-
Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathModuleContentsWriter.cpp
1002 lines (875 loc) · 34.8 KB
/
ModuleContentsWriter.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- ModuleContentsWriter.cpp - Walk module decls to print ObjC/C++ ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "ModuleContentsWriter.h"
#include "ClangSyntaxPrinter.h"
#include "DeclAndTypePrinter.h"
#include "OutputLanguageMode.h"
#include "PrimitiveTypeMapping.h"
#include "PrintClangValueType.h"
#include "PrintSwiftToClangCoreScaffold.h"
#include "SwiftToClangInteropContext.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/Module.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/SwiftNameTranslation.h"
#include "swift/AST/TypeDeclFinder.h"
#include "swift/Basic/SourceManager.h"
#include "swift/ClangImporter/ClangImporter.h"
#include "swift/Strings.h"
#include "clang/AST/Decl.h"
#include "clang/Basic/Module.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
using namespace swift::objc_translation;
using DelayedMemberSet = DeclAndTypePrinter::DelayedMemberSet;
/// Returns true if \p decl represents an <os/object.h> type.
static bool isOSObjectType(const clang::Decl *decl) {
auto *named = dyn_cast_or_null<clang::NamedDecl>(decl);
if (!named)
return false;
return !DeclAndTypePrinter::maybeGetOSObjectBaseName(named).empty();
}
namespace {
class ReferencedTypeFinder : public TypeDeclFinder {
friend TypeDeclFinder;
llvm::function_ref<void(ReferencedTypeFinder &, const TypeDecl *)> Callback;
bool NeedsDefinition = false;
explicit ReferencedTypeFinder(decltype(Callback) callback)
: Callback(callback) {}
Action visitNominalType(NominalType *nominal) override {
Callback(*this, nominal->getDecl());
return Action::SkipNode;
}
Action visitTypeAliasType(TypeAliasType *aliasTy) override {
if (aliasTy->getDecl()->hasClangNode() &&
!aliasTy->getDecl()->isCompatibilityAlias()) {
Callback(*this, aliasTy->getDecl());
} else {
Type(aliasTy->getSinglyDesugaredType()).walk(*this);
}
return Action::SkipNode;
}
/// Returns true if \p paramTy has any constraints other than being
/// class-bound ("conforms to" AnyObject).
static bool isConstrained(GenericSignature sig,
GenericTypeParamType *paramTy) {
auto existentialTy = sig->getExistentialType(paramTy);
return !(existentialTy->isAny() || existentialTy->isAnyObject());
}
Action visitBoundGenericType(BoundGenericType *boundGeneric) override {
auto *decl = boundGeneric->getDecl();
NeedsDefinition = true;
Callback(*this, decl);
NeedsDefinition = false;
bool isObjCGeneric = decl->hasClangNode();
auto sig = decl->getGenericSignature();
for_each(boundGeneric->getGenericArgs(),
sig.getInnermostGenericParams(),
[&](Type argTy, GenericTypeParamType *paramTy) {
// FIXME: I think there's a bug here with recursive generic types.
if (isObjCGeneric && isConstrained(sig, paramTy))
NeedsDefinition = true;
argTy.walk(*this);
NeedsDefinition = false;
});
return Action::SkipNode;
}
public:
bool needsDefinition() const {
return NeedsDefinition;
}
static void walk(Type ty, decltype(Callback) callback) {
ty.walk(ReferencedTypeFinder(callback));
}
};
class ModuleWriter {
enum class EmissionState {
NotYetDefined = 0,
DefinitionRequested,
Defined
};
raw_ostream &os;
SmallPtrSetImpl<ImportModuleTy> &imports;
ModuleDecl &M;
llvm::DenseMap<const TypeDecl *, std::pair<EmissionState, bool>> seenTypes;
llvm::DenseSet<const clang::Type *> seenClangTypes;
std::vector<const Decl *> declsToWrite;
DelayedMemberSet objcDelayedMembers;
CxxDeclEmissionScope topLevelEmissionScope;
PrimitiveTypeMapping typeMapping;
std::string outOfLineDefinitions;
llvm::raw_string_ostream outOfLineDefinitionsOS;
DeclAndTypePrinter printer;
OutputLanguageMode outputLangMode;
bool dependsOnStdlib = false;
public:
ModuleWriter(raw_ostream &os, raw_ostream &prologueOS,
llvm::SmallPtrSetImpl<ImportModuleTy> &imports, ModuleDecl &mod,
SwiftToClangInteropContext &interopContext, AccessLevel access,
bool requiresExposedAttribute, llvm::StringSet<> &exposedModules,
OutputLanguageMode outputLang)
: os(os), imports(imports), M(mod),
outOfLineDefinitionsOS(outOfLineDefinitions),
printer(M, os, prologueOS, outOfLineDefinitionsOS, objcDelayedMembers,
topLevelEmissionScope, typeMapping, interopContext, access,
requiresExposedAttribute, exposedModules, outputLang),
outputLangMode(outputLang) {}
PrimitiveTypeMapping &getTypeMapping() { return typeMapping; }
/// Returns true if a Stdlib dependency was seen during the emission of this module.
