-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathArgumentCompletion.cpp
432 lines (389 loc) · 16.4 KB
/
ArgumentCompletion.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
//===--- ArgumentCompletion.cpp ---------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Basic/Assertions.h"
#include "swift/IDE/ArgumentCompletion.h"
#include "swift/IDE/CodeCompletion.h"
#include "swift/IDE/CompletionLookup.h"
#include "swift/IDE/SelectedOverloadInfo.h"
#include "swift/Sema/ConstraintSystem.h"
#include "swift/Sema/IDETypeChecking.h"
using namespace swift;
using namespace swift::ide;
using namespace swift::constraints;
bool ArgumentTypeCheckCompletionCallback::addPossibleParams(
const ArgumentTypeCheckCompletionCallback::Result &Res,
SmallVectorImpl<PossibleParamInfo> &Params, SmallVectorImpl<Type> &Types) {
if (!Res.ParamIdx || !Res.FuncTy) {
// We don't really know much here. Suggest global results without a specific
// expected type.
return true;
}
if (Res.HasLabel) {
// We already have a parameter label, suggest types
Types.push_back(Res.ExpectedType);
return true;
}
ArrayRef<AnyFunctionType::Param> ParamsToPass = Res.FuncTy->getParams();
bool ShowGlobalCompletions = false;
for (auto Idx : range(*Res.ParamIdx, ParamsToPass.size())) {
bool IsCompletion = (Idx == Res.ParamIdx);
// Stop at the first param claimed by other arguments.
if (!IsCompletion && Res.ClaimedParamIndices.count(Idx) > 0) {
break;
}
const AnyFunctionType::Param *TypeParam = &ParamsToPass[Idx];
bool Required = !Res.DeclParamIsOptional[Idx];
if (Res.FirstTrailingClosureIndex &&
Res.ArgIdx > *Res.FirstTrailingClosureIndex &&
!TypeParam->getPlainType()
->lookThroughAllOptionalTypes()
->is<AnyFunctionType>()) {
// We are completing an argument after the first trailing closure, i.e.
// a multitple trailing closure label but the parameter is not a function
// type. Since we only allow labeled trailing closures after the first
// trailing closure, we cannot pass an argument for this parameter.
// If the parameter is required, stop here since we cannot pass an argument
// for the parameter. If it's optional, keep looking for more trailing
// closures that can be passed.
if (Required) {
break;
} else {
continue;
}
}
if (TypeParam->hasLabel() && !(IsCompletion && Res.IsNoninitialVariadic)) {
// Suggest parameter label if parameter has label, we are completing in it
// and it is not a variadic parameter that already has arguments
PossibleParamInfo PP(TypeParam, Required);
if (!llvm::is_contained(Params, PP)) {
Params.push_back(std::move(PP));
}
} else {
// We have a parameter that doesn't require a label. Suggest global
// results for that type.
ShowGlobalCompletions = true;
Types.push_back(TypeParam->getPlainType());
}
if (Required) {
// The user should only be suggested the first required param. Stop.
break;
}
}
return ShowGlobalCompletions;
}
/// Returns whether `E` has a parent expression with arguments.
static bool hasParentCallLikeExpr(Expr *E, ConstraintSystem &CS) {
E = CS.getParentExpr(E);
while (E) {
if (E->getArgs() || isa<ParenExpr>(E) || isa<TupleExpr>(E) || isa<CollectionExpr>(E)) {
return true;
}
E = CS.getParentExpr(E);
}
return false;
}
void ArgumentTypeCheckCompletionCallback::sawSolutionImpl(const Solution &S) {
Type ExpectedTy = getTypeForCompletion(S, CompletionExpr);
auto &CS = S.getConstraintSystem();
Expr *ParentCall = CompletionExpr;
while (ParentCall && ParentCall->getArgs() == nullptr) {
ParentCall = CS.getParentExpr(ParentCall);
}
if (auto TV = S.getType(CompletionExpr)->getAs<TypeVariableType>()) {
auto Locator = TV->getImpl().getLocator();
if (Locator->isLastElement<LocatorPathElt::PatternMatch>()) {
// The code completion token is inside a pattern, which got rewritten from
// a call by ResolvePattern. Thus, we aren't actually inside a call.
// Rest 'ParentCall' to nullptr to reflect that.
