-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathGenIntegerLiteral.cpp
448 lines (389 loc) · 16.7 KB
/
GenIntegerLiteral.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
//===--- GenIntegerLiteral.cpp - IRGen for Builtin.IntegerLiteral ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for Builtin.IntegerLiteral.
//
//===----------------------------------------------------------------------===//
#include "GenIntegerLiteral.h"
#include "swift/ABI/MetadataValues.h"
#include "swift/Basic/Assertions.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/GlobalVariable.h"
#include "BitPatternBuilder.h"
#include "Explosion.h"
#include "ExtraInhabitants.h"
#include "GenType.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "LoadableTypeInfo.h"
#include "ScalarPairTypeInfo.h"
using namespace swift;
using namespace irgen;
namespace {
/// A TypeInfo implementation for Builtin.IntegerLiteral.
class IntegerLiteralTypeInfo :
public TrivialScalarPairTypeInfo<IntegerLiteralTypeInfo, LoadableTypeInfo> {
public:
IntegerLiteralTypeInfo(llvm::StructType *storageType,
Size size, Alignment align, SpareBitVector &&spareBits)
: TrivialScalarPairTypeInfo(storageType, size, std::move(spareBits), align,
IsTriviallyDestroyable, IsCopyable, IsFixedSize, IsABIAccessible) {}
static Size getFirstElementSize(IRGenModule &IGM) {
return IGM.getPointerSize();
}
static StringRef getFirstElementLabel() {
return ".data";
}
TypeLayoutEntry
*buildTypeLayoutEntry(IRGenModule &IGM,
SILType T,
bool useStructLayouts) const override {
if (!useStructLayouts) {
return IGM.typeLayoutCache.getOrCreateTypeInfoBasedEntry(*this, T);
}
return IGM.typeLayoutCache.getOrCreateScalarEntry(*this, T,
ScalarKind::TriviallyDestroyable);
}
static Size getSecondElementOffset(IRGenModule &IGM) {
return IGM.getPointerSize();
}
static Size getSecondElementSize(IRGenModule &IGM) {
return IGM.getPointerSize();
}
static StringRef getSecondElementLabel() {
return ".flags";
}
// The data pointer isn't a heap object, but it is an aligned pointer.
bool mayHaveExtraInhabitants(IRGenModule &IGM) const override {
return true;
}
unsigned getFixedExtraInhabitantCount(IRGenModule &IGM) const override {
return getHeapObjectExtraInhabitantCount(IGM);
}
APInt getFixedExtraInhabitantValue(IRGenModule &IGM,
unsigned bits,
unsigned index) const override {
return getHeapObjectFixedExtraInhabitantValue(IGM, bits, index, 0);
}
llvm::Value *getExtraInhabitantIndex(IRGenFunction &IGF, Address src,
SILType T,
bool isOutlined) const override {
src = projectFirstElement(IGF, src);
return getHeapObjectExtraInhabitantIndex(IGF, src);
}
APInt getFixedExtraInhabitantMask(IRGenModule &IGM) const override {
auto pointerSize = IGM.getPointerSize();
auto mask = BitPatternBuilder(IGM.Triple.isLittleEndian());
mask.appendSetBits(pointerSize.getValueInBits());
mask.appendClearBits(pointerSize.getValueInBits());
return mask.build().value();
}
void storeExtraInhabitant(IRGenFunction &IGF, llvm::Value *index,
Address dest, SILType T,
bool isOutlined) const override {
dest = projectFirstElement(IGF, dest);
storeHeapObjectExtraInhabitant(IGF, index, dest);
}
};
}
llvm::StructType *IRGenModule::getIntegerLiteralTy() {
if (!IntegerLiteralTy) {
IntegerLiteralTy =
llvm::StructType::create(getLLVMContext(), {
SizeTy->getPointerTo(),
SizeTy
}, "swift.int_literal");
}
return IntegerLiteralTy;
}
const LoadableTypeInfo &
TypeConverter::getIntegerLiteralTypeInfo() {
if (!IntegerLiteralTI) {
auto ty = IGM.getIntegerLiteralTy();
SpareBitVector spareBits;
spareBits.append(IGM.getHeapObjectSpareBits());
spareBits.appendClearBits(IGM.getPointerSize().getValueInBits());
IntegerLiteralTI =
new IntegerLiteralTypeInfo(ty, IGM.getPointerSize() * 2,
IGM.getPointerAlignment(),
std::move(spareBits));
}
return *IntegerLiteralTI;
}
ConstantIntegerLiteral
irgen::emitConstantIntegerLiteral(IRGenModule &IGM, IntegerLiteralInst *ILI) {
return IGM.getConstantIntegerLiteral(ILI->getValue());
}
ConstantIntegerLiteral
IRGenModule::getConstantIntegerLiteral(APInt value) {
if (!ConstantIntegerLiterals)
ConstantIntegerLiterals.reset(new ConstantIntegerLiteralMap());
return ConstantIntegerLiterals->get(*this, std::move(value));
}
ConstantIntegerLiteral
ConstantIntegerLiteralMap::get(IRGenModule &IGM, APInt &&value) {
auto &entry = map[value];
if (entry.Data) return entry;
assert(value.getSignificantBits() == value.getBitWidth() &&
"expected IntegerLiteral value to be maximally compact");
// We're going to break the value down into pointer-sized chunks.
