto = dyn_cast<ProtocolDecl>(nominal)) {
IRGenMangler mangler(nominal->getASTContext());
SymbolicMangling mangledStr;
mangledStr.String = mangler.mangleBareProtocol(proto);
auto mangledName =
IGM.getAddrOfStringForTypeRef(mangledStr, role);
B.addRelativeAddress(mangledName);
} else {
addTypeRef(nominal->getDeclaredType(), GenericSignature(), role);
}
}
// A function signature for a lambda wrapping an IRGenModule::getAddrOf*
// method.
using GetAddrOfEntityFn = llvm::Constant* (IRGenModule &, ConstantInit);
llvm::GlobalVariable *
emit(std::optional<llvm::function_ref<GetAddrOfEntityFn>> getAddr,
const char *section) {
layout();
llvm::GlobalVariable *var;
// Some reflection records have a mangled symbol name, for uniquing
// imported type metadata.
if (getAddr) {
auto init = B.finishAndCreateFuture();
var = cast<llvm::GlobalVariable>((*getAddr)(IGM, init));
var->setConstant(true);
// Others, such as capture descriptors, do not have a name.
} else {
var = B.finishAndCreateGlobal("\x01l__swift5_reflection_descriptor",
Alignment(4), /*isConstant*/ true,
llvm::GlobalValue::PrivateLinkage);
}
var->setSection(section);
// Only mark the reflection record as used when emitting for the runtime.
// In ReflectionMetadataMode::DebuggerOnly mode we want to allow the linker
// to remove/dead-strip these.
if (IGM.IRGen.Opts.ReflectionMetadata == ReflectionMetadataMode::Runtime) {
IGM.addUsedGlobal(var);
}
disableAddressSanitizer(IGM, var);
return var;
}
llvm::GlobalVariable *emit(std::nullopt_t none, const char *section) {
return emit(std::optional<llvm::function_ref<GetAddrOfEntityFn>>(),
section);
}
virtual void layout() = 0;
};
class AssociatedTypeMetadataBuilder : public ReflectionMetadataBuilder {
static const uint32_t AssociatedTypeRecordSize = 8;
const ProtocolConformance *Conformance;
ArrayRef<std::pair<StringRef, CanType>> AssociatedTypes;
void layout() override {
PrettyStackTraceConformance DebugStack("emitting associated type metadata",
Conformance);
auto *DC = Conformance->getDeclContext();
addNominalRef(DC->getSelfNominalTypeDecl());
addNominalRef(Conformance->getProtocol());
B.addInt32(AssociatedTypes.size());
B.addInt32(AssociatedTypeRecordSize);
auto genericSig = DC->getGenericSignatureOfContext().getCanonicalSignature();
for (auto AssocTy : AssociatedTypes) {
auto NameGlobal = IGM.getAddrOfFieldName(AssocTy.first);
B.addRelativeAddress(NameGlobal);
addTypeRef(AssocTy.second, genericSig);
}
}
public:
AssociatedTypeMetadataBuilder(IRGenModule &IGM,
const ProtocolConformance *Conformance,
ArrayRef<std::pair<StringRef, CanType>> AssociatedTypes)
: ReflectionMetadataBuilder(IGM), Conformance(Conformance),
AssociatedTypes(AssociatedTypes) {}
llvm::GlobalVariable *emit() {
auto section = IGM.getAssociatedTypeMetadataSectionName();
llvm::GlobalVariable *var = ReflectionMetadataBuilder::emit(
[&](IRGenModule &IGM, ConstantInit init) -> llvm::Constant * {
return IGM.getAddrOfReflectionAssociatedTypeDescriptor(Conformance,
init);
},
section);
if (IGM.IRGen.Opts.ConditionalRuntimeRecords) {
// Allow dead-stripping `var` (the reflection record) when the protocol
// or type (from the conformance) is not referenced.
