-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathTypeChecker.h
1423 lines (1221 loc) · 58.3 KB
/
TypeChecker.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- TypeChecker.h - Type Checking Class --------------------*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file defines the TypeChecking class.
//
//===----------------------------------------------------------------------===//
#ifndef TYPECHECKING_H
#define TYPECHECKING_H
#include "swift/AST/ASTContext.h"
#include "swift/AST/AccessScope.h"
#include "swift/AST/AnyFunctionRef.h"
#include "swift/AST/Availability.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/GenericParamList.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/KnownProtocols.h"
#include "swift/AST/LazyResolver.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/PropertyWrappers.h"
#include "swift/AST/TypeRefinementContext.h"
#include "swift/Parse/Lexer.h"
#include "swift/Basic/OptionSet.h"
#include "swift/Sema/ConstraintSystem.h"
#include "swift/Config.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/TinyPtrVector.h"
#include <functional>
namespace swift {
class Decl;
class DeclAttribute;
class DiagnosticEngine;
class ExportContext;
class NominalTypeDecl;
class NormalProtocolConformance;
class RootProtocolConformance;
class TypeResolutionOptions;
class TypoCorrectionResults;
class ExprPattern;
enum class TypeResolutionStage : uint8_t;
enum class ExportabilityReason : unsigned;
namespace constraints {
enum class ConstraintKind : char;
class ConstraintSystem;
class Solution;
class SolutionApplicationTarget;
class SolutionResult;
}
/// Special-case type checking semantics for certain declarations.
enum class DeclTypeCheckingSemantics {
/// A normal declaration.
Normal,
/// The type(of:) declaration, which performs a "dynamic type" operation,
/// with different behavior for existential and non-existential arguments.
TypeOf,
/// The withoutActuallyEscaping(_:do:) declaration, which makes a nonescaping
/// closure temporarily escapable.
WithoutActuallyEscaping,
/// The _openExistential(_:do:) declaration, which extracts the value inside
/// an existential and passes it as a value of its own dynamic type.
OpenExistential,
};
/// An individual result of a name lookup for a type.
struct LookupTypeResultEntry {
TypeDecl *Member;
Type MemberType;
/// The associated type that the Member/MemberType were inferred for, but only
/// if inference happened when creating this entry.
AssociatedTypeDecl *InferredAssociatedType;
};
/// The result of name lookup for types.
class LookupTypeResult {
/// The set of results found.
SmallVector<LookupTypeResultEntry, 4> Results;
public:
using iterator = SmallVectorImpl<LookupTypeResultEntry>::iterator;
iterator begin() { return Results.begin(); }
iterator end() { return Results.end(); }
unsigned size() const { return Results.size(); }
LookupTypeResultEntry operator[](unsigned index) const {
return Results[index];
}
LookupTypeResultEntry front() const { return Results.front(); }
LookupTypeResultEntry back() const { return Results.back(); }
/// Add a result to the set of results.
void addResult(LookupTypeResultEntry result) { Results.push_back(result); }
/// Determine whether this result set is ambiguous.
bool isAmbiguous() const {
return Results.size() > 1;
}
/// Determine whether the result set is nonempty.
explicit operator bool() const {
return !Results.empty();
}
};
/// Flags that can be used to control type checking.
enum class TypeCheckExprFlags {
/// Whether we know that the result of the expression is discarded. This
/// disables constraints forcing an lvalue result to be loadable.
IsDiscarded = 0x01,
/// If set, this expression isn't embedded in a larger expression or
/// statement. This should only be used for syntactic restrictions, and should
/// not affect type checking itself.
IsExprStmt = 0x02,
/// Don't try to type check closure expression bodies, and leave them
/// unchecked. This is used by source tooling functionalities such as code
/// completion.
LeaveClosureBodyUnchecked = 0x04,
/// Don't type check expressions for correct availability.
DisableExprAvailabilityChecking = 0x08,
};
using TypeCheckExprOptions = OptionSet<TypeCheckExprFlags>;
inline TypeCheckExprOptions operator|(TypeCheckExprFlags flag1,
TypeCheckExprFlags flag2) {
return TypeCheckExprOptions(flag1) | flag2;
}
/// Flags that can be used to control name lookup.
enum class NameLookupFlags {
/// Whether to ignore access control for this lookup, allowing inaccessible
/// results to be returned.
IgnoreAccessControl = 1 << 0,
/// Whether to include results from outside the innermost scope that has a
/// result.
