-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathGenConstant.cpp
535 lines (478 loc) · 21.5 KB
/
GenConstant.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
//===--- GenConstant.cpp - Swift IR Generation For Constants --------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for constant values.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Constants.h"
#include "BitPatternReader.h"
#include "Explosion.h"
#include "GenConstant.h"
#include "GenEnum.h"
#include "GenIntegerLiteral.h"
#include "GenStruct.h"
#include "GenTuple.h"
#include "TypeInfo.h"
#include "StructLayout.h"
#include "Callee.h"
#include "ConstantBuilder.h"
#include "DebugTypeInfo.h"
#include "swift/IRGen/Linking.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Range.h"
#include "swift/SIL/SILModule.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Support/BLAKE3.h"
using namespace swift;
using namespace irgen;
llvm::Constant *irgen::emitConstantInt(IRGenModule &IGM,
IntegerLiteralInst *ILI) {
BuiltinIntegerWidth width
= ILI->getType().castTo<AnyBuiltinIntegerType>()->getWidth();
// Handle arbitrary-precision integers.
if (width.isArbitraryWidth()) {
auto pair = emitConstantIntegerLiteral(IGM, ILI);
auto type = IGM.getIntegerLiteralTy();
return llvm::ConstantStruct::get(type, { pair.Data, pair.Flags });
}
APInt value = ILI->getValue();
// The value may need truncation if its type had an abstract size.
if (width.isPointerWidth()) {
unsigned pointerWidth = IGM.getPointerSize().getValueInBits();
assert(pointerWidth <= value.getBitWidth()
&& "lost precision at AST/SIL level?!");
if (pointerWidth < value.getBitWidth())
value = value.trunc(pointerWidth);
} else {
assert(width.isFixedWidth() && "impossible width value");
}
return llvm::ConstantInt::get(IGM.getLLVMContext(), value);
}
llvm::Constant *irgen::emitConstantZero(IRGenModule &IGM, BuiltinInst *BI) {
assert(IGM.getSILModule().getBuiltinInfo(BI->getName()).ID ==
BuiltinValueKind::ZeroInitializer);
auto helper = [&](CanType astType) -> llvm::Constant * {
if (auto type = astType->getAs<BuiltinIntegerType>()) {
APInt zero(type->getWidth().getLeastWidth(), 0);
return llvm::ConstantInt::get(IGM.getLLVMContext(), zero);
}
if (auto type = astType->getAs<BuiltinFloatType>()) {
const llvm::fltSemantics *sema = nullptr;
switch (type->getFPKind()) {
case BuiltinFloatType::IEEE16: sema = &APFloat::IEEEhalf(); break;
case BuiltinFloatType::IEEE32: sema = &APFloat::IEEEsingle(); break;
case BuiltinFloatType::IEEE64: sema = &APFloat::IEEEdouble(); break;
case BuiltinFloatType::IEEE80: sema = &APFloat::x87DoubleExtended(); break;
case BuiltinFloatType::IEEE128: sema = &APFloat::IEEEquad(); break;
case BuiltinFloatType::PPC128: sema = &APFloat::PPCDoubleDouble(); break;
}
auto zero = APFloat::getZero(*sema);
return llvm::ConstantFP::get(IGM.getLLVMContext(), zero);
}
llvm_unreachable("SIL allowed an unknown type?");
};
if (auto vector = BI->getType().getAs<BuiltinVectorType>()) {
auto zero = helper(vector.getElementType());
auto count = llvm::ElementCount::getFixed(vector->getNumElements());
return llvm::ConstantVector::getSplat(count, zero);
}
return helper(BI->getType().getASTType());
}
llvm::Constant *irgen::emitConstantFP(IRGenModule &IGM, FloatLiteralInst *FLI) {
return llvm::ConstantFP::get(IGM.getLLVMContext(), FLI->getValue());
}
llvm::Constant *irgen::emitAddrOfConstantString(IRGenModule &IGM,
StringLiteralInst *SLI) {
auto encoding = SLI->getEncoding();
bool useOSLogEncoding = encoding == StringLiteralInst::Encoding::UTF8_OSLOG;
switch (encoding) {
case StringLiteralInst::Encoding::Bytes:
case StringLiteralInst::Encoding::UTF8:
case StringLiteralInst::Encoding::UTF8_OSLOG:
return IGM.getAddrOfGlobalString(SLI->getValue(), false, useOSLogEncoding);
case StringLiteralInst::Encoding::ObjCSelector:
llvm_unreachable("cannot get the address of an Objective-C selector");
}
llvm_unreachable("bad string encoding");
}
namespace {
/// Fill in the missing values for padding.