ParentCall = nullptr;
}
}
if (!ParentCall || ParentCall == CompletionExpr) {
// We might not have a call that contains the code completion expression if
// we type-checked the fallback code completion expression that only
// contains the code completion token, but not the surrounding call.
return;
}
auto ArgInfo = getCompletionArgInfo(ParentCall, CS);
if (!ArgInfo) {
assert(false && "bad parent call match?");
return;
}
auto ArgIdx = ArgInfo->completionIdx;
Type ExpectedCallType;
if (auto ArgLoc = S.getConstraintSystem().getArgumentLocator(ParentCall)) {
if (auto FuncArgApplyInfo = S.getFunctionArgApplyInfo(ArgLoc)) {
Type ParamType = FuncArgApplyInfo->getParamType();
ExpectedCallType = S.simplifyTypeForCodeCompletion(ParamType);
}
}
if (!ExpectedCallType) {
if (auto ContextualType = S.getContextualType(ParentCall)) {
ExpectedCallType = ContextualType;
}
}
if (ExpectedCallType && ExpectedCallType->hasUnresolvedType()) {
ExpectedCallType = Type();
}
auto *CallLocator = CS.getConstraintLocator(ParentCall);
auto *CalleeLocator = S.getCalleeLocator(CallLocator);
auto Info = getSelectedOverloadInfo(S, CalleeLocator);
if (Info.getValue() && Info.getValue()->shouldHideFromEditor()) {
return;
}
// Disallow invalid initializer references
for (auto Fix : S.Fixes) {
if (Fix->getLocator() == CalleeLocator &&
Fix->getKind() == FixKind::AllowInvalidInitRef) {
return;
}
}
// Find the parameter the completion was bound to (if any), as well as which
// parameters are already bound (so we don't suggest them even when the args
// are out of order).
std::optional<unsigned> ParamIdx;
std::set<unsigned> ClaimedParams;
bool IsNoninitialVariadic = false;
ConstraintLocator *ArgumentLocator;
ArgumentLocator =
CS.getConstraintLocator(CallLocator, ConstraintLocator::ApplyArgument);
auto ArgMatchChoices = S.argumentMatchingChoices.find(ArgumentLocator);
if (ArgMatchChoices != S.argumentMatchingChoices.end()) {
// We might not have argument matching choices when applying a subscript
// found via @dynamicMemberLookup.
auto Bindings = ArgMatchChoices->second.parameterBindings;
for (auto i : indices(Bindings)) {
bool Claimed = false;
for (auto j : Bindings[i]) {
if (j == ArgIdx) {
assert(!ParamIdx);
ParamIdx = i;
IsNoninitialVariadic = llvm::any_of(
Bindings[i], [j](unsigned other) { return other < j; });
}
// Synthesized args don't count.
if (j < ArgInfo->argCount) {
Claimed = true;
}
}
if (Claimed) {
ClaimedParams.insert(i);
}
}
}
bool HasLabel = false;
std::optional<unsigned> FirstTrailingClosureIndex = std::nullopt;
if (auto PE = CS.getParentExpr(CompletionExpr)) {
if (auto Args = PE->getArgs()) {
HasLabel = !Args->getLabel(ArgIdx).empty();
FirstTrailingClosureIndex = Args->getFirstTrailingClosureIndex();
}
}
bool IsAsync = isContextAsync(S, DC);
// If this is a duplicate of any other result, ignore this solution.
if (llvm::any_of(Results, [&](const Result &R) {
return R.FuncD == Info.getValue() &&
nullableTypesEqual(R.FuncTy, Info.ValueTy) &&
nullableTypesEqual(R.BaseType, Info.BaseTy) &&
R.ParamIdx == ParamIdx &&
R.IsNoninitialVariadic == IsNoninitialVariadic;
})) {
return;
}
llvm::SmallDenseMap<const VarDecl *, Type> SolutionSpecificVarTypes;
getSolutionSpecificVarTypes(S, SolutionSpecificVarTypes);
AnyFunctionType *FuncTy = nullptr;
if (Info.ValueTy) {
FuncTy = Info.ValueTy->lookThroughAllOptionalTypes()->getAs<AnyFunctionType>();
}
// Determine which parameters are optional. We need to do this in
// `sawSolutionImpl` because it accesses the substitution map in
// `Info.ValueRef`. This substitution map might contain type variables that
// are allocated in the constraint system's arena and are freed once we reach
// `deliverResults`.
llvm::BitVector DeclParamIsOptional;
if (FuncTy) {
ArrayRef<AnyFunctionType::Param> ParamsToPass = FuncTy->getParams();
for (auto Idx : range(0, ParamsToPass.size())) {
bool Optional = false;
if (Info.ValueRef) {
if (Info.ValueRef.getDecl()->isInstanceMember() &&
!doesMemberRefApplyCurriedSelf(Info.BaseTy,
Info.ValueRef.getDecl())) {
// We are completing in an unapplied instance function, eg.