IncludeOuterResults = 1 << 1,
// Whether to include results that are marked @inlinable or @usableFromInline.
IncludeUsableFromInline = 1 << 2,
};
/// A set of options that control name lookup.
using NameLookupOptions = OptionSet<NameLookupFlags>;
inline NameLookupOptions operator|(NameLookupFlags flag1,
NameLookupFlags flag2) {
return NameLookupOptions(flag1) | flag2;
}
/// Default options for member name lookup.
const NameLookupOptions defaultMemberLookupOptions;
/// Default options for member type lookup.
const NameLookupOptions defaultMemberTypeLookupOptions;
/// Default options for unqualified name lookup.
const NameLookupOptions defaultUnqualifiedLookupOptions;
/// Describes the result of comparing two entities, of which one may be better
/// or worse than the other, or they are unordered.
enum class Comparison {
/// Neither entity is better than the other.
Unordered,
/// The first entity is better than the second.
Better,
/// The first entity is worse than the second.
Worse
};
/// A conditional conformance that implied some other requirements. That is, \c
/// ConformingType conforming to \c Protocol may have required additional
/// requirements to be satisfied.
///
/// This is designed to be used in a stack of such requirements, which can be
/// formatted with \c diagnoseConformanceStack.
struct ParentConditionalConformance {
Type ConformingType;
ProtocolDecl *Protocol;
/// Format the stack \c conformances as a series of notes that trace a path of
/// conditional conformances that lead to some other failing requirement (that
/// is not in \c conformances).
///
/// The end of \c conformances is the active end of the stack, i.e. \c
/// conformances[0] is a conditional conformance that requires \c
/// conformances[1], etc.
static void
diagnoseConformanceStack(DiagnosticEngine &diags, SourceLoc location,
ArrayRef<ParentConditionalConformance> conformances);
};
/// The result of `checkGenericRequirement`.
enum class RequirementCheckResult {
Success, Failure, SubstitutionFailure
};
/// Describes the kind of checked cast operation being performed.
enum class CheckedCastContextKind {
/// None: we're just establishing how to perform the checked cast. This
/// is useful when we don't care to produce any diagnostics.
None,
/// A forced cast, with "as!".
ForcedCast,
/// A conditional cast, with "as?".
ConditionalCast,
/// An "is" expression.
IsExpr,
/// An "is" pattern.
IsPattern,
/// An enum-element pattern.
EnumElementPattern,
/// Coerce to checked cast. Used when we verify if it is possible to
/// suggest to convert a coercion to a checked cast.
Coercion,
};
namespace TypeChecker {
Type getOptionalType(SourceLoc loc, Type elementType);
/// Bind an UnresolvedDeclRefExpr by performing name lookup and
/// returning the resultant expression. Context is the DeclContext used
/// for the lookup.
///
/// \param replaceInvalidRefsWithErrors Indicates whether it's allowed
/// to replace any discovered invalid member references with `ErrorExpr`.
Expr *resolveDeclRefExpr(UnresolvedDeclRefExpr *UDRE, DeclContext *Context,
bool replaceInvalidRefsWithErrors);
/// Check for invalid existential types in the given declaration.
void checkExistentialTypes(Decl *decl);
/// Check for invalid existential types in the given statement.
void checkExistentialTypes(ASTContext &ctx, Stmt *stmt);
/// Check for invalid existential types in the given generic requirement
/// list.
void checkExistentialTypes(ASTContext &ctx,
TrailingWhereClause *whereClause);
/// Check for invalid existential types in the given generic requirement
/// list.
void checkExistentialTypes(ASTContext &ctx,
GenericParamList *genericParams);
/// Substitute the given base type into the type of the given nested type,
/// producing the effective type that the nested type will have.
///
/// \param module The module in which the substitution will be performed.
/// \param member The member whose type projection is being computed.
/// \param baseTy The base type that will be substituted for the 'Self' of the
/// member.
/// \param useArchetypes Whether to use context archetypes for outer generic
/// parameters if the class is nested inside a generic function.
Type substMemberTypeWithBase(ModuleDecl *module, TypeDecl *member, Type baseTy,
bool useArchetypes = true);
/// Determine whether this is a "pass-through" typealias, which has the
/// same type parameters as the nominal type it references and specializes
/// the underlying nominal type with exactly those type parameters.