void insertPadding(SmallVectorImpl<Explosion> &elements,
llvm::StructType *sTy) {
// fill in any gaps, which are the explicit padding that swiftc inserts.
for (unsigned i = 0, e = elements.size(); i != e; ++i) {
if (elements[i].empty()) {
auto *eltTy = sTy->getElementType(i);
assert(eltTy->isArrayTy() &&
eltTy->getArrayElementType()->isIntegerTy(8) &&
"Unexpected non-byte-array type for constant struct padding");
elements[i].add(llvm::UndefValue::get(eltTy));
}
}
}
/// Creates a struct which contains all values of `explosions`.
///
/// If all explosions have a single element and those elements match the
/// elements of `structTy`, it uses this type as result type.
/// Otherwise, it creates an anonymous struct. This can be the case for enums.
llvm::Constant *createStructFromExplosion(SmallVectorImpl<Explosion> &explosions,
llvm::StructType *structTy) {
assert(explosions.size() == structTy->getNumElements());
bool canUseStructType = true;
llvm::SmallVector<llvm::Constant *, 32> values;
unsigned idx = 0;
for (auto &elmt : explosions) {
if (elmt.size() != 1)
canUseStructType = false;
for (llvm::Value *v : elmt.claimAll()) {
if (v->getType() != structTy->getElementType(idx))
canUseStructType = false;
values.push_back(cast<llvm::Constant>(v));
}
idx++;
}
if (canUseStructType) {
return llvm::ConstantStruct::get(structTy, values);
} else {
return llvm::ConstantStruct::getAnon(values, /*Packed=*/ true);
}
}
void initWithEmptyExplosions(SmallVectorImpl<Explosion> &explosions,
unsigned count) {
for (unsigned i = 0; i < count; i++) {
explosions.push_back(Explosion());
}
}
template <typename InstTy, typename NextIndexFunc>
Explosion emitConstantStructOrTuple(IRGenModule &IGM, InstTy inst,
NextIndexFunc nextIndex, bool flatten) {
auto type = inst->getType();
auto *sTy = cast<llvm::StructType>(IGM.getTypeInfo(type).getStorageType());
SmallVector<Explosion, 32> elements;
initWithEmptyExplosions(elements, sTy->getNumElements());
for (unsigned i = 0, e = inst->getElements().size(); i != e; ++i) {
auto operand = inst->getOperand(i);
std::optional<unsigned> index = nextIndex(IGM, type, i);
if (index.has_value()) {
unsigned idx = index.value();
assert(elements[idx].empty() &&
"Unexpected constant struct field overlap");
elements[idx] = emitConstantValue(IGM, operand, flatten);
}
}
if (flatten) {
Explosion out;
for (auto &elmt : elements) {
out.add(elmt.claimAll());
}
return out;
}
insertPadding(elements, sTy);
return createStructFromExplosion(elements, sTy);
}
} // end anonymous namespace
/// Returns the usub_with_overflow builtin if \p TE extracts the result of
/// such a subtraction, which is required to have an integer_literal as right
/// operand.
