-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathCodeCompletionResultType.cpp
479 lines (423 loc) · 17.5 KB
/
CodeCompletionResultType.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
//===--- CodeCompletionResultType.cpp -------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2021 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/IDE/CodeCompletionResultType.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/Module.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/USRGeneration.h"
#include "swift/Sema/IDETypeChecking.h"
using namespace swift;
using namespace ide;
using TypeRelation = CodeCompletionResultTypeRelation;
// MARK: - Utilities
/// Returns the kind of attributes \c Ty can be used as.
static OptionSet<CustomAttributeKind> getCustomAttributeKinds(Type Ty) {
OptionSet<CustomAttributeKind> Result;
if (auto NominalTy = Ty->getAs<NominalOrBoundGenericNominalType>()) {
auto NominalDecl = NominalTy->getDecl();
if (NominalDecl->getAttrs().hasAttribute<PropertyWrapperAttr>()) {
Result |= CustomAttributeKind::PropertyWrapper;
}
if (NominalDecl->getAttrs().hasAttribute<ResultBuilderAttr>()) {
Result |= CustomAttributeKind::ResultBuilder;
}
if (NominalDecl->isGlobalActor()) {
Result |= CustomAttributeKind::GlobalActor;
}
}
return Result;
}
// MARK: - USRBasedTypeContext
USRBasedTypeContext::USRBasedTypeContext(const ExpectedTypeContext *TypeContext,
USRBasedTypeArena &Arena)
: Arena(Arena), ExpectedCustomAttributeKinds(
TypeContext->getExpectedCustomAttributeKinds()) {
for (auto possibleTy : TypeContext->getPossibleTypes()) {
ContextualTypes.emplace_back(USRBasedType::fromType(possibleTy, Arena));
// Add the unwrapped optional types as 'convertible' contextual types.
auto UnwrappedOptionalType = possibleTy->getOptionalObjectType();
while (UnwrappedOptionalType) {
ContextualTypes.emplace_back(
USRBasedType::fromType(UnwrappedOptionalType, Arena));
UnwrappedOptionalType = UnwrappedOptionalType->getOptionalObjectType();
}
// If the contextual type is an opaque return type, make the protocol a
// contextual type. E.g. if we have
// func foo() -> some View { #^COMPLETE^# }
// we should show items conforming to `View` as convertible.
if (auto OpaqueType = possibleTy->getAs<OpaqueTypeArchetypeType>()) {
llvm::SmallVector<const USRBasedType *, 1> USRTypes;
if (auto Superclass = OpaqueType->getSuperclass()) {
USRTypes.push_back(USRBasedType::fromType(Superclass, Arena));
}
for (auto Proto : OpaqueType->getConformsTo()) {
USRTypes.push_back(
USRBasedType::fromType(Proto->getDeclaredInterfaceType(), Arena));
}
// Archetypes are also be used to model generic return types, in which
// case they don't have any conformsTo entries. We simply ignore those.
if (!USRTypes.empty()) {
ContextualTypes.emplace_back(USRTypes);
}
}
}
}
TypeRelation
USRBasedTypeContext::typeRelation(const USRBasedType *ResultType) const {
if (ExpectedCustomAttributeKinds) {
return ResultType->getCustomAttributeKinds() & ExpectedCustomAttributeKinds
? TypeRelation::Convertible
: TypeRelation::Unrelated;
}
const USRBasedType *VoidType = Arena.getVoidType();
if (ResultType == VoidType) {
// Void is not convertible to anything and we don't report Void <-> Void
// identical matches (see USRBasedType::typeRelation). So we don't have to
// check anything if the result returns Void.
return TypeRelation::Unknown;
}
TypeRelation Res = TypeRelation::Unknown;
for (auto &ContextualType : ContextualTypes) {
Res = std::max(Res, ContextualType.typeRelation(ResultType, VoidType));
if (Res == TypeRelation::MAX_VALUE) {
return Res; // We can't improve further
}
}
return Res;
}
// MARK: - USRBasedTypeArena
USRBasedTypeArena::USRBasedTypeArena() {
// '$sytD' is the USR of the Void type.
VoidType = USRBasedType::fromUSR("$sytD", {}, {}, *this);
}
const USRBasedType *USRBasedTypeArena::getVoidType() const { return VoidType; }
// MARK: - USRBasedType
TypeRelation USRBasedType::typeRelationImpl(
const USRBasedType *ResultType, const USRBasedType *VoidType,
SmallPtrSetImpl<const USRBasedType *> &VisitedTypes) const {
// `this` is the contextual type.
if (this == VoidType) {
// We don't report Void <-> Void matches because that would boost
// methods returning Void in e.g.
