-
Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathSimplifyInstruction.cpp
784 lines (667 loc) · 26.6 KB
/
SimplifyInstruction.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
//===--- SimplifyInstruction.cpp - Fold instructions ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// An SSA-peephole analysis. Given a single-value instruction, find an existing
/// equivalent but less costly or more canonical SIL value.
///
/// This analysis must handle 'raw' SIL form. It should be possible to perform
/// the substitution discovered by the analysis without interfering with
/// subsequent diagnostic passes.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-simplify"
#include "swift/SILOptimizer/Analysis/SimplifyInstruction.h"
#include "swift/Basic/Assertions.h"
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/PatternMatch.h"
#include "swift/SIL/SILVisitor.h"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
using namespace swift;
using namespace swift::PatternMatch;
namespace swift {
class ASTContext;
} // end namespace swift
namespace {
class InstSimplifier : public SILInstructionVisitor<InstSimplifier, SILValue>{
public:
SILValue visitSILInstruction(SILInstruction *I) { return SILValue(); }
SILValue visitTupleExtractInst(TupleExtractInst *TEI);
SILValue visitStructExtractInst(StructExtractInst *SEI);
SILValue visitEnumInst(EnumInst *EI);
SILValue visitSelectEnumInst(SelectEnumInst *SEI);
SILValue visitAddressToPointerInst(AddressToPointerInst *ATPI);
SILValue visitRefToRawPointerInst(RefToRawPointerInst *RRPI);
SILValue
visitUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *UCCI);
SILValue visitUncheckedRefCastInst(UncheckedRefCastInst *OPRI);
SILValue visitUncheckedAddrCastInst(UncheckedAddrCastInst *UACI);
SILValue visitStructInst(StructInst *SI);
SILValue visitTupleInst(TupleInst *SI);
SILValue visitBuiltinInst(BuiltinInst *AI);
SILValue visitUpcastInst(UpcastInst *UI);
#define LOADABLE_REF_STORAGE(Name, ...) \
SILValue visitRefTo##Name##Inst(RefTo##Name##Inst *I); \
SILValue visit##Name##ToRefInst(Name##ToRefInst *I);
#include "swift/AST/ReferenceStorage.def"
SILValue visitUncheckedBitwiseCastInst(UncheckedBitwiseCastInst *UBCI);
SILValue
visitUncheckedTrivialBitCastInst(UncheckedTrivialBitCastInst *UTBCI);
SILValue visitEndCOWMutationInst(EndCOWMutationInst *ECM);
SILValue visitBeginAccessInst(BeginAccessInst *BAI);
SILValue visitMetatypeInst(MetatypeInst *MTI);
SILValue visitConvertFunctionInst(ConvertFunctionInst *cfi);
SILValue simplifyOverflowBuiltin(BuiltinInst *BI);
};
} // end anonymous namespace
SILValue InstSimplifier::visitStructInst(StructInst *SI) {
// Ignore empty structs.
if (SI->getNumOperands() < 1)
return SILValue();
// Optimize structs that are generated from struct_extract instructions
// from the same struct.
if (auto *Ex0 = dyn_cast<StructExtractInst>(SI->getOperand(0))) {
// Check that the constructed struct and the extracted struct are of the
// same type.
if (SI->getType() != Ex0->getOperand()->getType())
return SILValue();
// Check that all of the operands are extracts of the correct kind.
for (unsigned i = 0, e = SI->getNumOperands(); i < e; ++i) {
auto *Ex = dyn_cast<StructExtractInst>(SI->getOperand(i));
// Must be an extract.
if (!Ex)
return SILValue();
// Extract from the same struct as the first extract_inst.
if (Ex0->getOperand() != Ex->getOperand())
return SILValue();
// And the order of the field must be identical to the construction order.
if (Ex->getFieldIndex() != i)
return SILValue();
}
return Ex0->getOperand();
}
return SILValue();
}
SILValue InstSimplifier::visitTupleInst(TupleInst *TI) {
// Ignore empty tuples.
if (TI->getNumOperands() < 1)
return SILValue();
// Optimize tuples that are generated from tuple_extract instructions
// from the same tuple.