static BuiltinInst *getOffsetSubtract(const TupleExtractInst *TE, SILModule &M) {
// Match the pattern:
// tuple_extract(usub_with_overflow(x, integer_literal, integer_literal 0), 0)
if (TE->getFieldIndex() != 0)
return nullptr;
auto *BI = dyn_cast<BuiltinInst>(TE->getOperand());
if (!BI)
return nullptr;
if (M.getBuiltinInfo(BI->getName()).ID != BuiltinValueKind::USubOver)
return nullptr;
if (!isa<IntegerLiteralInst>(BI->getArguments()[1]))
return nullptr;
auto *overflowFlag = dyn_cast<IntegerLiteralInst>(BI->getArguments()[2]);
if (!overflowFlag || !overflowFlag->getValue().isZero())
return nullptr;
return BI;
}
static bool isPowerOfTwo(unsigned x) {
return (x & -x) == x;
}
/// Replace i24, i40, i48 and i56 constants in `e` with the corresponding byte values.
/// Such unaligned integer constants are not correctly layed out in the data section.
static Explosion replaceUnalignedIntegerValues(IRGenModule &IGM, Explosion e) {
Explosion out;
while (!e.empty()) {
llvm::Value *v = e.claimNext();
if (auto *constInt = dyn_cast<llvm::ConstantInt>(v)) {
unsigned size = constInt->getBitWidth();
if (size % 8 == 0 && !isPowerOfTwo(size)) {
BitPatternReader reader(constInt->getValue(), IGM.Triple.isLittleEndian());
while (size > 0) {
APInt byte = reader.read(8);
out.add(llvm::ConstantInt::get(IGM.getLLVMContext(), byte));
size -= 8;
}
continue;
}
}
out.add(v);
}
return out;
}
Explosion irgen::emitConstantValue(IRGenModule &IGM, SILValue operand,
bool flatten) {
if (auto *SI = dyn_cast<StructInst>(operand)) {
// The only way to get a struct's stored properties (which we need to map to
// their physical/LLVM index) is to iterate over the properties
// progressively. Fortunately the iteration order matches the order of
// operands in a StructInst.
auto StoredProperties = SI->getStructDecl()->getStoredProperties();
auto Iter = StoredProperties.begin();
return emitConstantStructOrTuple(
IGM, SI, [&Iter](IRGenModule &IGM, SILType Type, unsigned _i) mutable {
(void)_i;
auto *FD = *Iter++;
return irgen::getPhysicalStructFieldIndex(IGM, Type, FD);
}, flatten);
} else if (auto *TI = dyn_cast<TupleInst>(operand)) {
return emitConstantStructOrTuple(IGM, TI,
irgen::getPhysicalTupleElementStructIndex,
flatten);
} else if (auto *ei = dyn_cast<EnumInst>(operand)) {
auto &strategy = getEnumImplStrategy(IGM, ei->getType());
if (strategy.emitPayloadDirectlyIntoConstant()) {
if (ei->hasOperand()) {
return emitConstantValue(IGM, ei->getOperand(), flatten);
}
return Explosion();
}
Explosion data;
if (ei->hasOperand()) {
data = emitConstantValue(IGM, ei->getOperand(), /*flatten=*/ true);
}
// Use `emitValueInjection` to create the enum constant.
// Usually this method creates code in the current function. But if all
// arguments to the enum are constant, the builder never has to emit an
// instruction. Instead it can constant fold everything and just returns
// the final constant.