bool isStdlibRequired() const {
return dependsOnStdlib;
}
/// Returns true if we added the decl's module to the import set, false if
/// the decl is a local decl.
///
/// The standard library is special-cased: we assume that any types from it
/// will be handled explicitly rather than needing an explicit @import.
bool addImport(const Decl *D) {
ModuleDecl *otherModule = D->getModuleContext();
if (otherModule == &M)
return false;
if (otherModule->isStdlibModule()) {
dependsOnStdlib = true;
return true;
} else if (otherModule->isBuiltinModule())
return true;
// Don't need a module for SIMD types in C.
if (otherModule->getName() == M.getASTContext().Id_simd)
return true;
// If there's a Clang node, see if it comes from an explicit submodule.
// Import that instead, looking through any implicit submodules.
if (auto clangNode = D->getClangNode()) {
auto importer =
static_cast<ClangImporter *>(M.getASTContext().getClangModuleLoader());
if (const auto *clangModule = importer->getClangOwningModule(clangNode)) {
while (clangModule && !clangModule->IsExplicit)
clangModule = clangModule->Parent;
if (clangModule) {
imports.insert(clangModule);
return true;
}
}
}
if (outputLangMode == OutputLanguageMode::Cxx) {
// Do not expose compiler private '_ObjC' module.
if (otherModule->getName().str() == CLANG_HEADER_MODULE_NAME)
return true;
// Add C++ module imports in C++ mode explicitly, to ensure that their
// import is always emitted in the header.
if (D->hasClangNode()) {
if (auto *clangMod = otherModule->findUnderlyingClangModule())
imports.insert(clangMod);
}
}
imports.insert(otherModule);
return true;
}
bool hasBeenRequested(const TypeDecl *D) const {
return seenTypes.lookup(D).first >= EmissionState::DefinitionRequested;
}
bool tryRequire(const TypeDecl *D) {
if (addImport(D)) {
seenTypes[D] = { EmissionState::Defined, true };
return true;
}
auto &state = seenTypes[D];
return state.first == EmissionState::Defined;
}
bool require(const TypeDecl *D) {
if (addImport(D)) {
seenTypes[D] = { EmissionState::Defined, true };
return true;
}
auto &state = seenTypes[D];
switch (state.first) {
case EmissionState::NotYetDefined:
case EmissionState::DefinitionRequested:
state.first = EmissionState::DefinitionRequested;
declsToWrite.push_back(D);
return false;
case EmissionState::Defined:
return true;
}
llvm_unreachable("Unhandled EmissionState in switch.");
}
void forwardDeclare(const NominalTypeDecl *NTD,
llvm::function_ref<void(void)> Printer) {
if (NTD->getModuleContext()->isStdlibModule()) {
if (outputLangMode != OutputLanguageMode::Cxx ||
!printer.shouldInclude(NTD))
return;
}
auto &state = seenTypes[NTD];
if (state.second)
return;
Printer();
state.second = true;
}
bool forwardDeclare(const ClassDecl *CD) {
if (!CD->isObjC() ||
CD->getForeignClassKind() == ClassDecl::ForeignKind::CFType ||
isOSObjectType(CD->getClangDecl())) {
return false;
}
forwardDeclare(CD, [&]{ os << "@class " << getNameForObjC(CD) << ";\n"; });
return true;
}
void forwardDeclare(const ProtocolDecl *PD) {
assert(PD->isObjC() ||
*PD->getKnownProtocolKind() == KnownProtocolKind::Error);
forwardDeclare(PD, [&]{
os << "@protocol " << getNameForObjC(PD) << ";\n";
});
}
void forwardDeclare(const EnumDecl *ED) {
assert(ED->isObjC() || ED->hasClangNode());
forwardDeclare(ED, [&]{
os << "enum " << getNameForObjC(ED) << " : ";
printer.print(ED->getRawType());
os << ";\n";
});
}
void emitReferencedClangTypeMetadata(const TypeDecl *typeDecl) {
if (!isa<clang::TypeDecl>(typeDecl->getClangDecl()))
return;
// Get the underlying clang type from a type alias decl or record decl.