/// For example, the following typealias \c GX is a pass-through typealias:
///
/// \code
/// struct X<T, U> { }
/// typealias GX<A, B> = X<A, B>
/// \endcode
///
/// whereas \c GX2 and \c GX3 are not pass-through because \c GX2 has
/// different type parameters and \c GX3 doesn't pass its type parameters
/// directly through.
///
/// \code
/// typealias GX2<A> = X<A, A>
/// typealias GX3<A, B> = X<B, A>
/// \endcode
bool isPassThroughTypealias(TypeAliasDecl *typealias, Type underlyingType,
NominalTypeDecl *nominal);
/// Determine whether one type is a subtype of another.
///
/// \param t1 The potential subtype.
/// \param t2 The potential supertype.
/// \param dc The context of the check.
///
/// \returns true if \c t1 is a subtype of \c t2.
bool isSubtypeOf(Type t1, Type t2, DeclContext *dc);
/// Determine whether one type is implicitly convertible to another.
///
/// \param t1 The potential source type of the conversion.
///
/// \param t2 The potential destination type of the conversion.
///
/// \param dc The context of the conversion.
///
/// \param unwrappedIUO If non-null, will be set to indicate whether the
/// conversion force-unwrapped an implicitly-unwrapped optional.
///
/// \returns true if \c t1 can be implicitly converted to \c t2.
bool isConvertibleTo(Type t1, Type t2, DeclContext *dc,
bool *unwrappedIUO = nullptr);
/// Determine whether one type is explicitly convertible to another,
/// i.e. using an 'as' expression.
///
/// \param t1 The potential source type of the conversion.
///
/// \param t2 The potential destination type of the conversion.
///
/// \param dc The context of the conversion.
///
/// \returns true if \c t1 can be explicitly converted to \c t2.
bool isExplicitlyConvertibleTo(Type t1, Type t2, DeclContext *dc);
/// Determine whether one type is bridged to another type.
///
/// \param t1 The potential source type of the conversion.
///
/// \param t2 The potential destination type of the conversion.
///
/// \param dc The context of the conversion.
///
/// \param unwrappedIUO If non-null, will be set to indicate whether the
/// conversion force-unwrapped an implicitly-unwrapped optional.
///
/// \returns true if \c t1 can be explicitly converted to \c t2.
bool isObjCBridgedTo(Type t1, Type t2, DeclContext *dc,
bool *unwrappedIUO = nullptr);
/// Return true if performing a checked cast from one type to another
/// with the "as!" operator could possibly succeed.
///
/// \param t1 The potential source type of the cast.
///
/// \param t2 The potential destination type of the cast.
///
/// \param dc The context of the cast.
///
/// \returns true if a checked cast from \c t1 to \c t2 may succeed, and
/// false if it will certainly fail, e.g. because the types are unrelated.
bool checkedCastMaySucceed(Type t1, Type t2, DeclContext *dc);
/// Determine whether a constraint of the given kind can be satisfied
/// by the two types.
///
/// \param t1 The first type of the constraint.
///
/// \param t2 The second type of the constraint.
///
/// \param openArchetypes If true, archetypes are replaced with type
/// variables, and the result can be interpreted as whether or not the
/// two types can possibly equal at runtime.
///
/// \param dc The context of the conversion.
///
/// \param unwrappedIUO If non-null, will be set to \c true if the coercion
/// or bridge operation force-unwraps an implicitly-unwrapped optional.
///
/// \returns true if \c t1 and \c t2 satisfy the constraint.
bool typesSatisfyConstraint(Type t1, Type t2, bool openArchetypes,
constraints::ConstraintKind kind, DeclContext *dc,
bool *unwrappedIUO = nullptr);
/// If the inputs to an apply expression use a consistent "sugar" type
/// (that is, a typealias or shorthand syntax) equivalent to the result type
/// of the function, set the result type of the expression to that sugar type.
Expr *substituteInputSugarTypeForResult(ApplyExpr *E);
/// Type check a \c StmtConditionElement.
/// Sets \p isFalsable to \c true if the condition might evaluate to \c false,
/// otherwise leaves \p isFalsable untouched.
/// \returns \c true if there was an error type checking, \c false otherwise.
bool typeCheckStmtConditionElement(StmtConditionElement &elt, bool &isFalsable,
DeclContext *dc);
void typeCheckASTNode(ASTNode &node, DeclContext *DC,
bool LeaveBodyUnchecked = false);
/// Try to apply the result builder transform of the given builder type
/// to the body of the function.