// struct TestStatic {
// func method() -> Void {}
// }
// TestStatic.method(#^STATIC^#)
// The 'self' parameter is never optional, so don't enter the check
// below (which always assumes that self has been applied).
} else if (const ParamDecl *DeclParam =
getParameterAt(Info.ValueRef, Idx)) {
Optional |= DeclParam->isDefaultArgument();
Optional |= DeclParam->getInterfaceType()->is<PackExpansionType>();
}
}
const AnyFunctionType::Param *TypeParam = &ParamsToPass[Idx];
Optional |= TypeParam->isVariadic();
DeclParamIsOptional.push_back(Optional);
}
}
bool IncludeSignature = false;
if (ParentCall->getArgs()->getUnlabeledUnaryExpr() == CompletionExpr) {
// If the code completion expression is the only expression in the call
// and the code completion token doesn’t have a label, we have a case like
// `Point(|)`. Suggest the entire function signature.
IncludeSignature = true;
} else if (!ParentCall->getArgs()->empty() &&
ParentCall->getArgs()->getExpr(0) == CompletionExpr &&
!ParentCall->getArgs()->get(0).hasLabel()) {
if (hasParentCallLikeExpr(ParentCall, CS)) {
// We are completing in cases like `bar(arg: foo(|, option: 1)`
// In these cases, we don’t know if `option` belongs to the call to `foo`
// or `bar`. Be defensive and also suggest the signature.
IncludeSignature = true;
}
}
Results.push_back(
{ExpectedTy, ExpectedCallType, isa<SubscriptExpr>(ParentCall),
Info.getValue(), FuncTy, ArgIdx, ParamIdx, std::move(ClaimedParams),
IsNoninitialVariadic, IncludeSignature, Info.BaseTy, HasLabel, FirstTrailingClosureIndex,
IsAsync, DeclParamIsOptional, SolutionSpecificVarTypes});
}
void ArgumentTypeCheckCompletionCallback::computeShadowedDecls(
SmallPtrSetImpl<ValueDecl *> &ShadowedDecls) {
for (size_t i = 0; i < Results.size(); ++i) {
auto &ResultA = Results[i];
for (size_t j = i + 1; j < Results.size(); ++j) {
auto &ResultB = Results[j];
if (!ResultA.FuncD || !ResultB.FuncD || !ResultA.FuncTy ||
!ResultB.FuncTy) {
continue;
}
if (ResultA.FuncD->getName() != ResultB.FuncD->getName()) {
continue;
}
if (!ResultA.FuncTy->isEqual(ResultB.FuncTy)) {
continue;
}
ProtocolDecl *inProtocolExtensionA =
ResultA.FuncD->getDeclContext()->getExtendedProtocolDecl();
ProtocolDecl *inProtocolExtensionB =
ResultB.FuncD->getDeclContext()->getExtendedProtocolDecl();
if (inProtocolExtensionA && !inProtocolExtensionB) {
ShadowedDecls.insert(ResultA.FuncD);
} else if (!inProtocolExtensionA && inProtocolExtensionB) {
ShadowedDecls.insert(ResultB.FuncD);
}
}
}
}
void ArgumentTypeCheckCompletionCallback::collectResults(
bool IsLabeledTrailingClosure, SourceLoc Loc,
DeclContext *DC, ide::CodeCompletionContext &CompletionCtx) {
ASTContext &Ctx = DC->getASTContext();
CompletionLookup Lookup(CompletionCtx.getResultSink(), Ctx, DC,
&CompletionCtx);
SmallPtrSet<ValueDecl *, 4> ShadowedDecls;
computeShadowedDecls(ShadowedDecls);
// Perform global completion as a fallback if we don't have any results.