auto clangType =
clang::QualType(
cast<clang::TypeDecl>(typeDecl->getClangDecl())->getTypeForDecl(),
0)
.getCanonicalType();
if (!isa<clang::RecordType>(clangType.getTypePtr()))
return;
auto it = seenClangTypes.insert(clangType.getTypePtr());
if (it.second)
ClangValueTypePrinter::printClangTypeSwiftGenericTraits(os, typeDecl, &M,
printer);
}
void forwardDeclareCxxValueTypeIfNeeded(const NominalTypeDecl *NTD) {
forwardDeclare(NTD, [&]() {
ClangValueTypePrinter::forwardDeclType(os, NTD, printer);
});
}
void forwardDeclareType(const TypeDecl *TD) {
if (outputLangMode == OutputLanguageMode::Cxx) {
if (isa<StructDecl>(TD) || isa<EnumDecl>(TD)) {
auto *NTD = cast<NominalTypeDecl>(TD);
if (!addImport(NTD))
forwardDeclareCxxValueTypeIfNeeded(NTD);
else if (isa<StructDecl>(TD) && NTD->hasClangNode())
emitReferencedClangTypeMetadata(NTD);
} else if (auto TAD = dyn_cast<TypeAliasDecl>(TD)) {
if (TAD->hasClangNode())
emitReferencedClangTypeMetadata(TAD);
}
return;
}
if (auto CD = dyn_cast<ClassDecl>(TD)) {
if (!forwardDeclare(CD)) {
(void)addImport(CD);
}
} else if (auto PD = dyn_cast<ProtocolDecl>(TD)) {
if (!PD->isMarkerProtocol())
forwardDeclare(PD);
} else if (auto TAD = dyn_cast<TypeAliasDecl>(TD)) {
bool imported = false;
if (TAD->hasClangNode())
imported = addImport(TD);
assert((imported || !TAD->isGeneric()) &&
"referencing non-imported generic typealias?");
} else if (addImport(TD)) {
return;
} else if (auto ED = dyn_cast<EnumDecl>(TD)) {
forwardDeclare(ED);
} else if (isa<GenericTypeParamDecl>(TD)) {
llvm_unreachable("should not see generic parameters here");
} else if (isa<AssociatedTypeDecl>(TD)) {
llvm_unreachable("should not see associated types here");
} else if (isa<StructDecl>(TD) &&
TD->getModuleContext()->isStdlibModule()) {
// stdlib has some @_cdecl functions with structs.
return;
} else {
assert(false && "unknown local type decl");
}
}
bool forwardDeclareMemberTypes(DeclRange members, const Decl *container) {
PrettyStackTraceDecl
entry("printing forward declarations needed by members of", container);
switch (container->getKind()) {
case DeclKind::Class:
case DeclKind::Protocol:
case DeclKind::Extension:
break;
case DeclKind::Struct:
case DeclKind::Enum:
if (outputLangMode == OutputLanguageMode::Cxx)
break;
LLVM_FALLTHROUGH;
default:
llvm_unreachable("unexpected container kind");
}
bool hadAnyDelayedMembers = false;
SmallVector<ValueDecl *, 4> nestedTypes;
for (auto member : members) {
PrettyStackTraceDecl loopEntry("printing for member", member);
auto VD = dyn_cast<ValueDecl>(member);
if (!VD || !printer.shouldInclude(VD))
continue;
// Catch nested types and emit their definitions /after/ this class.
if (isa<TypeDecl>(VD)) {
// Don't emit nested types that are just implicitly @objc.