if (auto *Ex0 = dyn_cast<TupleExtractInst>(TI->getOperand(0))) {
// Check that the constructed tuple and the extracted tuple are of the
// same type.
if (TI->getType() != Ex0->getOperand()->getType())
return SILValue();
// Check that all of the operands are extracts of the correct kind.
for (unsigned i = 0, e = TI->getNumOperands(); i < e; ++i) {
auto *Ex = dyn_cast<TupleExtractInst>(TI->getOperand(i));
// Must be an extract.
if (!Ex)
return SILValue();
// Extract from the same struct as the first extract_inst.
if (Ex0->getOperand() != Ex->getOperand())
return SILValue();
// And the order of the field must be identical to the construction order.
if (Ex->getFieldIndex() != i)
return SILValue();
}
return Ex0->getOperand();
}
return SILValue();
}
SILValue InstSimplifier::visitTupleExtractInst(TupleExtractInst *tei) {
auto op = lookThroughOwnershipInsts(tei->getOperand());
// tuple_extract(tuple(x, y), 0) -> x
if (auto *tupleInst = dyn_cast<TupleInst>(op))
return tupleInst->getElement(tei->getFieldIndex());
// tuple_extract(apply([add|sub|...]overflow(x,y)), 0) -> x
// tuple_extract(apply(checked_trunc(ext(x))), 0) -> x
if (tei->getFieldIndex() == 0)
if (auto *bi = dyn_cast<BuiltinInst>(tei->getOperand()))
return simplifyOverflowBuiltin(bi);
return SILValue();
}
SILValue InstSimplifier::visitStructExtractInst(StructExtractInst *sei) {
auto op = lookThroughOwnershipInsts(sei->getOperand());
// struct_extract(struct(x, y), x) -> x
if (auto *si = dyn_cast<StructInst>(op))
return si->getFieldValue(sei->getField());
return SILValue();
}
// Simplify:
// %1 = unchecked_enum_data %0 : $Optional<C>, #Optional.Some!enumelt
// %2 = enum $Optional<C>, #Optional.Some!enumelt, %1 : $C
// to %0 since we are building the same enum.
static SILValue simplifyEnumFromUncheckedEnumData(EnumInst *EI) {
assert(EI->hasOperand() && "Expected an enum with an operand!");
auto *UEDI = dyn_cast<UncheckedEnumDataInst>(EI->getOperand());
if (!UEDI || UEDI->getElement() != EI->getElement())
return SILValue();
SILValue EnumOp = UEDI->getOperand();
// Same enum elements don't necessarily imply same enum types.
// Enum types may be different if the enum is generic, e.g.
// E<Int>.Case and E<Double>.Case.
SILType OriginalEnum = EnumOp->getType();
SILType NewEnum = EI->getType();
if (OriginalEnum != NewEnum)
return SILValue();
return EnumOp;
}
SILValue InstSimplifier::visitSelectEnumInst(SelectEnumInst *SEI) {
auto *EI = dyn_cast<EnumInst>(SEI->getEnumOperand());
if (EI && EI->getType() == SEI->getEnumOperand()->getType()) {
// Simplify a select_enum on an enum instruction.
// %27 = enum $Optional<Int>, #Optional.Some!enumelt, %20 : $Int
// %28 = integer_literal $Builtin.Int1, -1
// %29 = integer_literal $Builtin.Int1, 0
// %30 = select_enum %27 : $Optional<Int>, case #Optional.None!enumelt: %28,
// case #Optional.Some!enumelt: %29
// We will return %29.
return SEI->getCaseResult(EI->getElement());
}
return SILValue();
}
SILValue InstSimplifier::visitEnumInst(EnumInst *EI) {
if (EI->hasOperand()) {
auto Result = simplifyEnumFromUncheckedEnumData(EI);
if (Result)
return Result;
// switch_enum %e : $EnumTy, case %casex: bbX,...