///
/// \returns \c None if the builder transformation cannot be applied at all,
/// e.g., because of a \c return statement. Otherwise, returns either the
/// fully type-checked body of the function (on success) or a \c nullptr
/// value if an error occurred while type checking the transformed body.
Optional<BraceStmt *> applyResultBuilderBodyTransform(FuncDecl *func,
Type builderType);
/// Find the return statements within the body of the given function.
std::vector<ReturnStmt *> findReturnStatements(AnyFunctionRef fn);
bool typeCheckClosureBody(ClosureExpr *closure);
bool typeCheckTapBody(TapExpr *expr, DeclContext *DC);
Type typeCheckParameterDefault(Expr *&defaultValue, DeclContext *DC,
Type paramType, bool isAutoClosure);
void typeCheckTopLevelCodeDecl(TopLevelCodeDecl *TLCD);
void typeCheckDecl(Decl *D, bool LeaveClosureBodiesUnchecked = false);
void addImplicitDynamicAttribute(Decl *D);
void checkDeclAttributes(Decl *D);
void checkClosureAttributes(ClosureExpr *closure);
void checkParameterList(ParameterList *params, DeclContext *owner);
void diagnoseDuplicateBoundVars(Pattern *pattern);
void diagnoseDuplicateCaptureVars(CaptureListExpr *expr);
Type checkReferenceOwnershipAttr(VarDecl *D, Type interfaceType,
ReferenceOwnershipAttr *attr);
/// Infer default value witnesses for all requirements in the given protocol.
void inferDefaultWitnesses(ProtocolDecl *proto);
/// For a generic requirement in a protocol, make sure that the requirement
/// set didn't add any requirements to Self or its associated types.
void checkProtocolSelfRequirements(ValueDecl *decl);
/// All generic parameters of a generic function must be referenced in the
/// declaration's type, otherwise we have no way to infer them.
void checkReferencedGenericParams(GenericContext *dc);
/// Create a text string that describes the bindings of generic parameters
/// that are relevant to the given set of types, e.g.,
/// "[with T = Bar, U = Wibble]".
///
/// \param types The types that will be scanned for generic type parameters,
/// which will be used in the resulting type.
///
/// \param genericParams The generic parameters to use to resugar any
/// generic parameters that occur within the types.
///
/// \param substitutions The generic parameter -> generic argument
/// substitutions that will have been applied to these types.
/// These are used to produce the "parameter = argument" bindings in the test.
std::string gatherGenericParamBindingsText(
ArrayRef<Type> types, TypeArrayView<GenericTypeParamType> genericParams,
TypeSubstitutionFn substitutions);
/// Check the given set of generic arguments against the requirements in a
/// generic signature.
///
/// \param module The module to use for conformace lookup.
/// \param loc The location at which any diagnostics should be emitted.
/// \param noteLoc The location at which any notes will be printed.
/// \param owner The type that owns the generic signature.
/// \param genericParams The generic parameters being substituted.
/// \param requirements The requirements against which the generic arguments
/// should be checked.
/// \param substitutions Substitutions from interface types of the signature.
RequirementCheckResult checkGenericArguments(
ModuleDecl *module, SourceLoc loc, SourceLoc noteLoc, Type owner,
TypeArrayView<GenericTypeParamType> genericParams,
ArrayRef<Requirement> requirements, TypeSubstitutionFn substitutions,
SubstOptions options = None);
/// A lower-level version of the above without diagnostic emission.
RequirementCheckResult checkGenericArguments(
ModuleDecl *module,
ArrayRef<Requirement> requirements,
TypeSubstitutionFn substitutions);
/// Checks whether the generic requirements imposed on the nested type
/// declaration \p decl (if present) are in agreement with the substitutions
/// that are needed to spell it as a member of the given parent type
/// \p parentTy.
///
/// For example, given
/// \code
/// struct S<X> {}
/// extension S where X == Bool {
/// struct Inner {}
/// }
/// \endcode
/// \c Inner cannot be referenced on \c S<Int>, because its contextual
/// requirement \c X \c == \c Bool is not satisfied by the substitution
/// \c [X \c = \c Int].
///
/// Similarly, \c typealias \c Y below is a viable type witness in the
/// conformance of \c S to \c P, because its contextual requirement
/// \c Self.X \c == \c Bool is satisfied by the substitution
/// \c [Self \c = \c S].
