-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathFulfillment.cpp
530 lines (448 loc) · 18.9 KB
/
Fulfillment.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
//===--- Fulfillment.cpp - Static metadata search ------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements routines for searching for ways to find metadata
// from other metadata.
//
//===----------------------------------------------------------------------===//
#include "Fulfillment.h"
#include "IRGenModule.h"
#include "GenericRequirement.h"
#include "MetadataRequest.h"
#include "ProtocolInfo.h"
#include "swift/AST/Decl.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/Basic/Assertions.h"
#include "swift/SIL/SILWitnessTable.h"
#include "swift/SIL/TypeLowering.h"
using namespace swift;
using namespace irgen;
/// Is metadata for the given type kind a "leaf", or does it possibly
/// store any other type metadata that we can statically extract?
///
/// It's okay to conservatively answer "no". It's more important for this
/// to be quick than for it to be accurate; don't recurse.
static bool isLeafTypeMetadata(CanType type) {
switch (type->getKind()) {
#define SUGARED_TYPE(ID, SUPER) \
case TypeKind::ID:
#define UNCHECKED_TYPE(ID, SUPER) \
case TypeKind::ID:
#define TYPE(ID, SUPER)
#include "swift/AST/TypeNodes.def"
case TypeKind::Error:
llvm_unreachable("kind is invalid for a canonical type");
#define ARTIFICIAL_TYPE(ID, SUPER) \
case TypeKind::ID:
#define TYPE(ID, SUPER)
#include "swift/AST/TypeNodes.def"
case TypeKind::LValue:
case TypeKind::InOut:
case TypeKind::DynamicSelf:
case TypeKind::PackExpansion:
case TypeKind::PackElement:
case TypeKind::BuiltinTuple:
llvm_unreachable("these types do not have metadata");
// All the builtin types are leaves.
#define BUILTIN_TYPE(ID, SUPER) \
case TypeKind::ID:
#define TYPE(ID, SUPER)
#include "swift/AST/TypeNodes.def"
case TypeKind::Module:
return true;
// Type parameters are statically opaque.
case TypeKind::PrimaryArchetype:
case TypeKind::ExistentialArchetype:
case TypeKind::OpaqueTypeArchetype:
case TypeKind::PackArchetype:
case TypeKind::ElementArchetype:
case TypeKind::GenericTypeParam:
case TypeKind::DependentMember:
return true;
// Only the empty tuple is a leaf.
case TypeKind::Tuple:
return cast<TupleType>(type)->getNumElements() == 0;
case TypeKind::Pack:
return cast<PackType>(type)->getNumElements() == 0;
// Nominal types might have generic parents.
case TypeKind::Class:
case TypeKind::Enum:
case TypeKind::Protocol:
case TypeKind::Struct:
return !cast<NominalType>(type)->getDecl()->isGenericContext();
// Bound generic types have type arguments.
case TypeKind::BoundGenericClass:
case TypeKind::BoundGenericEnum:
case TypeKind::BoundGenericStruct:
return false;
// Functions have component types.
case TypeKind::Function:
case TypeKind::GenericFunction: // included for future-proofing
return false;
// Protocol compositions have component types.
case TypeKind::ProtocolComposition:
return false;
// Parametrized protocols have component types.
case TypeKind::ParameterizedProtocol:
return false;
// Existential types have constraint types.
case TypeKind::Existential:
return false;
// Metatypes have instance types.
case TypeKind::Metatype:
case TypeKind::ExistentialMetatype:
return false;
// Integer types are leaves.
case TypeKind::Integer:
return true;
}
llvm_unreachable("bad type kind");
}
/// Given that we have a source for metadata of the given type, check
/// to see if it fulfills anything.