IRBuilder builder(IGM.getLLVMContext(), false);
Explosion out;
strategy.emitValueInjection(IGM, builder, ei->getElement(), data, out);
return replaceUnalignedIntegerValues(IGM, std::move(out));
} else if (auto *ILI = dyn_cast<IntegerLiteralInst>(operand)) {
return emitConstantInt(IGM, ILI);
} else if (auto *FLI = dyn_cast<FloatLiteralInst>(operand)) {
return emitConstantFP(IGM, FLI);
} else if (auto *SLI = dyn_cast<StringLiteralInst>(operand)) {
return emitAddrOfConstantString(IGM, SLI);
} else if (auto *BI = dyn_cast<BuiltinInst>(operand)) {
auto args = BI->getArguments();
switch (IGM.getSILModule().getBuiltinInfo(BI->getName()).ID) {
case BuiltinValueKind::ZeroInitializer:
return emitConstantZero(IGM, BI);
case BuiltinValueKind::PtrToInt: {
auto *ptr = emitConstantValue(IGM, args[0]).claimNextConstant();
return llvm::ConstantExpr::getPtrToInt(ptr, IGM.IntPtrTy);
}
case BuiltinValueKind::IntToPtr: {
auto *num = emitConstantValue(IGM, args[0]).claimNextConstant();
return llvm::ConstantExpr::getIntToPtr(num, IGM.Int8PtrTy);
}
case BuiltinValueKind::ZExtOrBitCast: {
auto *val = emitConstantValue(IGM, args[0]).claimNextConstant();
auto storageTy = IGM.getStorageType(BI->getType());
if (val->getType() == storageTy)
return val;
auto *result = llvm::ConstantFoldCastOperand(
llvm::Instruction::ZExt, val, storageTy, IGM.DataLayout);
ASSERT(result != nullptr &&
"couldn't constant fold initializer expression");
return result;
}
case BuiltinValueKind::StringObjectOr: {
// It is a requirement that the or'd bits in the left argument are
// initialized with 0. Therefore the or-operation is equivalent to an
// addition. We need an addition to generate a valid relocation.
auto *rhs = emitConstantValue(IGM, args[1]).claimNextConstant();
if (auto *TE = dyn_cast<TupleExtractInst>(args[0])) {
// Handle StringObjectOr(tuple_extract(usub_with_overflow(x, offset)), bits)
// This pattern appears in UTF8 String literal construction.
// Generate the equivalent: add(x, sub(bits - offset)
BuiltinInst *SubtrBI = getOffsetSubtract(TE, IGM.getSILModule());
assert(SubtrBI && "unsupported argument of StringObjectOr");
auto subArgs = SubtrBI->getArguments();
auto *ptr = emitConstantValue(IGM, subArgs[0]).claimNextConstant();
auto *offset = emitConstantValue(IGM, subArgs[1]).claimNextConstant();
auto *totalOffset = llvm::ConstantExpr::getSub(rhs, offset);
return llvm::ConstantExpr::getAdd(ptr, totalOffset);
}
auto *lhs = emitConstantValue(IGM, args[0]).claimNextConstant();
return llvm::ConstantExpr::getAdd(lhs, rhs);
}
default:
llvm_unreachable("unsupported builtin for constant expression");
}
} else if (auto *VTBI = dyn_cast<ValueToBridgeObjectInst>(operand)) {
auto *val = emitConstantValue(IGM, VTBI->getOperand()).claimNextConstant();
auto *sTy = IGM.getTypeInfo(VTBI->getType()).getStorageType();
return llvm::ConstantExpr::getIntToPtr(val, sTy);
} else if (auto *CFI = dyn_cast<ConvertFunctionInst>(operand)) {
return emitConstantValue(IGM, CFI->getOperand(), flatten);
} else if (auto *URCI = dyn_cast<UncheckedRefCastInst>(operand)) {
return emitConstantValue(IGM, URCI->getOperand(), flatten);
} else if (auto *UCI = dyn_cast<UpcastInst>(operand)) {
return emitConstantValue(IGM, UCI->getOperand(), flatten);
} else if (auto *T2TFI = dyn_cast<ThinToThickFunctionInst>(operand)) {
SILType type = operand->getType();
auto *sTy = cast<llvm::StructType>(IGM.getTypeInfo(type).getStorageType());
auto *function = llvm::ConstantExpr::getBitCast(
emitConstantValue(IGM, T2TFI->getCallee()).claimNextConstant(),
sTy->getTypeAtIndex((unsigned)0));
auto *context = llvm::ConstantExpr::getBitCast(