/// \code
/// protocol P {
/// associatedtype X
/// associatedtype Y
/// }
/// extension P where X == Bool {
/// typealias Y = Bool
/// }
///
/// struct S: P {
/// typealias X = Bool
/// }
/// \endcode
///
/// \param module The module to use for conformace lookup.
/// \param contextSig The generic signature that should be used to map
/// \p parentTy into context. We pass a generic signature to secure on-demand
/// computation of the associated generic enviroment.
///
/// \returns \c true on success.
bool checkContextualRequirements(GenericTypeDecl *decl, Type parentTy,
SourceLoc loc, ModuleDecl *module,
GenericSignature contextSig);
/// Add any implicitly-defined constructors required for the given
/// struct, class or actor.
void addImplicitConstructors(NominalTypeDecl *typeDecl);
/// Fold the given sequence expression into an (unchecked) expression
/// tree.
Expr *foldSequence(SequenceExpr *expr, DeclContext *dc);
/// Given an pre-folded expression, find LHS from the expression if a binary
/// operator \c name appended to the expression.
Expr *findLHS(DeclContext *DC, Expr *E, Identifier name);
/// Type check the given expression.
///
/// \param expr The expression to type-check, which will be modified in
/// place.
///
/// \param contextualInfo The type that the expression is being converted to,
/// or null if the expression is standalone. When convertType is specified, this indicates
/// what the conversion is doing. This allows diagnostics generation to
/// produce more specific and helpful error messages when the conversion fails
/// to be possible.
///
/// \param options Options that control how type checking is performed.
///
/// \returns The type of the top-level expression, or Type() if an
/// error occurred.
Type typeCheckExpression(Expr *&expr, DeclContext *dc,
constraints::ContextualTypeInfo contextualInfo = {},
TypeCheckExprOptions options = TypeCheckExprOptions());
Optional<constraints::SolutionApplicationTarget>
typeCheckExpression(constraints::SolutionApplicationTarget &target,
TypeCheckExprOptions options = TypeCheckExprOptions());
/// Return the type of operator function for specified LHS, or a null
/// \c Type on error.
FunctionType *getTypeOfCompletionOperator(DeclContext *DC, Expr *LHS,
Identifier opName,
DeclRefKind refKind,
ConcreteDeclRef &refdDecl);
/// Type check the given expression and provide results back to code completion
/// via specified callback.
///
/// This method is designed to be used for code completion which means that
/// it doesn't mutate given expression, even if there is a single valid
/// solution, and constraint solver is allowed to produce partially correct
/// solutions. Such solutions can have any number of holes in them.
///
/// \returns `true` if target was applicable and it was possible to infer
/// types for code completion, `false` othrewise.
bool typeCheckForCodeCompletion(
constraints::SolutionApplicationTarget &target, bool needsPrecheck,
llvm::function_ref<void(const constraints::Solution &)> callback);
/// Check the key-path expression.
///
/// Returns the type of the last component of the key-path.
Optional<Type> checkObjCKeyPathExpr(DeclContext *dc, KeyPathExpr *expr,
bool requireResultType = false);
/// Type check whether the given type declaration includes members of
/// unsupported recursive value types.
///
/// \param decl The declaration to be type-checked. This process will not
/// modify the declaration.
void checkDeclCircularity(NominalTypeDecl *decl);
/// Type check whether the given switch statement exhaustively covers
/// its domain.
///
/// \param stmt The switch statement to be type-checked. No modification of
/// the statement occurs.
/// \param DC The decl context containing \p stmt.
/// \param limitChecking The checking process relies on the switch statement
/// being well-formed. If it is not, pass true to this flag to run a limited
/// form of analysis.
void checkSwitchExhaustiveness(const SwitchStmt *stmt, const DeclContext *DC,
bool limitChecking);
/// Type check the given expression as a condition, which converts
/// it to a logic value.
///
/// \param expr The expression to type-check, which will be modified in place
/// to return a logic value (builtin i1).
///
/// \returns true if an error occurred, false otherwise.
bool typeCheckCondition(Expr *&expr, DeclContext *dc);
/// Determine the semantics of a checked cast operation.
///
/// \param fromType The source type of the cast.
/// \param toType The destination type of the cast.
/// \param dc The context of the cast.
/// \param diagLoc The location at which to report diagnostics.
/// \param fromExpr The expression describing the input operand.
/// \param diagToRange The source range of the destination type.