///
/// \param isExact - true if the metadata is known to be exactly the
/// metadata for the given type, false if it might be a subtype
bool FulfillmentMap::searchTypeMetadata(IRGenModule &IGM, CanType type,
IsExact_t isExact,
MetadataState metadataState,
unsigned source, MetadataPath &&path,
const InterestingKeysCallback &keys) {
// If this is an exact source, and it's an interesting type, add this
// as a fulfillment.
if (isExact && keys.isInterestingType(type)) {
// If the type isn't a leaf type, also check it as an inexact match.
bool hadFulfillment = false;
if (!isLeafTypeMetadata(type)) {
hadFulfillment |= searchTypeMetadata(IGM, type, IsInexact, metadataState,
source, MetadataPath(path), keys);
}
// Consider its super class bound.
if (metadataState == MetadataState::Complete) {
if (auto superclassTy = keys.getSuperclassBound(type)) {
hadFulfillment |= searchNominalTypeMetadata(
IGM, superclassTy, metadataState, source, std::move(path), keys);
}
}
// Add the fulfillment.
hadFulfillment |= addFulfillment(GenericRequirement::forMetadata(type),
source, std::move(path), metadataState);
return hadFulfillment;
}
// Search the superclass fields. We can only do this if the metadata
// is complete.
if (metadataState == MetadataState::Complete &&
keys.isInterestingType(type)) {
if (auto superclassTy = keys.getSuperclassBound(type)) {
return searchNominalTypeMetadata(IGM, superclassTy, metadataState,
source, std::move(path), keys);
}
}
// Inexact metadata will be a problem if we ever try to use this
// to remember that we already have the metadata for something.
if (isa<NominalType>(type) || isa<BoundGenericType>(type)) {
return searchNominalTypeMetadata(IGM, type, metadataState,
source, std::move(path), keys);
}
if (auto tupleType = dyn_cast<TupleType>(type)) {
if (tupleType->getNumElements() == 1 &&
isa<PackExpansionType>(tupleType.getElementType(0))) {
bool hadFulfillment = false;
auto packType = tupleType.getInducedPackType();
{
auto argPath = path;
argPath.addTuplePackComponent();
hadFulfillment |= searchTypeMetadataPack(IGM, packType,
isExact, metadataState, source,
std::move(argPath), keys);
}
{
auto argPath = path;
argPath.addTupleShapeComponent();
hadFulfillment |= searchShapeRequirement(IGM, packType, source,
std::move(argPath));
}
return hadFulfillment;
}
}
// TODO: functions
// TODO: metatypes
return false;
}
static CanType getSingletonPackExpansionParameter(
CanPackType packType, const FulfillmentMap::InterestingKeysCallback &keys,
std::optional<unsigned> &packExpansionComponent) {
if (auto expansion = packType.unwrapSingletonPackExpansion()) {
if (keys.isInterestingPackExpansion(expansion)) {
packExpansionComponent = 0;
return expansion.getPatternType();
}
}
return CanType();
}
bool FulfillmentMap::searchTypeMetadataPack(IRGenModule &IGM,
CanPackType packType,
IsExact_t isExact,
MetadataState metadataState,
unsigned source,
MetadataPath &&path,
const InterestingKeysCallback &keys) {
// We can fulfill pack parameters if the pack is a singleton pack
// expansion over one.
// TODO: we can also fulfill pack expansions if we can slice away
// constant-sized prefixes and suffixes.
std::optional<unsigned> packExpansionComponent;
if (auto parameter = getSingletonPackExpansionParameter(packType, keys,
packExpansionComponent)) {
MetadataPath singletonPath = path;
singletonPath.addPackExpansionPatternComponent(*packExpansionComponent);
return addFulfillment(GenericRequirement::forMetadata(parameter),
source, std::move(singletonPath), metadataState);
}
// TODO: fulfill non-expansion metadata out of the pack
// TODO: fulfill the pack type itself
return false;
}
bool FulfillmentMap::searchConformance(
IRGenModule &IGM, const ProtocolConformance *conformance,
unsigned sourceIndex, MetadataPath &&path,
const InterestingKeysCallback &interestingKeys) {
bool hadFulfillment = false;
SILWitnessTable::enumerateWitnessTableConditionalConformances(
conformance, [&](unsigned index, CanType type, ProtocolDecl *protocol) {
std::optional<unsigned> packExpansionComponent;
if (auto packType = dyn_cast<PackType>(type)) {
auto param =
getSingletonPackExpansionParameter(packType, interestingKeys,
packExpansionComponent);
if (!param)
return /*finished?*/ false;
type = param;
}
MetadataPath conditionalPath = path;
conditionalPath.addConditionalConformanceComponent(index);
if (packExpansionComponent)
conditionalPath.addPackExpansionPatternComponent(*packExpansionComponent);
hadFulfillment |=
searchWitnessTable(IGM, type, protocol, sourceIndex,
std::move(conditionalPath), interestingKeys);
return /*finished?*/ false;
});
return hadFulfillment;
}
bool FulfillmentMap::searchWitnessTable(IRGenModule &IGM,
CanType type, ProtocolDecl *protocol,
unsigned source, MetadataPath &&path,
const InterestingKeysCallback &keys) {
assert(Lowering::TypeConverter::protocolRequiresWitnessTable(protocol));
llvm::SmallPtrSet<ProtocolDecl*, 4> interestingConformancesBuffer;
llvm::SmallPtrSetImpl<ProtocolDecl *> *interestingConformances = nullptr;
// If the interesting-keys set is limiting the set of interesting
// conformances, collect that filter.