uint64_t chunkSizeInBits = IGM.getPointerSize().getValueInBits();
// Count how many bits are needed to store the value, including the sign bit.
uint64_t minWidthInBits = value.getBitWidth();
// Round up to the nearest multiple of the chunk size.
uint64_t storageWidthInBits = (minWidthInBits + chunkSizeInBits - 1)
& ~(chunkSizeInBits - 1);
// Extend the value to that width. We guarantee that extra bits in the
// chunks will be appropriately sign-extended.
value = value.sextOrTrunc(storageWidthInBits);
// Extract the individual chunks from the extended value.
uint64_t numChunks = storageWidthInBits / chunkSizeInBits;
SmallVector<llvm::Constant *, 4> chunks;
chunks.reserve(numChunks);
for (uint64_t i = 0; i != numChunks; ++i) {
auto chunk = value.extractBits(chunkSizeInBits, i * chunkSizeInBits);
chunks.push_back(llvm::ConstantInt::get(IGM.SizeTy, std::move(chunk)));
}
// Build a global to hold the chunks.
// TODO: make this shared within the image
auto arrayTy = llvm::ArrayType::get(IGM.SizeTy, numChunks);
auto initV = llvm::ConstantArray::get(arrayTy, chunks);
auto globalArray = new llvm::GlobalVariable(
*IGM.getModule(), arrayTy, /*constant*/ true,
llvm::GlobalVariable::PrivateLinkage, initV,
IGM.EnableValueNames
? Twine("intliteral.") + llvm::toString(value, 10, true)
: "");
globalArray->setUnnamedAddr(llvm::GlobalVariable::UnnamedAddr::Global);
// Various clients expect this to be a i64*, not an [N x i64]*, so cast down.
auto zero = llvm::ConstantInt::get(IGM.Int32Ty, 0);
llvm::Constant *indices[] = { zero, zero };
auto data = llvm::ConstantExpr::getInBoundsGetElementPtr(arrayTy, globalArray,
indices);
// Build the flags word.
auto flags = IntegerLiteralFlags(minWidthInBits, value.isNegative());
auto flagsV = llvm::ConstantInt::get(IGM.SizeTy, flags.getOpaqueValue());
// Cache the global.
entry.Data = data;
entry.Flags = flagsV;
return entry;
}
void irgen::emitIntegerLiteralCheckedTrunc(IRGenFunction &IGF, Explosion &in,
llvm::Type *FromTy,
llvm::IntegerType *resultTy,
bool resultIsSigned,
Explosion &out) {
Address data(in.claimNext(), FromTy, IGF.IGM.getPointerAlignment());
auto flags = in.claimNext();
size_t chunkWidth = IGF.IGM.getPointerSize().getValueInBits();
size_t resultWidth = resultTy->getBitWidth();
// The number of bits required to express the value, including the sign bit.
auto valueWidth = IGF.Builder.CreateLShr(flags,
IGF.IGM.getSize(Size(IntegerLiteralFlags::BitWidthShift)));
// The maximum number of chunks that we need to read in order to fill the
// result type: ceil(resultWidth / chunkWidth).