llvm::ConstantPointerNull::get(IGM.OpaquePtrTy),
sTy->getTypeAtIndex((unsigned)1));
if (flatten) {
Explosion out;
out.add({function, context});
return out;
}
return llvm::ConstantStruct::get(sTy, {function, context});
} else if (auto *FRI = dyn_cast<FunctionRefInst>(operand)) {
SILFunction *fn = FRI->getReferencedFunction();
llvm::Constant *fnPtr = IGM.getAddrOfSILFunction(fn, NotForDefinition);
CanSILFunctionType fnType = FRI->getType().getAs<SILFunctionType>();
auto fpKind = irgen::classifyFunctionPointerKind(fn);
if (fpKind.isAsyncFunctionPointer()) {
llvm::Constant *asyncFnPtr = IGM.getAddrOfAsyncFunctionPointer(fn);
fnPtr = llvm::ConstantExpr::getBitCast(asyncFnPtr, fnPtr->getType());
} else if (fpKind.isCoroFunctionPointer()) {
llvm::Constant *coroFnPtr = IGM.getAddrOfCoroFunctionPointer(fn);
fnPtr = llvm::ConstantExpr::getBitCast(coroFnPtr, fnPtr->getType());
}
auto authInfo = PointerAuthInfo::forFunctionPointer(IGM, fnType);
if (authInfo.isSigned()) {
auto constantDiscriminator =
cast<llvm::ConstantInt>(authInfo.getDiscriminator());
fnPtr = IGM.getConstantSignedPointer(fnPtr, authInfo.getKey(), nullptr,
constantDiscriminator);
}
llvm::Type *ty = IGM.getTypeInfo(FRI->getType()).getStorageType();
fnPtr = llvm::ConstantExpr::getBitCast(fnPtr, ty);
return fnPtr;
} else if (auto *gAddr = dyn_cast<GlobalAddrInst>(operand)) {
SILGlobalVariable *var = gAddr->getReferencedGlobal();
auto &ti = IGM.getTypeInfo(var->getLoweredType());
auto expansion = IGM.getResilienceExpansionForLayout(var);
assert(ti.isFixedSize(expansion));
if (ti.isKnownEmpty(expansion)) {
return llvm::ConstantPointerNull::get(IGM.OpaquePtrTy);
}
Address addr = IGM.getAddrOfSILGlobalVariable(var, ti, NotForDefinition);
return addr.getAddress();
} else if (auto *gVal = dyn_cast<GlobalValueInst>(operand)) {
assert(IGM.canMakeStaticObjectReadOnly(gVal->getType()));
SILGlobalVariable *var = gVal->getReferencedGlobal();
auto &ti = IGM.getTypeInfo(var->getLoweredType());
auto expansion = IGM.getResilienceExpansionForLayout(var);
assert(ti.isFixedSize(expansion));
Address addr = IGM.getAddrOfSILGlobalVariable(var, ti, NotForDefinition);
return addr.getAddress();
} else if (auto *atp = dyn_cast<AddressToPointerInst>(operand)) {
auto *val = emitConstantValue(IGM, atp->getOperand()).claimNextConstant();
return val;
} else if (auto *vector = dyn_cast<VectorInst>(operand)) {
if (flatten) {
Explosion out;
for (SILValue element : vector->getElements()) {
Explosion e = emitConstantValue(IGM, element, flatten);
out.add(e.claimAll());
}
return out;
}
llvm::SmallVector<llvm::Constant *, 8> elementValues;
for (SILValue element : vector->getElements()) {
auto &ti = cast<FixedTypeInfo>(IGM.getTypeInfo(element->getType()));
Size paddingBytes = ti.getFixedStride() - ti.getFixedSize();
Explosion e = emitConstantValue(IGM, element, flatten);
elementValues.push_back(IGM.getConstantValue(std::move(e), paddingBytes.getValue()));
}
auto *arrTy = llvm::ArrayType::get(elementValues[0]->getType(), elementValues.size());
return llvm::ConstantArray::get(arrTy, elementValues);
} else {
llvm_unreachable("Unsupported SILInstruction in static initializer!");
}
}
llvm::Constant *irgen::emitConstantObject(IRGenModule &IGM, ObjectInst *OI,
StructLayout *ClassLayout) {
auto *sTy = cast<llvm::StructType>(ClassLayout->getType());
SmallVector<Explosion, 32> elements;
initWithEmptyExplosions(elements, sTy->getNumElements());
unsigned NumElems = OI->getAllElements().size();
assert(NumElems == ClassLayout->getElements().size());
// Construct the object init value including tail allocated elements.