// You should have to opt into this, since they are even less
// namespaced than usual.
if (std::any_of(VD->getAttrs().begin(), VD->getAttrs().end(),
[](const DeclAttribute *attr) {
return isa<ObjCAttr>(attr) && !attr->isImplicit();
})) {
nestedTypes.push_back(VD);
}
continue;
}
bool needsToBeIndividuallyDelayed = false;
ReferencedTypeFinder::walk(VD->getInterfaceType(),
[&](ReferencedTypeFinder &finder,
const TypeDecl *TD) {
PrettyStackTraceDecl
entry("walking its interface type, currently at", TD);
if (TD == container)
return;
// Bridge, if necessary.
if (outputLangMode != OutputLanguageMode::Cxx)
TD = printer.getObjCTypeDecl(TD);
if (finder.needsDefinition() && isa<NominalTypeDecl>(TD)) {
// We can delay individual members of classes; do so if necessary.
if (isa<ClassDecl>(container)) {
if (!tryRequire(TD)) {
needsToBeIndividuallyDelayed = true;
hadAnyDelayedMembers = true;
}
return;
}
// Extensions can always be delayed wholesale.
if (isa<ExtensionDecl>(container)) {
if (!require(TD))
hadAnyDelayedMembers = true;
return;
}
// Protocols should be delayed wholesale unless we might have a cycle.
if (auto *proto = dyn_cast<ProtocolDecl>(container)) {
if (!hasBeenRequested(proto) || !hasBeenRequested(TD)) {
if (!require(TD))
hadAnyDelayedMembers = true;
return;
}
}
// Otherwise, we have a cyclic dependency. Give up and continue with
// regular forward-declarations even though this will lead to an
// error; there's nothing we can do here.
// FIXME: It would be nice to diagnose this.
}
forwardDeclareType(TD);
});
if (needsToBeIndividuallyDelayed) {
assert(isa<ClassDecl>(container));
objcDelayedMembers.insert(VD);
}
}
declsToWrite.insert(declsToWrite.end()-1, nestedTypes.rbegin(),
nestedTypes.rend());
// Separate forward declarations from the class itself.
return !hadAnyDelayedMembers;
}
bool writeClass(const ClassDecl *CD) {
if (addImport(CD))
return true;
if (seenTypes[CD].first == EmissionState::Defined)
return true;
bool allRequirementsSatisfied = true;
const ClassDecl *superclass = nullptr;
if ((superclass = CD->getSuperclassDecl())) {
allRequirementsSatisfied &= require(superclass);
}
if (outputLangMode != OutputLanguageMode::Cxx) {
for (auto proto :
CD->getLocalProtocols(ConformanceLookupKind::OnlyExplicit))
if (printer.shouldInclude(proto))
allRequirementsSatisfied &= require(proto);
}
if (!allRequirementsSatisfied)
return false;
(void)forwardDeclareMemberTypes(CD->getMembers(), CD);
seenTypes[CD] = { EmissionState::Defined, true };
os << '\n';
printer.print(CD);
return true;
}
bool writeFunc(const FuncDecl *FD) {
if (addImport(FD))
return true;
PrettyStackTraceDecl entry(
"printing forward declarations needed by function", FD);
ReferencedTypeFinder::walk(
FD->getInterfaceType(),
[&](ReferencedTypeFinder &finder, const TypeDecl *TD) {
PrettyStackTraceDecl entry("walking its interface type, currently at",
TD);
forwardDeclareType(TD);
});
os << '\n';
printer.print(FD);
return true;
}
bool writeStruct(const StructDecl *SD) {
if (addImport(SD))
return true;
if (outputLangMode == OutputLanguageMode::Cxx) {
(void)forwardDeclareMemberTypes(SD->getMembers(), SD);
for (const auto *ed :
printer.getInteropContext().getExtensionsForNominalType(SD)) {
(void)forwardDeclareMemberTypes(ed->getMembers(), SD);
}
forwardDeclareCxxValueTypeIfNeeded(SD);
}
printer.print(SD);
return true;
}
bool writeProtocol(const ProtocolDecl *PD) {
if (addImport(PD))
return true;
if (seenTypes[PD].first == EmissionState::Defined)
return true;
bool allRequirementsSatisfied = true;
for (auto proto : PD->getInheritedProtocols()) {
if (printer.shouldInclude(proto)) {
assert(proto->isObjC());
allRequirementsSatisfied &= require(proto);
}
}
if (!allRequirementsSatisfied)
return false;
if (!forwardDeclareMemberTypes(PD->getMembers(), PD))
return false;
seenTypes[PD] = { EmissionState::Defined, true };
os << '\n';
printer.print(PD);
return true;
}
bool writeExtension(const ExtensionDecl *ED) {
if (printer.isEmptyExtensionDecl(ED))
return true;
bool allRequirementsSatisfied = true;
const ClassDecl *CD = ED->getSelfClassDecl();
allRequirementsSatisfied &= require(CD);
for (auto proto : ED->getLocalProtocols())
if (printer.shouldInclude(proto))
allRequirementsSatisfied &= require(proto);
if (!allRequirementsSatisfied)
return false;
// This isn't rolled up into the previous set of requirements because
// it /also/ prints forward declarations, and the header is a little
// prettier if those are as close as possible to the necessary extension.
