-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathChaCha.swift
379 lines (319 loc) · 14.1 KB
/
ChaCha.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
//===--- ChaCha.swift -----------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014-2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
import TestsUtils
/// This benchmark tests two things:
///
/// 1. Swift's ability to optimise low-level bit twiddling code.
/// 2. Swift's ability to optimise generic code when using contiguous data structures.
///
/// In principle initializing ChaCha20's state and then xoring the keystream with the
/// plaintext should be able to be vectorised.
enum ChaCha20 { }
extension ChaCha20 {
@inline(never)
public static func encrypt<Key: Collection, Nonce: Collection, Bytes: MutableCollection>(bytes: inout Bytes, key: Key, nonce: Nonce, initialCounter: UInt32 = 0) where Bytes.Element == UInt8, Key.Element == UInt8, Nonce.Element == UInt8 {
var baseState = ChaChaState(key: key, nonce: nonce, counter: initialCounter)
var index = bytes.startIndex
while index < bytes.endIndex {
let keyStream = baseState.block()
keyStream.xorBytes(bytes: &bytes, at: &index)
baseState.incrementCounter()
}
}
}
typealias BackingState = (UInt32, UInt32, UInt32, UInt32,
UInt32, UInt32, UInt32, UInt32,
UInt32, UInt32, UInt32, UInt32,
UInt32, UInt32, UInt32, UInt32)
struct ChaChaState {
/// The ChaCha20 algorithm has 16 32-bit integer numbers as its state.
/// They are traditionally laid out as a matrix: we do the same.
var _state: BackingState
/// Create a ChaChaState.
///
/// The inputs to ChaCha20 are:
///
/// - A 256-bit key, treated as a concatenation of eight 32-bit little-
/// endian integers.
/// - A 96-bit nonce, treated as a concatenation of three 32-bit little-
/// endian integers.
/// - A 32-bit block count parameter, treated as a 32-bit little-endian
/// integer.
init<Key: Collection, Nonce: Collection>(key: Key, nonce: Nonce, counter: UInt32) where Key.Element == UInt8, Nonce.Element == UInt8 {
guard key.count == 32 && nonce.count == 12 else {
fatalError("Invalid key or nonce length.")
}
// The ChaCha20 state is initialized as follows:
//
// - The first four words (0-3) are constants: 0x61707865, 0x3320646e,
// 0x79622d32, 0x6b206574.
self._state.0 = 0x61707865
self._state.1 = 0x3320646e
self._state.2 = 0x79622d32
self._state.3 = 0x6b206574
// - The next eight words (4-11) are taken from the 256-bit key by
// reading the bytes in little-endian order, in 4-byte chunks.
//
// We force unwrap here because we have already preconditioned on the length.
var keyIterator = CollectionOf32BitLittleEndianIntegers(key).makeIterator()
self._state.4 = keyIterator.next()!
self._state.5 = keyIterator.next()!
self._state.6 = keyIterator.next()!
self._state.7 = keyIterator.next()!
self._state.8 = keyIterator.next()!
self._state.9 = keyIterator.next()!
self._state.10 = keyIterator.next()!
self._state.11 = keyIterator.next()!
// - Word 12 is a block counter. Since each block is 64-byte, a 32-bit
// word is enough for 256 gigabytes of data.
self._state.12 = counter
// - Words 13-15 are a nonce, which should not be repeated for the same
// key. The 13th word is the first 32 bits of the input nonce taken
// as a little-endian integer, while the 15th word is the last 32
// bits.
//
// Again, we forcibly unwrap these bytes.
var nonceIterator = CollectionOf32BitLittleEndianIntegers(nonce).makeIterator()
self._state.13 = nonceIterator.next()!
self._state.14 = nonceIterator.next()!
self._state.15 = nonceIterator.next()!
}
/// As a performance enhancement, it is often useful to be able to increment the counter portion directly. This avoids the
/// expensive construction cost of the ChaCha state for each next sequence of bytes of the keystream.