// Note that we won't actually end up reading the final chunk if we're
// building an unsigned value that requires e.g. 65 bits to express:
// there's only one meaningful bit there, and we know it's zero from the
// isNegative check.
size_t maxNumChunks = (resultWidth + chunkWidth - 1) / chunkWidth;
// One branch from invalidBB, one branch at each intermediate point in the
// do-we-have-more-chunks chain, and one branch at the end.
auto numPHIEntries = maxNumChunks + /*overflow*/ 1;
auto boolTy = IGF.IGM.Int1Ty;
auto doneBB = IGF.createBasicBlock("intliteral.trunc.done");
auto resultPHI = llvm::PHINode::Create(resultTy, numPHIEntries, "", doneBB);
auto overflowPHI = llvm::PHINode::Create(boolTy, numPHIEntries, "", doneBB);
out.add(resultPHI);
out.add(overflowPHI);
auto validBB = IGF.createBasicBlock("intliteral.trunc.valid");
auto invalidBB = IGF.createBasicBlock("intliteral.trunc.invalid");
// Check whether the value fits in the result type.
// If the result is signed, then we need valueWidth <= resultWidth.
// Otherwise we need valueWidth <= resultWidth + 1 && !isNegative.
{
llvm::Value *hasOverflow;
if (resultIsSigned) {
hasOverflow = IGF.Builder.CreateICmpUGT(valueWidth,
IGF.IGM.getSize(Size(resultWidth)));
} else {
static_assert(IntegerLiteralFlags::IsNegativeFlag == 1,
"hardcoded in this truncation");
auto isNegative = IGF.Builder.CreateTrunc(flags, boolTy);
auto tooBig = IGF.Builder.CreateICmpUGT(valueWidth,
IGF.IGM.getSize(Size(resultWidth + 1)));
hasOverflow = IGF.Builder.CreateOr(isNegative, tooBig);
}
IGF.Builder.CreateCondBr(hasOverflow, invalidBB, validBB);
}
// In the invalid block, we just need to construct the result. This block
// only exists to split the otherwise-critical edge.
IGF.Builder.emitBlock(invalidBB);
{
resultPHI->addIncoming(llvm::ConstantInt::get(resultTy, 0), invalidBB);
overflowPHI->addIncoming(llvm::ConstantInt::get(boolTy, 1), invalidBB);
IGF.Builder.CreateBr(doneBB);
}
// Okay, the value fits in the result type, so overflow is off the table
// and we just need to assemble a value of resultTy. But we might not have
// the full complement of chunks.
IGF.Builder.emitBlock(validBB);
{
auto firstChunk = IGF.Builder.CreateLoad(data);
// The easy case is if resultWidth <= chunkWidth, in which case knowing
// that we haven't overflowed is sufficient to say that we can just
// use the first chunk.
if (resultWidth <= chunkWidth) {
auto result = IGF.Builder.CreateTrunc(firstChunk, resultTy);
resultPHI->addIncoming(result, validBB);
overflowPHI->addIncoming(llvm::ConstantInt::get(boolTy, 0), validBB);
IGF.Builder.CreateBr(doneBB);
// Otherwise, we're going to have to test dynamically how many chunks
// we need to read.
} else {
assert(maxNumChunks >= 2);
llvm::Value *cur = firstChunk;
for (size_t i = 1; i != maxNumChunks; ++i) {
auto extendBB = IGF.createBasicBlock("intliteral.trunc.finish");
auto nextBB = IGF.createBasicBlock("intliteral.trunc.next");
// If the result is signed, then we're done if:
// valueWidth <= bitsInChunksReadSoFar
// If the result is unsigned, then we're done if:
// valueWidth <= bitsInChunksReadSoFar + 1
// (because we know the next bit will be zero)
auto limit = i * chunkWidth + size_t(!resultIsSigned);
auto isComplete =
IGF.Builder.CreateICmpULE(valueWidth, IGF.IGM.getSize(Size(limit)));
IGF.Builder.CreateCondBr(isComplete, extendBB, nextBB);
// If we're done, extend the current value to the result type and
// then branch out.
IGF.Builder.emitBlock(extendBB);
{
auto extendedResult =
resultIsSigned ? IGF.Builder.CreateSExt(cur, resultTy)
: IGF.Builder.CreateZExt(cur, resultTy);
resultPHI->addIncoming(extendedResult, extendBB);
overflowPHI->addIncoming(llvm::ConstantInt::get(boolTy, 0), extendBB);
IGF.Builder.CreateBr(doneBB);
}
// Otherwise, load the next chunk.