///
/// \returns a CheckedCastKind indicating the semantics of the cast. If the
/// cast is invalid, Unresolved is returned. If the cast represents an implicit
/// conversion, Coercion is returned.
CheckedCastKind typeCheckCheckedCast(Type fromType, Type toType,
CheckedCastContextKind ctxKind,
DeclContext *dc, SourceLoc diagLoc,
Expr *fromExpr, SourceRange diagToRange);
/// Find the Objective-C class that bridges between a value of the given
/// dynamic type and the given value type.
///
/// \param dc The declaration context from which we will look for
/// bridging.
///
/// \param dynamicType A dynamic type from which we are bridging. Class and
/// Objective-C protocol types can be used for bridging.
///
/// \param valueType The value type being queried, e.g., String.
///
/// \returns the Objective-C class type that represents the value
/// type as an Objective-C class, e.g., \c NSString represents \c
/// String, or a null type if there is no such type or if the
/// dynamic type isn't something we can start from.
Type getDynamicBridgedThroughObjCClass(DeclContext *dc, Type dynamicType,
Type valueType);
/// Resolve ambiguous pattern/expr productions inside a pattern using
/// name lookup information. Must be done before type-checking the pattern.
Pattern *resolvePattern(Pattern *P, DeclContext *dc, bool isStmtCondition);
/// Type check the given pattern.
///
/// \returns the type of the pattern, which may be an error type if an
/// unrecoverable error occurred. If the options permit it, the type may
/// involve \c UnresolvedType (for patterns with no type information) and
/// unbound generic types.
Type typeCheckPattern(ContextualPattern pattern);
/// Coerce a pattern to the given type.
///
/// \param pattern The contextual pattern.
/// \param type the type to coerce the pattern to.
/// \param options Options that control the coercion.
///
/// \returns the coerced pattern, or nullptr if the coercion failed.
Pattern *coercePatternToType(ContextualPattern pattern, Type type,
TypeResolutionOptions options);
bool typeCheckExprPattern(ExprPattern *EP, DeclContext *DC, Type type);
/// Coerce the specified parameter list of a ClosureExpr to the specified
/// contextual type.
void coerceParameterListToType(ParameterList *P, AnyFunctionType *FN);
/// Type-check an initialized variable pattern declaration.
bool typeCheckBinding(Pattern *&P, Expr *&Init, DeclContext *DC,
Type patternType,
PatternBindingDecl *PBD = nullptr,
unsigned patternNumber = 0,
TypeCheckExprOptions options = {});
bool typeCheckPatternBinding(PatternBindingDecl *PBD, unsigned patternNumber,
Type patternType = Type(),
TypeCheckExprOptions options = {});
/// Type-check a for-each loop's pattern binding and sequence together.
///
/// \returns true if a failure occurred.
bool typeCheckForEachBinding(DeclContext *dc, ForEachStmt *stmt);
/// Compute the set of captures for the given function or closure.
void computeCaptures(AnyFunctionRef AFR);
/// Check for invalid captures from stored property initializers.
void checkPatternBindingCaptures(IterableDeclContext *DC);
/// Change the context of closures in the given initializer
/// expression to the given context.
void contextualizeInitializer(Initializer *DC, Expr *init);
void contextualizeTopLevelCode(TopLevelCodeDecl *TLCD);
/// Retrieve the default type for the given protocol.
///
/// Some protocols, particularly those that correspond to literals, have
/// default types associated with them. This routine retrieves that default
/// type.
///
/// \returns the default type, or null if there is no default type for
/// this protocol.
Type getDefaultType(ProtocolDecl *protocol, DeclContext *dc);
/// Coerce the given expression to materializable type, if it
/// isn't already.
Expr *coerceToRValue(
ASTContext &Context, Expr *expr,
llvm::function_ref<Type(Expr *)> getType =
[](Expr *expr) { return expr->getType(); },
llvm::function_ref<void(Expr *, Type)> setType =
[](Expr *expr, Type type) { expr->setType(type); });
/// Add implicit load expression to given AST, this is sometimes
/// more complicated than simplify wrapping given root in newly created
/// `LoadExpr`, because `ForceValueExpr` and `ParenExpr` supposed to appear
/// only at certain positions in AST.
Expr *addImplicitLoadExpr(
ASTContext &Context, Expr *expr,
std::function<Type(Expr *)> getType = [](Expr *E) { return E->getType(); },
std::function<void(Expr *, Type)> setType =
[](Expr *E, Type type) { E->setType(type); });
/// Determine whether the given type contains the given protocol.