mutating func incrementCounter() {
self._state.12 &+= 1
}
private mutating func add(_ otherState: ChaChaState) {
self._state.0 &+= otherState._state.0
self._state.1 &+= otherState._state.1
self._state.2 &+= otherState._state.2
self._state.3 &+= otherState._state.3
self._state.4 &+= otherState._state.4
self._state.5 &+= otherState._state.5
self._state.6 &+= otherState._state.6
self._state.7 &+= otherState._state.7
self._state.8 &+= otherState._state.8
self._state.9 &+= otherState._state.9
self._state.10 &+= otherState._state.10
self._state.11 &+= otherState._state.11
self._state.12 &+= otherState._state.12
self._state.13 &+= otherState._state.13
self._state.14 &+= otherState._state.14
self._state.15 &+= otherState._state.15
}
private mutating func columnRound() {
// The column round:
//
// 1. QUARTERROUND ( 0, 4, 8,12)
// 2. QUARTERROUND ( 1, 5, 9,13)
// 3. QUARTERROUND ( 2, 6,10,14)
// 4. QUARTERROUND ( 3, 7,11,15)
ChaChaState.quarterRound(a: &self._state.0, b: &self._state.4, c: &self._state.8, d: &self._state.12)
ChaChaState.quarterRound(a: &self._state.1, b: &self._state.5, c: &self._state.9, d: &self._state.13)
ChaChaState.quarterRound(a: &self._state.2, b: &self._state.6, c: &self._state.10, d: &self._state.14)
ChaChaState.quarterRound(a: &self._state.3, b: &self._state.7, c: &self._state.11, d: &self._state.15)
}
private mutating func diagonalRound() {
// The diagonal round:
//
// 5. QUARTERROUND ( 0, 5,10,15)
// 6. QUARTERROUND ( 1, 6,11,12)
// 7. QUARTERROUND ( 2, 7, 8,13)
// 8. QUARTERROUND ( 3, 4, 9,14)
ChaChaState.quarterRound(a: &self._state.0, b: &self._state.5, c: &self._state.10, d: &self._state.15)
ChaChaState.quarterRound(a: &self._state.1, b: &self._state.6, c: &self._state.11, d: &self._state.12)
ChaChaState.quarterRound(a: &self._state.2, b: &self._state.7, c: &self._state.8, d: &self._state.13)
ChaChaState.quarterRound(a: &self._state.3, b: &self._state.4, c: &self._state.9, d: &self._state.14)
}
}
extension ChaChaState {
static func quarterRound(a: inout UInt32, b: inout UInt32, c: inout UInt32, d: inout UInt32) {
// The ChaCha quarter round. This is almost identical to the definition from RFC 7539
// except that we use &+= instead of += because overflow modulo 32 is expected.
a &+= b; d ^= a; d <<<= 16
c &+= d; b ^= c; b <<<= 12
a &+= b; d ^= a; d <<<= 8
c &+= d; b ^= c; b <<<= 7
}
}
extension ChaChaState {
func block() -> ChaChaKeystreamBlock {
var stateCopy = self // We need this copy. This is cheaper than initializing twice.
// The ChaCha20 block runs 10 double rounds (a total of 20 rounds), made of one column and
// one diagonal round.
for _ in 0..<10 {
stateCopy.columnRound()
stateCopy.diagonalRound()
}
// We add the original input words to the output words.
stateCopy.add(self)
return ChaChaKeystreamBlock(stateCopy)
}
}
/// The result of running the ChaCha block function on a given set of ChaCha state.
///
/// This result has a distinct set of behaviours compared to the ChaChaState object, so we give it a different
/// (and more constrained) type.
struct ChaChaKeystreamBlock {
var _state: BackingState
init(_ state: ChaChaState) {
self._state = state._state
}
/// A nice thing we can do with a ChaCha keystream block is xor it with some bytes.
///
/// This helper function exists because we want a hook to do fast, in-place encryption of bytes.
func xorBytes<Bytes: MutableCollection>(bytes: inout Bytes, at index: inout Bytes.Index) where Bytes.Element == UInt8 {
// This is a naive implementation of this loop but I'm interested in testing the Swift compiler's ability
// to optimise this. If we have a programmatic way to roll up this loop I'd love to hear it!