IGF.Builder.emitBlock(nextBB);
auto nextChunkAddr =
IGF.Builder.CreateConstArrayGEP(data, i, IGF.IGM.getPointerSize());
auto nextChunk = IGF.Builder.CreateLoad(nextChunkAddr);
// Zero-extend the current value and the chunk and then shift the
// chunk into place. If this is the last iteration, we should use
// the final result type; the shift might then drop bits, but they
// should just be sign-extension bits.
auto nextTy = (i + 1 == maxNumChunks
? resultTy
: llvm::IntegerType::get(IGF.IGM.getLLVMContext(),
(i + 1) * chunkWidth));
cur = IGF.Builder.CreateZExt(cur, nextTy);
auto shiftedNextChunk =
IGF.Builder.CreateShl(IGF.Builder.CreateZExt(nextChunk, nextTy),
i * chunkWidth);
cur = IGF.Builder.CreateAdd(cur, shiftedNextChunk);
}
// Given the overflow check before, we know we don't need to look at
// any more chunks.
assert(cur->getType() == resultTy);
auto curBB = IGF.Builder.GetInsertBlock();
resultPHI->addIncoming(cur, curBB);
overflowPHI->addIncoming(llvm::ConstantInt::get(boolTy, 0), curBB);
IGF.Builder.CreateBr(doneBB);
}
}
// Emit the continuation block. We've already set up the PHIs here and
// add them to `out`, so there's nothing else to do.
IGF.Builder.emitBlock(doneBB);
}
static llvm::Value *emitIntegerLiteralToFloatCall(IRGenFunction &IGF,
llvm::Value *data,
llvm::Value *flags,
unsigned bitWidth) {
assert(bitWidth == 32 || bitWidth == 64);
auto fn = bitWidth == 32 ? IGF.IGM.getIntToFloat32FunctionPointer()
: IGF.IGM.getIntToFloat64FunctionPointer();
auto call = IGF.Builder.CreateCall(fn, {data, flags});
call->setCallingConv(IGF.IGM.SwiftCC);
call->setDoesNotThrow();
call->setOnlyReadsMemory();
call->setOnlyAccessesArgMemory();
return call;
}
llvm::Value *irgen::emitIntegerLiteralToFP(IRGenFunction &IGF,
Explosion &in,
llvm::Type *toType) {
auto data = in.claimNext();
auto flags = in.claimNext();
assert(toType->isFloatingPointTy());
switch (toType->getTypeID()) {
case llvm::Type::HalfTyID: {
auto flt = emitIntegerLiteralToFloatCall(IGF, data, flags, 32);
return IGF.Builder.CreateFPTrunc(flt, toType);
}
case llvm::Type::FloatTyID:
return emitIntegerLiteralToFloatCall(IGF, data, flags, 32);
case llvm::Type::DoubleTyID:
return emitIntegerLiteralToFloatCall(IGF, data, flags, 64);
// TODO: add runtime functions for some of these?
case llvm::Type::X86_FP80TyID:
case llvm::Type::FP128TyID:
case llvm::Type::PPC_FP128TyID: {
auto dbl = emitIntegerLiteralToFloatCall(IGF, data, flags, 64);
return IGF.Builder.CreateFPExt(dbl, toType);
}
default:
llvm_unreachable("not a floating-point type");
}
}
llvm::Value *irgen::emitIntLiteralBitWidth(
IRGenFunction &IGF,
Explosion &in
) {
auto data = in.claimNext();
auto flags = in.claimNext();
(void)data; // [[maybe_unused]]
return IGF.Builder.CreateLShr(
flags,
IGF.IGM.getSize(Size(IntegerLiteralFlags::BitWidthShift))
);
}
llvm::Value *irgen::emitIntLiteralIsNegative(
IRGenFunction &IGF,
Explosion &in
) {
auto data = in.claimNext();
auto flags = in.claimNext();
(void)data; // [[maybe_unused]]
static_assert(
IntegerLiteralFlags::IsNegativeFlag == 1,
"hardcoded in this truncation"
);
return IGF.Builder.CreateTrunc(flags, IGF.IGM.Int1Ty);
}
llvm::Value *irgen::emitIntLiteralWordAtIndex(
IRGenFunction &IGF,
Explosion &in
) {
auto data = in.claimNext();
auto flags = in.claimNext();
auto index = in.claimNext();
(void)flags; // [[maybe_unused]]
return IGF.Builder.CreateLoad(
IGF.Builder.CreateInBoundsGEP(IGF.IGM.SizeTy, data, index),
IGF.IGM.SizeTy,
IGF.IGM.getPointerAlignment()
);
}