for (unsigned i = 0; i != NumElems; ++i) {
SILValue Val = OI->getAllElements()[i];
const ElementLayout &EL = ClassLayout->getElements()[i];
if (!EL.isEmpty()) {
unsigned idx = EL.getStructIndex();
assert(idx != 0 && "the first element is the object header");
assert(elements[idx].empty() &&
"Unexpected constant struct field overlap");
elements[idx] = emitConstantValue(IGM, Val);
}
}
// Construct the object header.
llvm::StructType *ObjectHeaderTy = cast<llvm::StructType>(sTy->getElementType(0));
if (IGM.canMakeStaticObjectReadOnly(OI->getType())) {
if (!IGM.swiftImmortalRefCount) {
if (IGM.Context.LangOpts.hasFeature(Feature::Embedded)) {
// = HeapObject.immortalRefCount | HeapObject.doNotFreeBit
// 0xffff_ffff on 32-bit, 0xffff_ffff_ffff_ffff on 64-bit
IGM.swiftImmortalRefCount = llvm::ConstantInt::get(IGM.IntPtrTy, -1);
} else {
IGM.swiftImmortalRefCount = llvm::ConstantExpr::getPtrToInt(
new llvm::GlobalVariable(IGM.Module, IGM.Int8Ty,
/*constant*/ true, llvm::GlobalValue::ExternalLinkage,
/*initializer*/ nullptr, "_swiftImmortalRefCount"),
IGM.IntPtrTy);
}
}
if (!IGM.swiftStaticArrayMetadata) {
auto *classDecl = IGM.getStaticArrayStorageDecl();
assert(classDecl && "no __StaticArrayStorage in stdlib");
CanType classTy = CanType(ClassType::get(classDecl, Type(), IGM.Context));
if (IGM.Context.LangOpts.hasFeature(Feature::Embedded)) {
LinkEntity entity = LinkEntity::forTypeMetadata(classTy, TypeMetadataAddress::AddressPoint,
/*forceShared=*/ true);
// In embedded swift, the metadata for the array buffer class only needs to be very minimal:
// No vtable needed, because the object is never destructed. It only contains the null super-
// class pointer.
llvm::Constant *superClass = llvm::ConstantPointerNull::get(IGM.Int8PtrTy);
IGM.swiftStaticArrayMetadata = IGM.getAddrOfLLVMVariable(entity, superClass, DebugTypeInfo());
} else {
LinkEntity entity = LinkEntity::forTypeMetadata(classTy, TypeMetadataAddress::AddressPoint);
IGM.swiftStaticArrayMetadata = IGM.getAddrOfLLVMVariable(entity, NotForDefinition, DebugTypeInfo());
}
}
elements[0].add(llvm::ConstantStruct::get(ObjectHeaderTy, {
IGM.swiftStaticArrayMetadata,
IGM.swiftImmortalRefCount }));
} else {
elements[0].add(llvm::Constant::getNullValue(ObjectHeaderTy));
}
insertPadding(elements, sTy);
return createStructFromExplosion(elements, sTy);
}
void ConstantAggregateBuilderBase::addUniqueHash(StringRef data) {
llvm::BLAKE3 hasher;
hasher.update(data);
auto rawHash = hasher.final();
auto truncHash = llvm::ArrayRef(rawHash).slice(0, NumBytes_UniqueHash);
add(llvm::ConstantDataArray::get(IGM().getLLVMContext(), truncHash));
}