self._state.0.xorLittleEndianBytes(bytes: &bytes, at: &index)
if index == bytes.endIndex { return }
self._state.1.xorLittleEndianBytes(bytes: &bytes, at: &index)
if index == bytes.endIndex { return }
self._state.2.xorLittleEndianBytes(bytes: &bytes, at: &index)
if index == bytes.endIndex { return }
self._state.3.xorLittleEndianBytes(bytes: &bytes, at: &index)
if index == bytes.endIndex { return }
self._state.4.xorLittleEndianBytes(bytes: &bytes, at: &index)
if index == bytes.endIndex { return }
self._state.5.xorLittleEndianBytes(bytes: &bytes, at: &index)
if index == bytes.endIndex { return }
self._state.6.xorLittleEndianBytes(bytes: &bytes, at: &index)
if index == bytes.endIndex { return }
self._state.7.xorLittleEndianBytes(bytes: &bytes, at: &index)
if index == bytes.endIndex { return }
self._state.8.xorLittleEndianBytes(bytes: &bytes, at: &index)
if index == bytes.endIndex { return }
self._state.9.xorLittleEndianBytes(bytes: &bytes, at: &index)
if index == bytes.endIndex { return }
self._state.10.xorLittleEndianBytes(bytes: &bytes, at: &index)
if index == bytes.endIndex { return }
self._state.11.xorLittleEndianBytes(bytes: &bytes, at: &index)
if index == bytes.endIndex { return }
self._state.12.xorLittleEndianBytes(bytes: &bytes, at: &index)
if index == bytes.endIndex { return }
self._state.13.xorLittleEndianBytes(bytes: &bytes, at: &index)
if index == bytes.endIndex { return }
self._state.14.xorLittleEndianBytes(bytes: &bytes, at: &index)
if index == bytes.endIndex { return }
self._state.15.xorLittleEndianBytes(bytes: &bytes, at: &index)
}
}
infix operator <<<: BitwiseShiftPrecedence
infix operator <<<=: AssignmentPrecedence
extension FixedWidthInteger {
func leftRotate(_ distance: Int) -> Self {
return (self << distance) | (self >> (Self.bitWidth - distance))
}
mutating func rotatedLeft(_ distance: Int) {
self = self.leftRotate(distance)
}
static func <<<(lhs: Self, rhs: Int) -> Self {
return lhs.leftRotate(rhs)
}
static func <<<=(lhs: inout Self, rhs: Int) {
lhs.rotatedLeft(rhs)
}
}
struct CollectionOf32BitLittleEndianIntegers<BaseCollection: Collection> where BaseCollection.Element == UInt8 {
var baseCollection: BaseCollection
init(_ baseCollection: BaseCollection) {
precondition(baseCollection.count % 4 == 0)
self.baseCollection = baseCollection
}
}
extension CollectionOf32BitLittleEndianIntegers: Collection {
typealias Element = UInt32
struct Index {
var baseIndex: BaseCollection.Index
init(_ baseIndex: BaseCollection.Index) {
self.baseIndex = baseIndex
}
}
var startIndex: Index {
return Index(self.baseCollection.startIndex)
}
var endIndex: Index {
return Index(self.baseCollection.endIndex)
}
func index(after index: Index) -> Index {
return Index(self.baseCollection.index(index.baseIndex, offsetBy: 4))
}
subscript(_ index: Index) -> UInt32 {
var baseIndex = index.baseIndex
var result = UInt32(0)
for shift in stride(from: 0, through: 24, by: 8) {
result |= UInt32(self.baseCollection[baseIndex]) << shift
self.baseCollection.formIndex(after: &baseIndex)
}
return result
}
}
extension CollectionOf32BitLittleEndianIntegers.Index: Equatable {
static func ==(lhs: Self, rhs: Self) -> Bool {
return lhs.baseIndex == rhs.baseIndex
}
}
extension CollectionOf32BitLittleEndianIntegers.Index: Comparable {
static func <(lhs: Self, rhs: Self) -> Bool {
return lhs.baseIndex < rhs.baseIndex
}
static func <=(lhs: Self, rhs: Self) -> Bool {
return lhs.baseIndex <= rhs.baseIndex
}
static func >(lhs: Self, rhs: Self) -> Bool {
return lhs.baseIndex > rhs.baseIndex
}
static func >=(lhs: Self, rhs: Self) -> Bool {
return lhs.baseIndex >= rhs.baseIndex
}
}
extension UInt32 {
/// Performs an xor operation on up to 4 bytes of the mutable collection.
func xorLittleEndianBytes<Bytes: MutableCollection>(bytes: inout Bytes, at index: inout Bytes.Index) where Bytes.Element == UInt8 {
var loopCount = 0
while index < bytes.endIndex && loopCount < 4 {
bytes[index] ^= UInt8((self >> (loopCount * 8)) & UInt32(0xFF))
bytes.formIndex(after: &index)
loopCount += 1
}
}
}
public let benchmarks = [
BenchmarkInfo(
name: "ChaCha",
runFunction: run_ChaCha,
tags: [.runtime, .cpubench]),
]
@inline(never)
func checkResult(_ plaintext: [UInt8]) {
check(plaintext.first! == 6 && plaintext.last! == 254)
var hash: UInt64 = 0
for byte in plaintext {
// rotate
hash = (hash &<< 8) | (hash &>> (64 - 8))
hash ^= UInt64(byte)
}
check(hash == 0xa1bcdb217d8d14e4)
}
@inline(never)
public func run_ChaCha(_ n: Int) {
let key = Array(repeating: UInt8(1), count: 32)
let nonce = Array(repeating: UInt8(2), count: 12)
var checkedtext = Array(repeating: UInt8(0), count: 1024)
ChaCha20.encrypt(bytes: &checkedtext, key: key, nonce: nonce)
checkResult(checkedtext)
var plaintext = Array(repeating: UInt8(0), count: 30720) // Chosen for CI runtime
for _ in 1...n {
ChaCha20.encrypt(bytes: &plaintext, key: key, nonce: nonce)
blackHole(plaintext.first!)
}
}