if (!forwardDeclareMemberTypes(ED->getMembers(), ED))
return false;
os << '\n';
printer.print(ED);
return true;
}
bool writeEnum(const EnumDecl *ED) {
if (addImport(ED))
return true;
if (outputLangMode == OutputLanguageMode::Cxx) {
forwardDeclareMemberTypes(ED->getMembers(), ED);
forwardDeclareCxxValueTypeIfNeeded(ED);
}
if (seenTypes[ED].first == EmissionState::Defined)
return true;
seenTypes[ED] = {EmissionState::Defined, true};
printer.print(ED);
ASTContext &ctx = M.getASTContext();
SmallVector<ProtocolConformance *, 1> conformances;
auto errorTypeProto = ctx.getProtocol(KnownProtocolKind::Error);
if (outputLangMode != OutputLanguageMode::Cxx
&& ED->lookupConformance(errorTypeProto, conformances)) {
bool hasDomainCase = std::any_of(ED->getAllElements().begin(),
ED->getAllElements().end(),
[](const EnumElementDecl *elem) {
return elem->getBaseIdentifier().str() == "Domain";
});
if (!hasDomainCase) {
os << "static NSString * _Nonnull const " << getNameForObjC(ED)
<< "Domain = @\"" << getErrorDomainStringForObjC(ED) << "\";\n";
}
}
return true;
}
void write() {
SmallVector<Decl *, 64> decls;
M.getTopLevelDecls(decls);
llvm::DenseSet<const ValueDecl *> removedValueDecls;
auto newEnd =
std::remove_if(decls.begin(), decls.end(),
[this, &removedValueDecls](const Decl *D) -> bool {
if (auto VD = dyn_cast<ValueDecl>(D)) {
auto shouldRemove = !printer.shouldInclude(VD);
if (shouldRemove)
removedValueDecls.insert(VD);
return shouldRemove;
}
if (auto ED = dyn_cast<ExtensionDecl>(D)) {
if (outputLangMode == OutputLanguageMode::Cxx)
return false;
auto baseClass = ED->getSelfClassDecl();
return !baseClass ||
!printer.shouldInclude(baseClass) ||
baseClass->isForeign();
}
return true;
});
decls.erase(newEnd, decls.end());
if (M.isStdlibModule()) {
llvm::SmallVector<Decl *, 2> nestedAdds;
for (const auto *d : decls) {
auto *ext = dyn_cast<ExtensionDecl>(d);
if (!ext ||
ext->getExtendedNominal() != M.getASTContext().getStringDecl())
continue;
for (auto *m : ext->getMembers()) {
if (auto *sd = dyn_cast<StructDecl>(m)) {
if (sd->getBaseIdentifier().str() == "UTF8View" ||
sd->getBaseIdentifier().str() == "Index") {
nestedAdds.push_back(sd);
}
}
}
}
decls.append(nestedAdds);
}
// REVERSE sort the decls, since we are going to copy them onto a stack.
llvm::array_pod_sort(decls.begin(), decls.end(),
[](Decl * const *lhs, Decl * const *rhs) -> int {
enum : int {
Ascending = -1,
Equivalent = 0,
Descending = 1,
};
assert(*lhs != *rhs && "duplicate top-level decl");
auto getSortName = [](const Decl *D) -> StringRef {
if (auto VD = dyn_cast<ValueDecl>(D))
return VD->getBaseName().userFacingName();
if (auto ED = dyn_cast<ExtensionDecl>(D)) {
auto baseClass = ED->getSelfClassDecl();
if (!baseClass)
return ED->getExtendedNominal()->getName().str();
return baseClass->getName().str();
}
llvm_unreachable("unknown top-level ObjC decl");
};
// Sort by names.
int result = getSortName(*rhs).compare(getSortName(*lhs));
if (result != 0)
return result;
// Two overloaded functions can have the same name when emitting C++.
if (isa<AbstractFunctionDecl>(*rhs) && isa<AbstractFunctionDecl>(*lhs)) {
// Sort top level functions with the same C++ name by their location to
// have stable sorting that depends on users source but not on the
// compiler invocation.
if ((*rhs)->getLoc().isValid() && (*lhs)->getLoc().isValid()) {
std::string rhsLoc, lhsLoc;
auto getLocText = [](const AbstractFunctionDecl *afd) {
std::string res;
llvm::raw_string_ostream os(res);
afd->getLoc().print(os, afd->getASTContext().SourceMgr);
return std::move(os.str());
};
if (getLocText(cast<AbstractFunctionDecl>(*lhs)) <
getLocText(cast<AbstractFunctionDecl>(*rhs)))
return Descending;
return Ascending;
}
return result;
}
// A function and a global variable can have the same name in C++,
// even when the variable might not actually be emitted by the emitter.