// func foo() { #^COMPLETE^# }
// because #^COMPLETE^# is implicitly returned. But that's not very
// helpful.
return TypeRelation::Unknown;
}
if (ResultType == this) {
return TypeRelation::Convertible;
}
for (const USRBasedType *Supertype : ResultType->getSupertypes()) {
if (!VisitedTypes.insert(Supertype).second) {
// Already visited this type.
continue;
}
if (this->typeRelation(Supertype, VoidType) >= TypeRelation::Convertible) {
return TypeRelation::Convertible;
}
}
// TypeRelation computation based on USRs is an under-approximation because we
// don't take into account generic conversions or retroactive conformance of
// library types. Hence, we can't know for sure that ResultType is not
// convertible to `this` type and thus can't return Unrelated or Invalid here.
return TypeRelation::Unknown;
}
const USRBasedType *USRBasedType::null(USRBasedTypeArena &Arena) {
return USRBasedType::fromUSR(/*USR=*/"", /*Supertypes=*/{}, {}, Arena);
}
const USRBasedType *
USRBasedType::fromUSR(StringRef USR, ArrayRef<const USRBasedType *> Supertypes,
OptionSet<CustomAttributeKind> CustomAttributeKinds,
USRBasedTypeArena &Arena) {
auto ExistingTypeIt = Arena.CanonicalTypes.find(USR);
if (ExistingTypeIt != Arena.CanonicalTypes.end()) {
return ExistingTypeIt->second;
}
// USR and Supertypes need to be allocated in the arena to be passed into the
// USRBasedType constructor. The elements of Supertypes are already allocated
// in the arena.
USR = USR.copy(Arena.Allocator);
Supertypes = Supertypes.copy(Arena.Allocator);
const USRBasedType *Result =
new (Arena.Allocator) USRBasedType(USR, Supertypes, CustomAttributeKinds);
Arena.CanonicalTypes[USR] = Result;
return Result;
}
const USRBasedType *USRBasedType::fromType(Type Ty, USRBasedTypeArena &Arena) {
if (!Ty) {
return USRBasedType::null(Arena);
}
// USRBasedTypes are backed by canonical types so that equivalent types have
// the same USR.
Ty = Ty->getCanonicalType();
// For opaque types like 'some View', consider them equivalent to 'View'.
if (auto OpaqueType = Ty->getAs<ArchetypeType>()) {
if (auto Existential = OpaqueType->getExistentialType()) {
Ty = Existential;
}
}
// We can't represent more complicated archetypes like 'some View & MyProto'
// in USRBasedType yet. Simply map them to null types for now.
if (Ty->hasArchetype()) {
return USRBasedType::null(Arena);
}
// ParameterizedProtocolType should always be wrapped in ExistentialType and
// cannot be mangled on its own.
// But ParameterizedProtocolType can currently occur in 'typealias'
// declarations. rdar://99176683
// To avoid crashing in USR generation, simply return a null type until the
// underlying issue has been fixed.
if (Ty->is<ParameterizedProtocolType>()) {
return USRBasedType::null(Arena);
}
SmallString<32> USR;
llvm::raw_svector_ostream OS(USR);
printTypeUSR(Ty, OS);
// Check the USRBasedType cache in the arena as quickly as possible to avoid
// converting the entire supertype hierarchy from AST-based types to
// USRBasedTypes.
auto ExistingTypeIt = Arena.CanonicalTypes.find(USR);
if (ExistingTypeIt != Arena.CanonicalTypes.end()) {
return ExistingTypeIt->second;
}
SmallVector<const USRBasedType *, 2> Supertypes;
;
if (auto Nominal = Ty->getAnyNominal()) {
if (auto *Proto = dyn_cast<ProtocolDecl>(Nominal)) {
Proto->walkInheritedProtocols([&](ProtocolDecl *inherited) {
if (Proto != inherited &&
!inherited->isSpecificProtocol(KnownProtocolKind::Sendable)) {
Supertypes.push_back(USRBasedType::fromType(
inherited->getDeclaredInterfaceType(), Arena));
}
return TypeWalker::Action::Continue;
});
} else {
auto Conformances = Nominal->getAllConformances();
Supertypes.reserve(Conformances.size());
for (auto Conformance : Conformances) {
if (Conformance->getDeclContext()->getParentModule() !=
Nominal->getModuleContext()) {
// Only include conformances that are declared within the module of the
// type to avoid caching retroactive conformances which might not
// exist when using the code completion cache from a different module.