bool shouldPerformGlobalCompletion = Results.empty();
SmallVector<Type, 4> ExpectedCallTypes;
for (auto &Result : Results) {
ExpectedCallTypes.push_back(Result.ExpectedCallType);
}
SmallVector<Type, 8> ExpectedTypes;
SmallVector<PossibleParamInfo, 8> Params;
for (auto &Result : Results) {
if (Result.IncludeSignature) {
Lookup.setHaveLParen(true);
Lookup.setExpectedTypes(ExpectedCallTypes, /*isImpliedResult=*/false);
auto SemanticContext = SemanticContextKind::None;
NominalTypeDecl *BaseNominal = nullptr;
if (Result.BaseType) {
Type BaseTy = Result.BaseType;
if (auto InstanceTy = BaseTy->getMetatypeInstanceType()) {
BaseTy = InstanceTy;
}
if ((BaseNominal = BaseTy->getAnyNominal())) {
SemanticContext = SemanticContextKind::CurrentNominal;
if (Result.FuncD &&
Result.FuncD->getDeclContext()->getSelfNominalTypeDecl() !=
BaseNominal) {
SemanticContext = SemanticContextKind::Super;
}
} else if (BaseTy->is<TupleType>() || BaseTy->is<SubstitutableType>()) {
SemanticContext = SemanticContextKind::CurrentNominal;
}
}
if (SemanticContext == SemanticContextKind::None && Result.FuncD) {
if (Result.FuncD->getDeclContext()->isTypeContext()) {
SemanticContext = SemanticContextKind::CurrentNominal;
} else if (Result.FuncD->getDeclContext()->isLocalContext()) {
SemanticContext = SemanticContextKind::Local;
} else if (Result.FuncD->getModuleContext() == DC->getParentModule()) {
SemanticContext = SemanticContextKind::CurrentModule;
}
}
if (Result.FuncTy) {
if (auto FuncTy = Result.FuncTy) {
// Only show call pattern completions if the function isn't
// overridden.
if (ShadowedDecls.count(Result.FuncD) == 0) {
if (Result.IsSubscript) {
// The subscript decl may not be preset for e.g the implicit
// `keyPath:` subscript. Such a subscript is allowed on any
// non-nominal type, so the semantic context may be none.
auto *SD = dyn_cast_or_null<SubscriptDecl>(Result.FuncD);
assert(!SD || SemanticContext != SemanticContextKind::None);
Lookup.addSubscriptCallPattern(FuncTy, SD, SemanticContext);
} else {
auto *FD = dyn_cast_or_null<AbstractFunctionDecl>(Result.FuncD);
Lookup.addFunctionCallPattern(FuncTy, FD, SemanticContext);
}
}
}
}
Lookup.setHaveLParen(false);
// We didn't find any function signatures. Perform global completion as a fallback.
shouldPerformGlobalCompletion |=
!Lookup.FoundFunctionCalls || Lookup.FoundFunctionsWithoutFirstKeyword;
} else {
shouldPerformGlobalCompletion |=
addPossibleParams(Result, Params, ExpectedTypes);
}
}
Lookup.addCallArgumentCompletionResults(Params, IsLabeledTrailingClosure);
if (shouldPerformGlobalCompletion) {
llvm::SmallDenseMap<const VarDecl *, Type> SolutionSpecificVarTypes;
if (!Results.empty()) {
SolutionSpecificVarTypes = Results[0].SolutionSpecificVarTypes;
}
WithSolutionSpecificVarTypesRAII VarTypes(SolutionSpecificVarTypes);
for (auto &Result : Results) {
ExpectedTypes.push_back(Result.ExpectedType);
Lookup.setSolutionSpecificVarTypes(Result.SolutionSpecificVarTypes);
}
Lookup.setExpectedTypes(ExpectedTypes, false);
bool IsInAsyncContext = llvm::any_of(
Results, [](const Result &Res) { return Res.IsInAsyncContext; });
Lookup.setCanCurrDeclContextHandleAsync(IsInAsyncContext);
Lookup.getValueCompletionsInDeclContext(Loc);
Lookup.getSelfTypeCompletionInDeclContext(Loc, /*isForDeclResult=*/false);
// Add any keywords that can be used in an argument expr position.
addSuperKeyword(CompletionCtx.getResultSink(), DC);
addExprKeywords(CompletionCtx.getResultSink(), DC);
}
collectCompletionResults(CompletionCtx, Lookup, DC,
*Lookup.getExpectedTypeContext(),
Lookup.canCurrDeclContextHandleAsync());
}