-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathMutableCollection.swift
412 lines (390 loc) · 16.4 KB
/
MutableCollection.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
/// A type that provides subscript access to its elements.
///
/// In most cases, it's best to ignore this protocol and use the
/// `MutableCollection` protocol instead, because it has a more complete
/// interface.
@available(*, deprecated, message: "it will be removed in Swift 4.0. Please use 'MutableCollection' instead")
public typealias MutableIndexable = _MutableIndexable
public protocol _MutableIndexable : _Indexable {
// FIXME(ABI)#52 (Recursive Protocol Constraints): there is no reason for this protocol
// to exist apart from missing compiler features that we emulate with it.
// rdar://problem/20531108
//
// This protocol is almost an implementation detail of the standard
// library; it is used to deduce things like the `SubSequence` and
// `Iterator` type from a minimal collection, but it is also used in
// exposed places like as a constraint on `IndexingIterator`.
/// The position of the first element in a nonempty collection.
///
/// If the collection is empty, `startIndex` is equal to `endIndex`.
var startIndex: Index { get }
/// The collection's "past the end" position---that is, the position one
/// greater than the last valid subscript argument.
///
/// When you need a range that includes the last element of a collection, use
/// the half-open range operator (`..<`) with `endIndex`. The `..<` operator
/// creates a range that doesn't include the upper bound, so it's always
/// safe to use with `endIndex`. For example:
///
/// let numbers = [10, 20, 30, 40, 50]
/// if let index = numbers.index(of: 30) {
/// print(numbers[index ..< numbers.endIndex])
/// }
/// // Prints "[30, 40, 50]"
///
/// If the collection is empty, `endIndex` is equal to `startIndex`.
var endIndex: Index { get }
/// Accesses the element at the specified position.
///
/// For example, you can replace an element of an array by using its
/// subscript.
///
/// var streets = ["Adams", "Bryant", "Channing", "Douglas", "Evarts"]
/// streets[1] = "Butler"
/// print(streets[1])
/// // Prints "Butler"
///
/// You can subscript a collection with any valid index other than the
/// collection's end index. The end index refers to the position one
/// past the last element of a collection, so it doesn't correspond with an
/// element.
///
/// - Parameter position: The position of the element to access. `position`
/// must be a valid index of the collection that is not equal to the
/// `endIndex` property.
subscript(position: Index) -> _Element { get set }
/// Accesses a contiguous subrange of the collection's elements.
///
/// The accessed slice uses the same indices for the same elements as the
/// original collection. Always use the slice's `startIndex` property
/// instead of assuming that its indices start at a particular value.
///
/// This example demonstrates getting a slice of an array of strings, finding
/// the index of one of the strings in the slice, and then using that index
/// in the original array.
///
/// let streets = ["Adams", "Bryant", "Channing", "Douglas", "Evarts"]
/// let streetsSlice = streets[2 ..< streets.endIndex]
/// print(streetsSlice)
/// // Prints "["Channing", "Douglas", "Evarts"]"
///
/// let index = streetsSlice.index(of: "Evarts") // 4
/// streets[index!] = "Eustace"
/// print(streets[index!])
/// // Prints "Eustace"
///
/// - Parameter bounds: A range of the collection's indices. The bounds of
/// the range must be valid indices of the collection.
subscript(bounds: Range<Index>) -> SubSequence { get set }
/// Performs a range check in O(1), or a no-op when a range check is not
/// implementable in O(1).
///
/// The range check, if performed, is equivalent to:
///
/// precondition(bounds.contains(index))
///
/// Use this function to perform a cheap range check for QoI purposes when
/// memory safety is not a concern. Do not rely on this range check for
/// memory safety.
///
/// The default implementation for forward and bidirectional indices is a
/// no-op. The default implementation for random access indices performs a
/// range check.
///
/// - Complexity: O(1).
func _failEarlyRangeCheck(_ index: Index, bounds: Range<Index>)
/// Performs a range check in O(1), or a no-op when a range check is not
/// implementable in O(1).
///
/// The range check, if performed, is equivalent to:
///
/// precondition(
/// bounds.contains(range.lowerBound) ||
/// range.lowerBound == bounds.upperBound)
/// precondition(
/// bounds.contains(range.upperBound) ||
/// range.upperBound == bounds.upperBound)
///
/// Use this function to perform a cheap range check for QoI purposes when
/// memory safety is not a concern. Do not rely on this range check for
/// memory safety.
///
/// The default implementation for forward and bidirectional indices is a
/// no-op. The default implementation for random access indices performs a
/// range check.
///
/// - Complexity: O(1).
func _failEarlyRangeCheck(_ range: Range<Index>, bounds: Range<Index>)
/// Returns the position immediately after the given index.
///
/// - Parameter i: A valid index of the collection. `i` must be less than
/// `endIndex`.
/// - Returns: The index value immediately after `i`.
func index(after i: Index) -> Index
/// Replaces the given index with its successor.