if (keys.hasInterestingType(type) &&
keys.hasLimitedInterestingConformances(type)) {
// Bail out immediately if the set is empty.
// This only makes sense because we're not trying to fulfill
// associated types this way.
auto requiredConformances = keys.getInterestingConformances(type);
if (requiredConformances.empty()) return false;
interestingConformancesBuffer.insert(requiredConformances.begin(),
requiredConformances.end());
interestingConformances = &interestingConformancesBuffer;
}
return searchWitnessTable(IGM, type, protocol, source, std::move(path), keys,
interestingConformances);
}
bool FulfillmentMap::searchWitnessTable(
IRGenModule &IGM, CanType type, ProtocolDecl *protocol, unsigned source,
MetadataPath &&path, const InterestingKeysCallback &keys,
llvm::SmallPtrSetImpl<ProtocolDecl *> *interestingConformances) {
bool hadFulfillment = false;
auto &pi = IGM.getProtocolInfo(protocol,
ProtocolInfoKind::RequirementSignature);
for (auto &entry : pi.getWitnessEntries()) {
if (!entry.isBase()) continue;
ProtocolDecl *inherited = entry.getBase();
MetadataPath inheritedPath = path;
inheritedPath.addInheritedProtocolComponent(pi.getBaseWitnessIndex(&entry));
hadFulfillment |= searchWitnessTable(IGM, type, inherited,
source, std::move(inheritedPath),
keys, interestingConformances);
}
// If we're not limiting the set of interesting conformances, or if
// this is an interesting conformance, record it.
if (!interestingConformances || interestingConformances->count(protocol)) {
hadFulfillment |= addFulfillment(
GenericRequirement::forWitnessTable(type, protocol), source,
std::move(path), MetadataState::Complete);
}
return hadFulfillment;
}
bool FulfillmentMap::searchNominalTypeMetadata(IRGenModule &IGM,
CanType type,
MetadataState metadataState,
unsigned source,
MetadataPath &&path,
const InterestingKeysCallback &keys) {
// Objective-C generics don't preserve their generic parameters at runtime,
// so they aren't able to fulfill type metadata requirements.
if (type.getAnyNominal()->hasClangNode()) {
return false;
}
auto *nominal = type.getAnyNominal();
if (!nominal->isGenericContext() || isa<ProtocolDecl>(nominal)) {
return false;
}
bool hadFulfillment = false;
auto subs = type->getContextSubstitutionMap();
GenericTypeRequirements requirements(IGM, nominal);
for (unsigned reqtIndex : indices(requirements.getRequirements())) {
auto requirement = requirements.getRequirements()[reqtIndex];
auto arg = requirement.getTypeParameter().subst(subs)->getCanonicalType();
// Skip uninteresting type arguments.
if (!keys.hasInterestingType(arg))
continue;
switch (requirement.getKind()) {
case GenericRequirement::Kind::Shape: {
// If the fulfilled value is a shape class, refine the path.