// bbX(%arg):
// enum $EnumTy, EnumTy::casex, %arg
// ->
// replace enum $EnumTy, EnumTy::casex, %arg by %e
auto Op = EI->getOperand();
auto *EnumArg = dyn_cast<SILArgument>(Op);
if (!EnumArg)
return SILValue();
SILBasicBlock *EnumBlock = EI->getParent();
if (EnumArg->getParent() != EnumBlock)
return SILValue();
auto *Pred = EnumBlock->getSinglePredecessorBlock();
if (!Pred)
return SILValue();
auto *SEI = dyn_cast<SwitchEnumInst>(Pred->getTerminator());
if (!SEI)
return SILValue();
auto Case = SEI->getUniqueCaseForDestination(EI->getParent());
if (Case && Case.getPtrOrNull() == EI->getElement() &&
SEI->getOperand()->getType() == EI->getType()) {
return SEI->getOperand();
}
return SILValue();
}
// Simplify enum insts to the value from a switch_enum when possible, e.g.
// for
// switch_enum %0 : $Bool, case #Bool.true!enumelt: bb1
// bb1:
// %1 = enum $Bool, #Bool.true!enumelt
//
// we'll return %0
auto *BB = EI->getParent();
auto *Pred = BB->getSinglePredecessorBlock();
if (!Pred)
return SILValue();
if (auto *SEI = dyn_cast<SwitchEnumInst>(Pred->getTerminator())) {
if (EI->getType() != SEI->getOperand()->getType())
return SILValue();
if (EI->getElement() == SEI->getUniqueCaseForDestination(BB).getPtrOrNull())
return SEI->getOperand();
}
return SILValue();
}
SILValue InstSimplifier::visitAddressToPointerInst(AddressToPointerInst *ATPI) {
// (address_to_pointer (pointer_to_address x [strict])) -> x
// The 'strict' flag is only relevant for instructions that access memory;
// the moment the address is cast back to a pointer, it no longer matters.
if (auto *PTAI = dyn_cast<PointerToAddressInst>(ATPI->getOperand()))
if (PTAI->getType() == ATPI->getOperand()->getType())
return PTAI->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitRefToRawPointerInst(RefToRawPointerInst *RefToRaw) {
// Perform the following simplification:
//
// (ref_to_raw_pointer (raw_pointer_to_ref x)) -> x
//
// *NOTE* We don't need to check types here.
if (auto *RawToRef = dyn_cast<RawPointerToRefInst>(&*RefToRaw->getOperand()))
return RawToRef->getOperand();
return SILValue();
}
/// If the only use of a cast is a destroy, just destroy the cast operand.
static SILValue simplifyDeadCast(SingleValueInstruction *Cast) {
if (!Cast->hasUsesOfAnyResult())
return SILValue();
for (Operand *op : Cast->getUses()) {
switch (op->getUser()->getKind()) {
case SILInstructionKind::DestroyValueInst:
break;
case SILInstructionKind::StrongReleaseInst:
case SILInstructionKind::StrongRetainInst:
// ref-casts can cast from an Optional<Classtype>. But strong_retain/
// strong_release don't accept an optional.
if (!Cast->getOperand(0)->getType().isReferenceCounted(Cast->getModule()))
return SILValue();
break;
default:
return SILValue();
}
}
return Cast->getOperand(0);
}
SILValue
InstSimplifier::
visitUnconditionalCheckedCastInst(UnconditionalCheckedCastInst *UCCI) {
// (UCCI downcast (upcast x #type1 to #type2) #type2 to #type1) -> x
if (auto *upcast = dyn_cast<UpcastInst>(UCCI->getOperand()))
if (UCCI->getType() == upcast->getOperand()->getType())
return upcast->getOperand();
return simplifyDeadCast(UCCI);
}
SILValue
InstSimplifier::
visitUncheckedRefCastInst(UncheckedRefCastInst *OPRI) {
// (unchecked-ref-cast Y->X (unchecked-ref-cast x X->Y)) -> x
if (auto *ROPI = dyn_cast<UncheckedRefCastInst>(&*OPRI->getOperand()))
if (ROPI->getOperand()->getType() == OPRI->getType())
return ROPI->getOperand();
// (unchecked-ref-cast Y->X (upcast x X->Y)) -> x