///
/// - Parameter i: A valid index of the collection. `i` must be less than
/// `endIndex`.
func formIndex(after i: inout Index)
}
// TODO: swift-3-indexing-model - review the following
/// A collection that supports subscript assignment.
///
/// Collections that conform to `MutableCollection` gain the ability to
/// change the value of their elements. This example shows how you can
/// modify one of the names in an array of students.
///
/// var students = ["Ben", "Ivy", "Jordell", "Maxime"]
/// if let i = students.index(of: "Maxime") {
/// students[i] = "Max"
/// }
/// print(students)
/// // Prints "["Ben", "Ivy", "Jordell", "Max"]"
///
/// In addition to changing the value of an individual element, you can also
/// change the values of a slice of elements in a mutable collection. For
/// example, you can sort *part* of a mutable collection by calling the
/// mutable `sort()` method on a subscripted subsequence. Here's an
/// example that sorts the first half of an array of integers:
///
/// var numbers = [15, 40, 10, 30, 60, 25, 5, 100]
/// numbers[0..<4].sort()
/// print(numbers)
/// // Prints "[10, 15, 30, 40, 60, 25, 5, 100]"
///
/// The `MutableCollection` protocol allows changing the values of a
/// collection's elements but not the length of the collection itself. For
/// operations that require adding or removing elements, see the
/// `RangeReplaceableCollection` protocol instead.
///
/// Conforming to the MutableCollection Protocol
/// ============================================
///
/// To add conformance to the `MutableCollection` protocol to your own
/// custom collection, upgrade your type's subscript to support both read
/// and write access.
///
/// A value stored into a subscript of a `MutableCollection` instance must
/// subsequently be accessible at that same position. That is, for a mutable
/// collection instance `a`, index `i`, and value `x`, the two sets of
/// assignments in the following code sample must be equivalent:
///
/// a[i] = x
/// let y = a[i]
///
/// // Must be equivalent to:
/// a[i] = x
/// let y = x
public protocol MutableCollection : _MutableIndexable, Collection
// FIXME(ABI) (Revert Where Clauses): restore this:
// where SubSequence: MutableCollection
{
associatedtype SubSequence
// FIXME(ABI) (Revert Where Clauses): remove this conformance:
: Collection
= MutableSlice<Self>
/// Accesses the element at the specified position.
///
/// For example, you can replace an element of an array by using its
/// subscript.
///
/// var streets = ["Adams", "Bryant", "Channing", "Douglas", "Evarts"]
/// streets[1] = "Butler"
/// print(streets[1])
/// // Prints "Butler"
///
/// You can subscript a collection with any valid index other than the
/// collection's end index. The end index refers to the position one
/// past the last element of a collection, so it doesn't correspond with an
/// element.
///
/// - Parameter position: The position of the element to access. `position`
/// must be a valid index of the collection that is not equal to the
/// `endIndex` property.
subscript(position: Index) -> Element {get set}
/// Accesses a contiguous subrange of the collection's elements.
///
/// The accessed slice uses the same indices for the same elements as the
/// original collection. Always use the slice's `startIndex` property
/// instead of assuming that its indices start at a particular value.
///
/// This example demonstrates getting a slice of an array of strings, finding
/// the index of one of the strings in the slice, and then using that index
/// in the original array.
///
/// let streets = ["Adams", "Bryant", "Channing", "Douglas", "Evarts"]
/// let streetsSlice = streets[2 ..< streets.endIndex]
/// print(streetsSlice)
/// // Prints "["Channing", "Douglas", "Evarts"]"
///
/// let index = streetsSlice.index(of: "Evarts") // 4
/// streets[index!] = "Eustace"
/// print(streets[index!])
/// // Prints "Eustace"
///
/// - Parameter bounds: A range of the collection's indices. The bounds of
/// the range must be valid indices of the collection.
subscript(bounds: Range<Index>) -> SubSequence {get set}
/// Reorders the elements of the collection such that all the elements
/// that match the given predicate are after all the elements that don't
/// match.
///
/// After partitioning a collection, there is a pivot index `p` where
/// no element before `p` satisfies the `belongsInSecondPartition`
/// predicate and every element at or after `p` satisfies
/// `belongsInSecondPartition`.
///
/// In the following example, an array of numbers is partitioned by a
/// predicate that matches elements greater than 30.
///
/// var numbers = [30, 40, 20, 30, 30, 60, 10]
/// let p = numbers.partition(by: { $0 > 30 })
/// // p == 5
/// // numbers == [30, 10, 20, 30, 30, 60, 40]
///
/// The `numbers` array is now arranged in two partitions. The first
/// partition, `numbers[..<p]`, is made up of the elements that
/// are not greater than 30. The second partition, `numbers[p...]`,
/// is made up of the elements that *are* greater than 30.
///
/// let first = numbers[..<p]
/// // first == [30, 10, 20, 30, 30]
/// let second = numbers[p...]