MetadataPath argPath = path;
argPath.addNominalTypeArgumentShapeComponent(reqtIndex);
hadFulfillment |= searchShapeRequirement(IGM, arg, source,
std::move(argPath));
break;
}
case GenericRequirement::Kind::Metadata:
case GenericRequirement::Kind::MetadataPack: {
// If the fulfilled value is type metadata, refine the path.
auto argState =
getPresumedMetadataStateForTypeArgument(metadataState);
MetadataPath argPath = path;
argPath.addNominalTypeArgumentComponent(reqtIndex);
if (requirement.getKind() == GenericRequirement::Kind::Metadata)
hadFulfillment |=
searchTypeMetadata(IGM, arg, IsExact, argState,
source, std::move(argPath), keys);
else
hadFulfillment |=
searchTypeMetadataPack(IGM, cast<PackType>(arg), IsExact, argState,
source, std::move(argPath), keys);
break;
}
case GenericRequirement::Kind::WitnessTablePack:
case GenericRequirement::Kind::WitnessTable: {
std::optional<unsigned> packExpansionComponent;
if (requirement.getKind() == GenericRequirement::Kind::WitnessTable) {
// Ignore it unless the type itself is interesting.
if (!keys.isInterestingType(arg))
continue;
} else {
// Ignore it unless the pack is a singleton pack expansion of a
// type parameter, in which case use that type below.
auto param =
getSingletonPackExpansionParameter(cast<PackType>(arg), keys,
packExpansionComponent);
if (!param) continue;
arg = param;
}
// Refine the path.
MetadataPath argPath = path;
argPath.addNominalTypeArgumentConformanceComponent(reqtIndex);
if (packExpansionComponent)
argPath.addPackExpansionPatternComponent(*packExpansionComponent);
// This code just handles packs directly.
hadFulfillment |=
searchWitnessTable(IGM, arg, requirement.getProtocol(),
source, std::move(argPath), keys);
break;
}
case GenericRequirement::Kind::Value: {
// Refine the path.
MetadataPath argPath = path;
argPath.addNominalValueArgumentComponent(reqtIndex);
hadFulfillment |=
addFulfillment(GenericRequirement::forValue(arg), source,
std::move(argPath), MetadataState::Complete);
break;
}
}
}
return hadFulfillment;
}
bool FulfillmentMap::searchShapeRequirement(IRGenModule &IGM, CanType argType,
unsigned source, MetadataPath &&path) {
// argType is the substitution for a pack parameter, so it should always
// be a pack.
auto packType = cast<PackType>(argType);
// For now, don't try to fulfill shapes if this isn't a singleton
// pack containing a pack expansion. In theory, though, as long as
// there aren't expansions over pack parameters with different shapes,
// we should always be able to turn this into the equation
// `ax + b = <fulfilled count>` and then solve that.
auto expansion = packType.unwrapSingletonPackExpansion();
if (!expansion)
return false;
path.addPackExpansionCountComponent(0);
auto parameter = expansion.getCountType();
// Add the fulfillment.
return addFulfillment(GenericRequirement::forShape(parameter),
source, std::move(path), MetadataState::Complete);
}
/// Testify that there's a fulfillment at the given path.
bool FulfillmentMap::addFulfillment(GenericRequirement key,
unsigned source,
MetadataPath &&path,
MetadataState metadataState) {
// Only add a fulfillment if we don't have any previous
// fulfillment for that value or if it 's cheaper than the existing
// fulfillment.
auto it = Fulfillments.find(key);
if (it != Fulfillments.end()) {
// If the new fulfillment is worse than the existing one, ignore it.
auto existingState = it->second.getState();
if (!isAtLeast(metadataState, existingState)) {
return false;
}
// Consider cost only if the fulfillments are equivalent in state.
// TODO: this is potentially suboptimal, but it generally won't matter.
if (metadataState == existingState &&
path.cost() >= it->second.Path.cost()) {
return false;
}
it->second.SourceIndex = source;
it->second.Path = std::move(path);
return true;
} else {
Fulfillments.insert({ key, Fulfillment(source, std::move(path),
metadataState) });
return true;
}
}
static StringRef getStateName(MetadataState state) {
switch (state) {
case MetadataState::Complete: return "complete";
case MetadataState::NonTransitiveComplete: return "non-transitive-complete";
case MetadataState::LayoutComplete: return "layout-complete";
case MetadataState::Abstract: return "abstract";
}
llvm_unreachable("unhandled state");
}
void FulfillmentMap::dump() const {
auto &out = llvm::errs();
for (auto &entry : Fulfillments) {
out << "(";
entry.first.dump(out);
out << ") => " << getStateName(entry.second.getState())
<< " at sources[" << entry.second.SourceIndex
<< "]." << entry.second.Path << "\n";
}
}