if (auto *UI = dyn_cast<UpcastInst>(OPRI->getOperand()))
if (UI->getOperand()->getType() == OPRI->getType())
return UI->getOperand();
// (unchecked-ref-cast Y->X (open_existential_ref x X->Y)) -> x
if (auto *OER = dyn_cast<OpenExistentialRefInst>(OPRI->getOperand()))
if (OER->getOperand()->getType() == OPRI->getType())
return OER->getOperand();
// (unchecked-ref-cast X->X x) -> x
if (OPRI->getOperand()->getType() == OPRI->getType())
return OPRI->getOperand();
// (destroy_value (unchecked_ref_cast x)) -> destroy_value x
return simplifyDeadCast(OPRI);
}
SILValue
InstSimplifier::
visitUncheckedAddrCastInst(UncheckedAddrCastInst *UACI) {
// (unchecked-addr-cast Y->X (unchecked-addr-cast x X->Y)) -> x
if (auto *OtherUACI = dyn_cast<UncheckedAddrCastInst>(&*UACI->getOperand()))
if (OtherUACI->getOperand()->getType() == UACI->getType())
return OtherUACI->getOperand();
// (unchecked-addr-cast X->X x) -> x
if (UACI->getOperand()->getType() == UACI->getType())
return UACI->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitUpcastInst(UpcastInst *UI) {
// (upcast Y->X (unchecked-ref-cast x X->Y)) -> x
if (auto *URCI = dyn_cast<UncheckedRefCastInst>(UI->getOperand()))
if (URCI->getOperand()->getType() == UI->getType())
return URCI->getOperand();
// (destroy_value (upcast x)) -> destroy_value x
return simplifyDeadCast(UI);
}
#define LOADABLE_REF_STORAGE(Name, ...) \
SILValue \
InstSimplifier::visitRefTo##Name##Inst(RefTo##Name##Inst *RUI) { \
if (auto *URI = dyn_cast<Name##ToRefInst>(RUI->getOperand())) \
if (URI->getOperand()->getType() == RUI->getType()) \
return URI->getOperand(); \
return SILValue(); \
} \
SILValue \
InstSimplifier::visit##Name##ToRefInst(Name##ToRefInst *URI) { \
if (auto *RUI = dyn_cast<RefTo##Name##Inst>(URI->getOperand())) \
if (RUI->getOperand()->getType() == URI->getType()) \
return RUI->getOperand(); \
return SILValue(); \
}
#include "swift/AST/ReferenceStorage.def"
SILValue
InstSimplifier::
visitUncheckedTrivialBitCastInst(UncheckedTrivialBitCastInst *UTBCI) {
// (unchecked_trivial_bit_cast X->X x) -> x
if (UTBCI->getOperand()->getType() == UTBCI->getType())
return UTBCI->getOperand();
// (unchecked_trivial_bit_cast Y->X (unchecked_trivial_bit_cast X->Y x)) -> x
if (auto *Op = dyn_cast<UncheckedTrivialBitCastInst>(UTBCI->getOperand()))
if (Op->getOperand()->getType() == UTBCI->getType())
return Op->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitEndCOWMutationInst(EndCOWMutationInst *ECM) {
// (destroy_value (end_cow_mutation x)) -> destroy_value x
return simplifyDeadCast(ECM);
}
SILValue
InstSimplifier::
visitUncheckedBitwiseCastInst(UncheckedBitwiseCastInst *UBCI) {
// (unchecked_bitwise_cast X->X x) -> x
if (UBCI->getOperand()->getType() == UBCI->getType())
return UBCI->getOperand();
// A round-trip cast implies X and Y have the same size:
// (unchecked_bitwise_cast Y->X (unchecked_bitwise_cast X->Y x)) -> x
if (auto *Op = dyn_cast<UncheckedBitwiseCastInst>(UBCI->getOperand()))
if (Op->getOperand()->getType() == UBCI->getType())
return Op->getOperand();
return SILValue();
}
SILValue InstSimplifier::visitBeginAccessInst(BeginAccessInst *BAI) {
// Remove "dead" begin_access.
if (llvm::all_of(BAI->getUses(), [](Operand *operand) -> bool {
return isIncidentalUse(operand->getUser());
})) {
return BAI->getOperand();
}
return SILValue();
}
SILValue InstSimplifier::visitConvertFunctionInst(ConvertFunctionInst *cfi) {
// Eliminate round trip convert_function. Non round-trip is performed in
// SILCombine.