/// // second == [60, 40]
///
/// - Parameter belongsInSecondPartition: A predicate used to partition
/// the collection. All elements satisfying this predicate are ordered
/// after all elements not satisfying it.
/// - Returns: The index of the first element in the reordered collection
/// that matches `belongsInSecondPartition`. If no elements in the
/// collection match `belongsInSecondPartition`, the returned index is
/// equal to the collection's `endIndex`.
///
/// - Complexity: O(*n*)
mutating func partition(
by belongsInSecondPartition: (Element) throws -> Bool
) rethrows -> Index
/// Exchanges the values at the specified indices of the collection.
///
/// Both parameters must be valid indices of the collection that are not
/// equal to `endIndex`. Passing the same index as both `i` and `j` has no
/// effect.
///
/// - Parameters:
/// - i: The index of the first value to swap.
/// - j: The index of the second value to swap.
mutating func swapAt(_ i: Index, _ j: Index)
/// Call `body(p)`, where `p` is a pointer to the collection's
/// mutable contiguous storage. If no such storage exists, it is
/// first created. If the collection does not support an internal
/// representation in a form of mutable contiguous storage, `body` is not
/// called and `nil` is returned.
///
/// Often, the optimizer can eliminate bounds- and uniqueness-checks
/// within an algorithm, but when that fails, invoking the
/// same algorithm on `body`\ 's argument lets you trade safety for
/// speed.
mutating func _withUnsafeMutableBufferPointerIfSupported<R>(
_ body: (UnsafeMutablePointer<Element>, Int) throws -> R
) rethrows -> R?
// FIXME(ABI)#53 (Type Checker): the signature should use
// UnsafeMutableBufferPointer, but the compiler can't handle that.
//
// <rdar://problem/21933004> Restore the signature of
// _withUnsafeMutableBufferPointerIfSupported() that mentions
// UnsafeMutableBufferPointer
}
// TODO: swift-3-indexing-model - review the following
extension MutableCollection {
@_inlineable
public mutating func _withUnsafeMutableBufferPointerIfSupported<R>(
_ body: (UnsafeMutablePointer<Element>, Int) throws -> R
) rethrows -> R? {
return nil
}
/// Accesses a contiguous subrange of the collection's elements.
///
/// The accessed slice uses the same indices for the same elements as the
/// original collection. Always use the slice's `startIndex` property
/// instead of assuming that its indices start at a particular value.
///
/// This example demonstrates getting a slice of an array of strings, finding
/// the index of one of the strings in the slice, and then using that index
/// in the original array.
///
/// let streets = ["Adams", "Bryant", "Channing", "Douglas", "Evarts"]
/// let streetsSlice = streets[2 ..< streets.endIndex]
/// print(streetsSlice)
/// // Prints "["Channing", "Douglas", "Evarts"]"
///
/// let index = streetsSlice.index(of: "Evarts") // 4
/// streets[index!] = "Eustace"
/// print(streets[index!])
/// // Prints "Eustace"
///
/// - Parameter bounds: A range of the collection's indices. The bounds of
/// the range must be valid indices of the collection.
@_inlineable
public subscript(bounds: Range<Index>) -> MutableSlice<Self> {
get {
_failEarlyRangeCheck(bounds, bounds: startIndex..<endIndex)
return MutableSlice(base: self, bounds: bounds)
}
set {
_writeBackMutableSlice(&self, bounds: bounds, slice: newValue)
}
}
/// Exchanges the values at the specified indices of the collection.
///
/// Both parameters must be valid indices of the collection that are not
/// equal to `endIndex`. Calling `swapAt(_:_:)` with the same index as both
/// `i` and `j` has no effect.
///
/// - Parameters:
/// - i: The index of the first value to swap.
/// - j: The index of the second value to swap.
@_inlineable
public mutating func swapAt(_ i: Index, _ j: Index) {
guard i != j else { return }
let tmp = self[i]
self[i] = self[j]
self[j] = tmp
}
}
extension MutableCollection where Self: BidirectionalCollection {
public subscript(bounds: Range<Index>) -> MutableBidirectionalSlice<Self> {
get {
_failEarlyRangeCheck(bounds, bounds: startIndex..<endIndex)
return MutableBidirectionalSlice(base: self, bounds: bounds)
}
set {
_writeBackMutableSlice(&self, bounds: bounds, slice: newValue)
}
}
}
extension MutableCollection where Self: RandomAccessCollection {
public subscript(bounds: Range<Index>) -> MutableRandomAccessSlice<Self> {
get {
_failEarlyRangeCheck(bounds, bounds: startIndex..<endIndex)
return MutableRandomAccessSlice(base: self, bounds: bounds)
}
set {
_writeBackMutableSlice(&self, bounds: bounds, slice: newValue)
}
}
}
@available(*, unavailable, renamed: "MutableCollection")
public typealias MutableCollectionType = MutableCollection
@available(*, unavailable, message: "Please use 'Collection where SubSequence : MutableCollection'")
public typealias MutableSliceable = Collection