// In that case, order the function before the variable.
if (isa<AbstractFunctionDecl>(*rhs) && isa<VarDecl>(*lhs))
return 1;
if (isa<AbstractFunctionDecl>(*lhs) && isa<VarDecl>(*rhs))
return -1;
// Prefer value decls to extensions.
assert(!(isa<ValueDecl>(*lhs) && isa<ValueDecl>(*rhs)));
if (isa<ValueDecl>(*lhs) && !isa<ValueDecl>(*rhs))
return Descending;
if (!isa<ValueDecl>(*lhs) && isa<ValueDecl>(*rhs))
return Ascending;
// Break ties in extensions by putting smaller extensions last (in reverse
// order).
// FIXME: This will end up taking linear time.
auto lhsMembers = cast<ExtensionDecl>(*lhs)->getMembers();
auto rhsMembers = cast<ExtensionDecl>(*rhs)->getMembers();
unsigned numLHSMembers = std::distance(lhsMembers.begin(),
lhsMembers.end());
unsigned numRHSMembers = std::distance(rhsMembers.begin(),
rhsMembers.end());
if (numLHSMembers != numRHSMembers)
return numLHSMembers < numRHSMembers ? Descending : Ascending;
// Or the extension with fewer protocols.
auto lhsProtos = cast<ExtensionDecl>(*lhs)->getLocalProtocols();
auto rhsProtos = cast<ExtensionDecl>(*rhs)->getLocalProtocols();
if (lhsProtos.size() != rhsProtos.size())
return lhsProtos.size() < rhsProtos.size() ? Descending : Ascending;
// If that fails, arbitrarily pick the extension whose protocols are
// alphabetically first.
auto mismatch =
std::mismatch(lhsProtos.begin(), lhsProtos.end(), rhsProtos.begin(),
[] (const ProtocolDecl *nextLHSProto,
const ProtocolDecl *nextRHSProto) {
return nextLHSProto->getName() != nextRHSProto->getName();
});
if (mismatch.first == lhsProtos.end())
return Equivalent;
StringRef lhsProtoName = (*mismatch.first)->getName().str();
return lhsProtoName.compare((*mismatch.second)->getName().str());
});
assert(declsToWrite.empty());
declsToWrite.assign(decls.begin(), decls.end());
if (outputLangMode == OutputLanguageMode::Cxx) {
for (const Decl *D : declsToWrite) {
if (auto *ED = dyn_cast<ExtensionDecl>(D)) {
const auto *type = ED->getExtendedNominal();
if (isa<StructDecl>(type) || isa<EnumDecl>(type))
printer.getInteropContext().recordExtensions(type, ED);
}
}
}
while (!declsToWrite.empty()) {
const Decl *D = declsToWrite.back();
bool success = true;
if (auto ED = dyn_cast<EnumDecl>(D)) {
success = writeEnum(ED);
} else if (auto CD = dyn_cast<ClassDecl>(D)) {
success = writeClass(CD);
} else if (outputLangMode == OutputLanguageMode::Cxx) {
if (auto FD = dyn_cast<FuncDecl>(D))
success = writeFunc(FD);
else if (auto SD = dyn_cast<StructDecl>(D))
success = writeStruct(SD);
else if (auto *vd = dyn_cast<ValueDecl>(D))
topLevelEmissionScope.additionalUnrepresentableDeclarations.push_back(
vd);
} else if (isa<ValueDecl>(D)) {
if (auto PD = dyn_cast<ProtocolDecl>(D))
success = writeProtocol(PD);
else if (auto ED = dyn_cast<FuncDecl>(D))
success = writeFunc(ED);
else
llvm_unreachable("unknown top-level ObjC value decl");
} else if (auto ED = dyn_cast<ExtensionDecl>(D)) {
success = writeExtension(ED);
} else {
llvm_unreachable("unknown top-level ObjC decl");
}
if (success) {
assert(declsToWrite.back() == D);
os << "\n";
declsToWrite.pop_back();
}
}
if (outputLangMode == OutputLanguageMode::ObjC)
if (!objcDelayedMembers.empty()) {
auto groupBegin = objcDelayedMembers.begin();
for (auto i = groupBegin, e = objcDelayedMembers.end(); i != e; ++i) {
if ((*i)->getDeclContext() != (*groupBegin)->getDeclContext()) {
printer.printAdHocCategory(make_range(groupBegin, i));
groupBegin = i;
}
}
printer.printAdHocCategory(
make_range(groupBegin, objcDelayedMembers.end()));
}
// Print any out of line definitions.