//
// (convert_function Y->X (convert_function x X->Y)) -> x
SILValue convertedValue = lookThroughOwnershipInsts(cfi->getOperand());
if (auto *subCFI = dyn_cast<ConvertFunctionInst>(convertedValue))
if (subCFI->getOperand()->getType() == cfi->getType())
return lookThroughOwnershipInsts(subCFI->getOperand());
return SILValue();
}
SILValue InstSimplifier::visitMetatypeInst(MetatypeInst *MI) {
auto metaType = MI->getType().castTo<MetatypeType>();
auto instanceType = metaType.getInstanceType();
// Tuple, Struct, and Enum MetatypeTypes have a single value.
// If this metatype is already passed as an argument reuse it to enable
// downstream CSE/SILCombine optimizations.
// Note: redundant metatype instructions are already handled by CSE.
if (isa<TupleType>(instanceType)
|| instanceType.getStructOrBoundGenericStruct()
|| instanceType.getEnumOrBoundGenericEnum()) {
for (SILArgument *argument : MI->getFunction()->getArguments()) {
if (argument->getType().getASTType() == metaType &&
argument->getType().isObject())
return argument;
}
}
return SILValue();
}
static SILValue simplifyBuiltin(BuiltinInst *BI) {
switch (BI->getBuiltinInfo().ID) {
case BuiltinValueKind::IntToPtr:
if (auto *OpBI = dyn_cast<BuiltinInst>(BI->getOperand(0))) {
if (OpBI->getBuiltinInfo().ID == BuiltinValueKind::PtrToInt) {
return OpBI->getOperand(0);
}
}
return SILValue();
default:
break;
}
const IntrinsicInfo &Intrinsic = BI->getIntrinsicInfo();
switch (Intrinsic.ID) {
default:
// TODO: Handle some of the llvm intrinsics here.
return SILValue();
case llvm::Intrinsic::not_intrinsic:
break;
case llvm::Intrinsic::expect:
// If we have an expect optimizer hint with a constant value input,
// there is nothing left to expect so propagate the input, i.e.,
//
// apply(expect, constant, _) -> constant.
if (auto *Literal = dyn_cast<IntegerLiteralInst>(BI->getArguments()[0]))
return Literal;
return SILValue();
}
// Otherwise, it should be one of the builtin functions.
OperandValueArrayRef Args = BI->getArguments();
const BuiltinInfo &Builtin = BI->getBuiltinInfo();
switch (Builtin.ID) {
default: break;
case BuiltinValueKind::ZExtOrBitCast:
case BuiltinValueKind::SExtOrBitCast: {
const SILValue &Op = Args[0];
// [s|z]extOrBitCast_N_N(x) -> x
if (Op->getType() == BI->getType())
return Op;
}
break;
case BuiltinValueKind::TruncOrBitCast: {
const SILValue &Op = Args[0];
SILValue Result;
// truncOrBitCast_N_N(x) -> x
if (Op->getType() == BI->getType())
return Op;
// trunc(extOrBitCast(x)) -> x
if (match(Op, m_ExtOrBitCast(m_SILValue(Result)))) {
// Truncated back to the same bits we started with.
if (Result->getType() == BI->getType())
return Result;
}
return SILValue();
}
case BuiltinValueKind::Xor: {
SILValue val1, val2, val3;
// xor (xor (val1, val2), val3) == val1
if (BI->getNumOperands() == 2 &&
(match(BI,
m_BuiltinInst(BuiltinValueKind::Xor,
m_BuiltinInst(BuiltinValueKind::Xor,
m_SILValue(val1), m_SILValue(val2)),
m_SILValue(val3))) ||
match(BI, m_BuiltinInst(BuiltinValueKind::Xor, m_SILValue(val3),
m_BuiltinInst(BuiltinValueKind::Xor,
m_SILValue(val1),
m_SILValue(val2)))))) {
if (val2 == val3)
return val1;
if (val1 == val3)
return val2;
if (val1 == val2)
return val3;
}
}
break;
case BuiltinValueKind::Shl:
case BuiltinValueKind::AShr:
case BuiltinValueKind::LShr:
auto *RHS = dyn_cast<IntegerLiteralInst>(Args[1]);
if (RHS && !RHS->getValue()) {
// Shifting a value by 0 bits is equivalent to the value itself.
auto LHS = Args[0];
return LHS;
}
break;
}
return SILValue();
}
/// Simplify an apply of the builtin canBeClass to either 0 or 1
/// when we can statically determine the result.