IGM.appendLLVMUsedConditionalEntry(var, Conformance);
}
return var;
}
};
class FieldTypeMetadataBuilder : public ReflectionMetadataBuilder {
public:
static const uint32_t FieldRecordSize = 12;
private:
const NominalTypeDecl *NTD;
void addField(reflection::FieldRecordFlags flags,
Type type, StringRef name) {
B.addInt32(flags.getRawValue());
if (!type) {
B.addInt32(0);
} else {
auto genericSig = NTD->getGenericSignature();
// Special case, UFOs are opaque pointers for now.
if (type->isForeignReferenceType()) {
auto opaqueType = type->getASTContext().getOpaquePointerType();
// The standard library's Mirror demangles metadata from field
// descriptors, so use MangledTypeRefRole::FieldMetadata to ensure
// runtime metadata is available.
addTypeRef(opaqueType, genericSig, MangledTypeRefRole::FieldMetadata);
} else {
// The standard library's Mirror demangles metadata from field
// descriptors, so use MangledTypeRefRole::FieldMetadata to ensure
// runtime metadata is available.
addTypeRef(type, genericSig, MangledTypeRefRole::FieldMetadata);
}
}
if (IGM.IRGen.Opts.EnableReflectionNames) {
auto fieldName = IGM.getAddrOfFieldName(name);
B.addRelativeAddress(fieldName);
} else {
B.addInt32(0);
}
}
void addField(Field field) {
reflection::FieldRecordFlags flags;
bool isLet = false;
switch (field.getKind()) {
case Field::Var: {
auto var = field.getVarDecl();
isLet = var->isLet();
break;
}
case Field::MissingMember:
llvm_unreachable("emitting reflection for type with missing member");
case Field::DefaultActorStorage:
flags.setIsArtificial();
break;
case Field::NonDefaultDistributedActorStorage:
flags.setIsArtificial();
break;
}
flags.setIsVar(!isLet);
addField(flags, field.getInterfaceType(IGM), field.getName());
}
void layoutRecord() {
auto kind = FieldDescriptorKind::Struct;
if (auto CD = dyn_cast<ClassDecl>(NTD)) {
auto type = CD->getDeclaredType()->getCanonicalType();
auto RC = type->getReferenceCounting();
if (RC == ReferenceCounting::ObjC)
kind = FieldDescriptorKind::ObjCClass;
else
kind = FieldDescriptorKind::Class;
}
B.addInt16(uint16_t(kind));
B.addInt16(FieldRecordSize);
// Filter to select which fields we'll export FieldDescriptors for.
auto exportable_field =
[](Field field) {
// Don't export private C++ fields that were imported as private Swift fields.
// The type of a private field might not have all the type witness
// operations that Swift requires, for instance,
// `std::unique_ptr<IncompleteType>` would not have a destructor.
if (field.getKind() == Field::Kind::Var &&
field.getVarDecl()->getClangDecl() &&
field.getVarDecl()->getFormalAccess() == AccessLevel::Private)
return false;
// All other fields are exportable
return true;
};
// Count exportable fields
int exportableFieldCount = 0;
forEachField(IGM, NTD, [&](Field field) {
if (exportable_field(field)) {
++exportableFieldCount;
}
});
// Emit exportable fields, prefixed with a count
B.addInt32(exportableFieldCount);
forEachField(IGM, NTD, [&](Field field) {
if (exportable_field(field)) {
addField(field);
}
});
}
void addField(const EnumDecl *enumDecl, const EnumElementDecl *decl,
bool hasPayload) {
reflection::FieldRecordFlags flags;
if (hasPayload && (decl->isIndirect() || enumDecl->isIndirect()))
flags.setIsIndirectCase();
Type interfaceType = decl->isAvailableDuringLowering()
? decl->getPayloadInterfaceType()
: nullptr;
addField(flags, interfaceType, decl->getBaseIdentifier().str());
}
void layoutEnum() {
auto enumDecl = cast<EnumDecl>(NTD);
auto &strategy = irgen::getEnumImplStrategy(
IGM, enumDecl->getDeclaredTypeInContext()
->getCanonicalType());
auto kind = FieldDescriptorKind::Enum;