continue;
}
if (Conformance->getProtocol()->isSpecificProtocol(KnownProtocolKind::Sendable)) {
// FIXME: Sendable conformances are lazily synthesized as they are
// needed by the compiler. Depending on whether we checked whether a
// type conforms to Sendable before constructing the USRBasedType, we
// get different results for its conformance. For now, always drop the
// Sendable conformance.
continue;
}
Supertypes.push_back(USRBasedType::fromType(
Conformance->getProtocol()->getDeclaredInterfaceType(), Arena));
}
}
}
// You would think that superclass + conformances form a DAG. You are wrong!
// We can achieve a circular supertype hierarchy with
//
// protocol Proto : Class {}
// class Class : Proto {}
//
// USRBasedType is not set up for this. Serialization of code completion
// results from global modules can't handle cycles in the supertype hierarchy
// because it writes the DAG leaf to root(s) and needs to know the type
// offsets. To get consistent results independent of where we start
// constructing USRBasedTypes, ignore superclasses of protocols. If we kept
// track of already visited types, we would get different results depending on
// whether we start constructing the USRBasedType hierarchy from Proto or
// Class.
// Ignoring superclasses of protocols is safe to do because USRBasedType is an
// under-approximation anyway.
/// If `Ty` is a class type and has a superclass, return that. In all other
/// cases, return null.
auto getSuperclass = [](Type Ty) -> Type {
if (isa_and_nonnull<ClassDecl>(Ty->getAnyNominal())) {
return Ty->getSuperclass();
} else {
return Type();
}
};
Type Superclass = getSuperclass(Ty);
while (Superclass) {
Supertypes.push_back(USRBasedType::fromType(Superclass, Arena));
Superclass = getSuperclass(Superclass);
}
assert(llvm::all_of(Supertypes, [&USR](const USRBasedType *Ty) {
return Ty->getUSR() != USR;
}) && "Circular supertypes?");
llvm::SmallPtrSet<const USRBasedType *, 2> ImpliedSupertypes;
for (auto Supertype : Supertypes) {
ImpliedSupertypes.insert(Supertype->getSupertypes().begin(),
Supertype->getSupertypes().end());
}
llvm::erase_if(Supertypes, [&ImpliedSupertypes](const USRBasedType *Ty) {
return ImpliedSupertypes.contains(Ty);
});
return USRBasedType::fromUSR(USR, Supertypes, ::getCustomAttributeKinds(Ty),
Arena);
}
TypeRelation USRBasedType::typeRelation(const USRBasedType *ResultType,
const USRBasedType *VoidType) const {
SmallPtrSet<const USRBasedType *, 4> VisitedTypes;
return this->typeRelationImpl(ResultType, VoidType, VisitedTypes);
}
// MARK: - USRBasedTypeContext
TypeRelation USRBasedTypeContext::ContextualType::typeRelation(
const USRBasedType *ResultType, const USRBasedType *VoidType) const {
assert(!Types.empty() && "A contextual type should have at least one type");
/// Types is a conjunction, not a disjunction (see documentation on Types),
/// so we need to compute the minimum type relation here.
TypeRelation Result = TypeRelation::Convertible;
for (auto ContextType : Types) {
Result = std::min(Result, ContextType->typeRelation(ResultType, VoidType));
}
return Result;
}
// MARK: - CodeCompletionResultType
/// Returns \c true if \p Ty is the 'Any' type or some type that is sufficiently
/// similar to Any, like the 'Any' metatype or an optional type wrapping 'Any'.
static bool isEssentiallyAnyType(Type Ty) {
while (true) {
if (auto MT = Ty->getAs<AnyMetatypeType>()) {
Ty = MT->getInstanceType();
} else if (auto OT = Ty->getOptionalObjectType()) {
Ty = OT;
} else {
break;
}
}
return Ty->isAny();
}
static TypeRelation calculateTypeRelation(Type Ty, Type ExpectedTy,
const DeclContext &DC) {
if (Ty.isNull() || ExpectedTy.isNull() || Ty->is<ErrorType>() ||
ExpectedTy->is<ErrorType>())
return TypeRelation::Unrelated;
/// Computing type relations to 'Any' is not very enlightning because
/// everything would be convertible to it. If the contextual type is 'Any',
/// just report all type relations as 'Unknown'.