os << outOfLineDefinitionsOS.str();
// In C++ section, emit unavailable stubs for top value level
// declarations that couldn't be represented in C++.
if (outputLangMode != OutputLanguageMode::Cxx)
return;
auto &emissionScope = topLevelEmissionScope;
auto removedVDList = std::vector<const ValueDecl *>(
removedValueDecls.begin(), removedValueDecls.end());
for (const auto *removedVD :
emissionScope.additionalUnrepresentableDeclarations)
removedVDList.push_back(removedVD);
// Do not report internal/private decls as unavailable.
// @objc declarations are emitted in the Objective-C section, so do not
// report them as unavailable. Also skip underscored decls from the standard
// library. Also skip structs from the standard library, they can cause
// ambiguities because of the arithmetic types that conflict with types we
// already have in `swift::` namespace. Also skip `Error` protocol from
// stdlib, we have experimental support for it.
removedVDList.erase(
llvm::remove_if(
removedVDList,
[&](const ValueDecl *vd) {
return !printer.isVisible(vd) || vd->isObjC() ||
(vd->isStdlibDecl() && !vd->getName().isSpecial() &&
vd->getBaseIdentifier().hasUnderscoredNaming()) ||
(vd->isStdlibDecl() && isa<StructDecl>(vd)) ||
(vd->isStdlibDecl() &&
vd->getASTContext().getErrorDecl() == vd);
}),
removedVDList.end());
// Sort the unavaiable decls by their name and kind.
llvm::sort(removedVDList, [](const ValueDecl *lhs, const ValueDecl *rhs) {
auto getSortKey = [](const ValueDecl *vd) {
std::string sortKey;
llvm::raw_string_ostream os(sortKey);
vd->getName().print(os);
os << ' ' << (unsigned)vd->getDescriptiveKind();
return std::move(os.str());
};
return getSortKey(lhs) < getSortKey(rhs);
});
for (const auto *vd : removedVDList) {
assert(!vd->isObjC());
os << "\n";
auto emitStubComment = [&]() {
// Emit a generic comment for an handled declaration.
os << "// Unavailable in C++: Swift "
<< vd->getDescriptiveKindName(vd->getDescriptiveKind()) << " '";
vd->getName().print(os);
os << "'.\n";
};
// Do not emit a C++ declaration with a specific C++ name more than once.
auto cxxName = cxx_translation::getNameForCxx(vd);
if (emissionScope.emittedDeclarationNames.contains(cxxName)) {
emitStubComment();
continue;
}
emissionScope.emittedDeclarationNames.insert(cxxName);
// Emit an unavailable stub for a Swift type.
if (auto *nmtd = dyn_cast<NominalTypeDecl>(vd)) {
auto representation = cxx_translation::getDeclRepresentation(vd);
os << "class ";
ClangSyntaxPrinter(os).printBaseName(vd);
os << " { } SWIFT_UNAVAILABLE_MSG(\"";
auto diag =
representation.isUnsupported() && representation.error.has_value()
? cxx_translation::diagnoseRepresenationError(
*representation.error, const_cast<ValueDecl *>(vd))
: Diagnostic(
vd->isStdlibDecl() ? diag::unexposed_other_decl_in_cxx
: diag::unsupported_other_decl_in_cxx,
const_cast<ValueDecl *>(vd));
// Emit a specific unavailable message when we know why a decl can't be
// exposed, or a generic message otherwise.
auto diagString = M.getASTContext().Diags.diagnosticStringFor(
diag.getID(), /*PrintDiagnosticNames=*/false);
DiagnosticEngine::formatDiagnosticText(os, diagString, diag.getArgs(),
DiagnosticFormatOptions());
os << "\");\n";
continue;
}
// FIXME: Emit an unavailable stub for a function / function overload set
// / variable.