SILValue InstSimplifier::visitBuiltinInst(BuiltinInst *BI) {
return simplifyBuiltin(BI);
}
/// Simplify arithmetic intrinsics with overflow and known identity
/// constants such as 0 and 1.
/// If this returns a value other than SILValue() then the instruction was
/// simplified to a value which doesn't overflow. The overflow case is handled
/// in SILCombine.
static SILValue simplifyBinaryWithOverflow(BuiltinInst *BI,
llvm::Intrinsic::ID ID) {
OperandValueArrayRef Args = BI->getArguments();
assert(Args.size() >= 2);
const SILValue &Op1 = Args[0];
const SILValue &Op2 = Args[1];
auto *IntOp1 = dyn_cast<IntegerLiteralInst>(Op1);
auto *IntOp2 = dyn_cast<IntegerLiteralInst>(Op2);
// If both ops are not constants, we cannot do anything.
// FIXME: Add cases where we can do something, eg, (x - x) -> 0
if (!IntOp1 && !IntOp2)
return SILValue();
// Calculate the result.
switch (ID) {
default: llvm_unreachable("Invalid case");
case llvm::Intrinsic::sadd_with_overflow:
case llvm::Intrinsic::uadd_with_overflow:
// 0 + X -> X
if (match(Op1, m_Zero()))
return Op2;
// X + 0 -> X
if (match(Op2, m_Zero()))
return Op1;
return SILValue();
case llvm::Intrinsic::ssub_with_overflow:
case llvm::Intrinsic::usub_with_overflow:
// X - 0 -> X
if (match(Op2, m_Zero()))
return Op1;
return SILValue();
case llvm::Intrinsic::smul_with_overflow:
case llvm::Intrinsic::umul_with_overflow:
// 0 * X -> 0
if (match(Op1, m_Zero()))
return Op1;
// X * 0 -> 0
if (match(Op2, m_Zero()))
return Op2;
// 1 * X -> X
if (match(Op1, m_One()))
return Op2;
// X * 1 -> X
if (match(Op2, m_One()))
return Op1;
return SILValue();
}
return SILValue();
}
/// Simplify operations that may overflow. All such operations return a tuple.
/// This function simplifies such operations, but returns only the first
/// element of a tuple. It looks strange at the first glance, but this
/// is OK, because this function is invoked only internally when processing
/// tuple_extract instructions. Therefore the result of this function
/// is used for simplifications like tuple_extract(x, 0) -> simplified(x)
SILValue InstSimplifier::simplifyOverflowBuiltin(BuiltinInst *BI) {
const IntrinsicInfo &Intrinsic = BI->getIntrinsicInfo();
// If it's an llvm intrinsic, fold the intrinsic.
switch (Intrinsic.ID) {
default:
return SILValue();
case llvm::Intrinsic::not_intrinsic:
break;
case llvm::Intrinsic::sadd_with_overflow:
case llvm::Intrinsic::uadd_with_overflow:
case llvm::Intrinsic::ssub_with_overflow:
case llvm::Intrinsic::usub_with_overflow:
case llvm::Intrinsic::smul_with_overflow:
case llvm::Intrinsic::umul_with_overflow:
return simplifyBinaryWithOverflow(BI, Intrinsic.ID);
}
// Otherwise, it should be one of the builtin functions.
const BuiltinInfo &Builtin = BI->getBuiltinInfo();
switch (Builtin.ID) {
default: break;
case BuiltinValueKind::UToSCheckedTrunc:
case BuiltinValueKind::UToUCheckedTrunc:
case BuiltinValueKind::SToUCheckedTrunc:
case BuiltinValueKind::SToSCheckedTrunc: {
SILValue Result;
// CheckedTrunc(Ext(x)) -> x
if (match(BI, m_CheckedTrunc(m_Ext(m_SILValue(Result)))))
if (Result->getType() == BI->getType().getTupleElementType(0))
if (auto signBit = computeSignBit(Result))
if (!signBit.value())
return Result;
}
break;
// Check and simplify binary arithmetic with overflow.