if (isEssentiallyAnyType(ExpectedTy)) {
return TypeRelation::Unknown;
}
// Equality/Conversion of GenericTypeParameterType won't account for
// requirements – ignore them
if (!Ty->hasTypeParameter() && !ExpectedTy->hasTypeParameter()) {
if (Ty->isEqual(ExpectedTy))
return TypeRelation::Convertible;
bool isAny = false;
isAny |= ExpectedTy->isAny();
isAny |= ExpectedTy->is<ArchetypeType>() &&
!ExpectedTy->castTo<ArchetypeType>()->hasRequirements();
if (!isAny && isConvertibleTo(Ty, ExpectedTy, /*openArchetypes=*/true,
const_cast<DeclContext &>(DC)))
return TypeRelation::Convertible;
}
if (auto FT = Ty->getAs<AnyFunctionType>()) {
if (FT->getResult()->isVoid())
return TypeRelation::Invalid;
}
return TypeRelation::Unrelated;
}
static TypeRelation
calculateMaxTypeRelation(Type Ty, const ExpectedTypeContext &typeContext,
const DeclContext &DC) {
if (Ty->isVoid() && typeContext.requiresNonVoid())
return TypeRelation::Invalid;
if (typeContext.getExpectedCustomAttributeKinds()) {
return (getCustomAttributeKinds(Ty) &
typeContext.getExpectedCustomAttributeKinds())
? TypeRelation::Convertible
: TypeRelation::Unrelated;
}
if (typeContext.empty())
return TypeRelation::Unknown;
if (auto funcTy = Ty->getAs<AnyFunctionType>())
Ty = funcTy->removeArgumentLabels(1);
auto Result = TypeRelation::Unrelated;
for (auto expectedTy : typeContext.getPossibleTypes()) {
// Do not use Void type context for a single-expression body, since the
// implicit return does not constrain the expression.
//
// { ... -> () in x } // x can be anything
//
// This behaves differently from explicit return, and from non-Void:
//
// { ... -> Int in x } // x must be Int
// { ... -> () in return x } // x must be Void
if (typeContext.isImplicitSingleExpressionReturn() && expectedTy->isVoid())
continue;
Result = std::max(Result, calculateTypeRelation(Ty, expectedTy, DC));
}
// Map invalid -> unrelated when in a single-expression body, since the
// input may be incomplete.
if (typeContext.isImplicitSingleExpressionReturn() &&
Result == TypeRelation::Invalid)
Result = TypeRelation::Unrelated;
return Result;
}
bool CodeCompletionResultType::isBackedByUSRs() const {
return llvm::all_of(
getResultTypes(),
[](const PointerUnion<Type, const USRBasedType *> &ResultType) {
return ResultType.is<const USRBasedType *>();
});
}
llvm::SmallVector<const USRBasedType *, 1>
CodeCompletionResultType::getUSRBasedResultTypes(
USRBasedTypeArena &Arena) const {
llvm::SmallVector<const USRBasedType *, 1> USRBasedTypes;
auto ResultTypes = getResultTypes();
USRBasedTypes.reserve(ResultTypes.size());
for (auto ResultType : ResultTypes) {
if (auto USRType = ResultType.dyn_cast<const USRBasedType *>()) {
USRBasedTypes.push_back(USRType);
} else {
USRBasedTypes.push_back(
USRBasedType::fromType(ResultType.get<Type>(), Arena));
}
}
return USRBasedTypes;
}
CodeCompletionResultType
CodeCompletionResultType::usrBasedType(USRBasedTypeArena &Arena) const {
return CodeCompletionResultType(this->getUSRBasedResultTypes(Arena));
}
TypeRelation CodeCompletionResultType::calculateTypeRelation(
const ExpectedTypeContext *TypeContext, const DeclContext *DC,
const USRBasedTypeContext *USRTypeContext) const {
if (isNotApplicable()) {
return TypeRelation::NotApplicable;
}
if (!TypeContext || !DC) {
return TypeRelation::Unknown;
}
TypeRelation Res = TypeRelation::Unknown;
for (auto Ty : getResultTypes()) {
if (auto USRType = Ty.dyn_cast<const USRBasedType *>()) {
if (!USRTypeContext) {
assert(false && "calculateTypeRelation must have a USRBasedTypeContext "
"passed if it contains a USR-based result type");
continue;
}
Res = std::max(Res, USRTypeContext->typeRelation(USRType));
} else {
Res = std::max(
Res, calculateMaxTypeRelation(Ty.get<Type>(), *TypeContext, *DC));
}
}
return Res;
}