// FIXME: Note unrepresented type aliases too.
emitStubComment();
}
}
};
} // end anonymous namespace
static AccessLevel getRequiredAccess(const ModuleDecl &M) {
return M.isExternallyConsumed() ? AccessLevel::Public : AccessLevel::Internal;
}
void swift::printModuleContentsAsObjC(
raw_ostream &os, llvm::SmallPtrSetImpl<ImportModuleTy> &imports,
ModuleDecl &M, SwiftToClangInteropContext &interopContext) {
llvm::raw_null_ostream prologueOS;
llvm::StringSet<> exposedModules;
ModuleWriter(os, prologueOS, imports, M, interopContext, getRequiredAccess(M),
/*requiresExposedAttribute=*/false, exposedModules,
OutputLanguageMode::ObjC)
.write();
}
EmittedClangHeaderDependencyInfo swift::printModuleContentsAsCxx(
raw_ostream &os, ModuleDecl &M, SwiftToClangInteropContext &interopContext,
bool requiresExposedAttribute, llvm::StringSet<> &exposedModules) {
std::string moduleContentsBuf;
llvm::raw_string_ostream moduleOS{moduleContentsBuf};
std::string modulePrologueBuf;
llvm::raw_string_ostream prologueOS{modulePrologueBuf};
EmittedClangHeaderDependencyInfo info;
// Define the `SWIFT_SYMBOL` macro.
os << "#ifdef SWIFT_SYMBOL\n";
os << "#undef SWIFT_SYMBOL\n";
os << "#endif\n";
os << "#define SWIFT_SYMBOL(usrValue) SWIFT_SYMBOL_MODULE_USR(\"";
ClangSyntaxPrinter(os).printBaseName(&M);
os << "\", usrValue)\n";
// FIXME: Use getRequiredAccess once @expose is supported.
ModuleWriter writer(moduleOS, prologueOS, info.imports, M, interopContext,
AccessLevel::Public, requiresExposedAttribute,
exposedModules, OutputLanguageMode::Cxx);
writer.write();
info.dependsOnStandardLibrary = writer.isStdlibRequired();
if (M.isStdlibModule()) {
// Embed additional STL includes.
os << "#ifndef SWIFT_CXX_INTEROP_HIDE_STL_OVERLAY\n";
os << "#include <string>\n";
os << "#endif\n";
os << "#include <new>\n";
// Embed an overlay for the standard library.
ClangSyntaxPrinter(moduleOS).printIncludeForShimHeader(
"_SwiftStdlibCxxOverlay.h");
// Ignore typos in Swift stdlib doc comments.
os << "#pragma clang diagnostic push\n";
os << "#pragma clang diagnostic ignored \"-Wdocumentation\"\n";
}
os << "#ifndef SWIFT_PRINTED_CORE\n";
os << "#define SWIFT_PRINTED_CORE\n";
printSwiftToClangCoreScaffold(interopContext, M.getASTContext(),
writer.getTypeMapping(), os);
os << "#endif\n";
// FIXME: refactor.
if (!prologueOS.str().empty()) {
// FIXME: This is a workaround for prologue being emitted outside of
// __cplusplus.
if (!M.isStdlibModule())
os << "#endif\n";
os << "#ifdef __cplusplus\n";
os << "namespace ";
ClangSyntaxPrinter(os).printBaseName(&M);
os << " SWIFT_PRIVATE_ATTR";
ClangSyntaxPrinter(os).printSymbolUSRAttribute(&M);
os << " {\n";
os << "namespace " << cxx_synthesis::getCxxImplNamespaceName() << " {\n";
os << "extern \"C\" {\n";
os << "#endif\n\n";
os << prologueOS.str();
if (!M.isStdlibModule())
os << "\n#ifdef __cplusplus\n";
os << "}\n";
os << "}\n";
os << "}\n";
}
// Construct a C++ namespace for the module.
ClangSyntaxPrinter(os).printNamespace(
[&](raw_ostream &os) { ClangSyntaxPrinter(os).printBaseName(&M); },
[&](raw_ostream &os) { os << moduleOS.str(); },
ClangSyntaxPrinter::NamespaceTrivia::AttributeSwiftPrivate, &M);
if (M.isStdlibModule()) {
os << "#pragma clang diagnostic pop\n";
}
os << "#undef SWIFT_SYMBOL\n";