#define BUILTIN(id, name, Attrs)
#define BUILTIN_BINARY_OPERATION_WITH_OVERFLOW(id, name, _, attrs, overload) \
case BuiltinValueKind::id:
#include "swift/AST/Builtins.def"
return simplifyBinaryWithOverflow(BI,
getLLVMIntrinsicIDForBuiltinWithOverflow(Builtin.ID));
}
return SILValue();
}
//===----------------------------------------------------------------------===//
// Top Level Entrypoints
//===----------------------------------------------------------------------===//
/// Replace an instruction with a simplified result, including any debug uses,
/// and erase the instruction. If the instruction initiates a scope, do not
/// replace the end of its scope; it will be deleted along with its parent.
///
/// This is a simple transform based on the above analysis.
///
/// We assume that when ownership is enabled that the IR is in valid OSSA form
/// before this is called. It will perform fixups as necessary to preserve OSSA.
///
/// Return an iterator to the next (nondeleted) instruction.
SILBasicBlock::iterator
swift::replaceAllSimplifiedUsesAndErase(SILInstruction *i, SILValue result,
InstModCallbacks &callbacks,
DeadEndBlocks *deadEndBlocks) {
auto *svi = cast<SingleValueInstruction>(i);
assert(svi != result && "Cannot RAUW a value with itself");
if (svi->getFunction()->hasOwnership()) {
OwnershipFixupContext ctx{callbacks, *deadEndBlocks};
OwnershipRAUWHelper helper(ctx, svi, result);
return helper.perform();
}
return replaceAllUsesAndErase(svi, result, callbacks);
}
/// Simplify invocations of builtin operations that may overflow.
/// All such operations return a tuple (result, overflow_flag).
/// This function try to simplify such operations, but returns only a
/// simplified first element of a tuple. The overflow flag is not returned
/// explicitly, because this simplification is only possible if there is
/// no overflow. Therefore the overflow flag is known to have a value of 0 if
/// simplification was successful.
/// In case when a simplification is not possible, a null SILValue is returned.
SILValue swift::simplifyOverflowBuiltinInstruction(BuiltinInst *BI) {
return InstSimplifier().simplifyOverflowBuiltin(BI);
}
/// Try to simplify the specified instruction, performing local
/// analysis of the operands of the instruction, without looking at its uses
/// (e.g. constant folding). If a simpler result can be found, it is
/// returned, otherwise a null SILValue is returned.
///
/// NOTE: We assume that the insertion point associated with the SILValue must
/// dominate \p i.
static SILValue simplifyInstruction(SILInstruction *i) {
return InstSimplifier().visit(i);
}
SILBasicBlock::iterator swift::simplifyAndReplaceAllSimplifiedUsesAndErase(
SILInstruction *i, InstModCallbacks &callbacks,
DeadEndBlocks *deadEndBlocks) {
auto next = std::next(i->getIterator());
auto *svi = dyn_cast<SingleValueInstruction>(i);
if (!svi)
return next;
SILValue result = simplifyInstruction(i);
// If we fail to simplify or the simplified value returned is our passed in
// value, just return std::next since we can't simplify.
if (!result || svi == result)
return next;
if (!svi->getFunction()->hasOwnership())
return replaceAllUsesAndErase(svi, result, callbacks);
// If we weren't passed a dead end blocks, we can't optimize without ownership
// enabled.
if (!deadEndBlocks)
return next;
OwnershipFixupContext ctx{callbacks, *deadEndBlocks};
OwnershipRAUWHelper helper(ctx, svi, result);
// If our RAUW helper is invalid, we do not support RAUWing this case, so
// just return next.
if (!helper.isValid())
return next;
return helper.perform();
}