///
/// \returns the conformance, if \c T conforms to the protocol \c Proto, or
/// an empty optional.
ProtocolConformanceRef containsProtocol(Type T, ProtocolDecl *Proto,
ModuleDecl *M,
bool skipConditionalRequirements=false);
/// Determine whether the given type conforms to the given protocol.
///
/// Unlike subTypeOfProtocol(), this will return false for existentials of
/// non-self conforming protocols.
///
/// \returns The protocol conformance, if \c T conforms to the
/// protocol \c Proto, or \c None.
ProtocolConformanceRef conformsToProtocol(Type T, ProtocolDecl *Proto,
ModuleDecl *M,
bool allowMissing = true);
/// Check whether the type conforms to a given known protocol.
bool conformsToKnownProtocol(Type type, KnownProtocolKind protocol,
ModuleDecl *module, bool allowMissing = true);
/// This is similar to \c conformsToProtocol, but returns \c true for cases where
/// the type \p T could be dynamically cast to \p Proto protocol, such as a non-final
/// class where a subclass conforms to \p Proto.
///
/// \returns True if \p T conforms to the protocol \p Proto, false otherwise.
bool couldDynamicallyConformToProtocol(Type T, ProtocolDecl *Proto,
ModuleDecl *M);
/// Completely check the given conformance.
void checkConformance(NormalProtocolConformance *conformance);
/// Check all of the conformances in the given context.
void checkConformancesInContext(IterableDeclContext *idc);
/// Check that the type of the given property conforms to NSCopying.
ProtocolConformanceRef checkConformanceToNSCopying(VarDecl *var);
/// Derive an implicit declaration to satisfy a requirement of a derived
/// protocol conformance.
///
/// \param DC The declaration context where the conformance was
/// defined, either the type itself or an extension
/// \param TypeDecl The type for which the requirement is being derived.
/// \param Requirement The protocol requirement.
///
/// \returns nullptr if the derivation failed, or the derived declaration
/// if it succeeded. If successful, the derived declaration is added
/// to TypeDecl's body.
ValueDecl *deriveProtocolRequirement(DeclContext *DC,
NominalTypeDecl *TypeDecl,
ValueDecl *Requirement);
/// Derive an implicit type witness for the given associated type in
/// the conformance of the given nominal type to some known
/// protocol.
std::pair<Type, TypeDecl *>
deriveTypeWitness(DeclContext *DC, NominalTypeDecl *nominal,
AssociatedTypeDecl *assocType);
/// \name Name lookup
///
/// Routines that perform name lookup.
///
/// @{
/// Perform unqualified name lookup at the given source location
/// within a particular declaration context.
///
/// \param dc The declaration context in which to perform name lookup.
/// \param name The name of the entity to look for.
/// \param loc The source location at which name lookup occurs.
/// \param options Options that control name lookup.
LookupResult lookupUnqualified(
DeclContext *dc, DeclNameRef name, SourceLoc loc,
NameLookupOptions options = defaultUnqualifiedLookupOptions);
/// Perform unqualified type lookup at the given source location
/// within a particular declaration context.
///
/// \param dc The declaration context in which to perform name lookup.
/// \param name The name of the entity to look for.
/// \param loc The source location at which name lookup occurs.
/// \param options Options that control name lookup.
LookupResult lookupUnqualifiedType(
DeclContext *dc, DeclNameRef name, SourceLoc loc,
NameLookupOptions options = defaultUnqualifiedLookupOptions);
/// Lookup a member in the given type.
///
/// \param dc The context that needs the member.
/// \param type The type in which we will look for a member.
/// \param name The name of the member to look for.
/// \param options Options that control name lookup.
///
/// \returns The result of name lookup.
LookupResult
lookupMember(DeclContext *dc, Type type, DeclNameRef name,
NameLookupOptions options = defaultMemberLookupOptions);
/// Look up a member type within the given type.
///
/// This routine looks for member types with the given name within the
/// given type.
///
/// \param dc The context that needs the member.
/// \param type The type in which we will look for a member type.
/// \param name The name of the member to look for.
/// \param options Options that control name lookup.
///
/// \returns The result of name lookup.
LookupTypeResult
lookupMemberType(DeclContext *dc, Type type, DeclNameRef name,
NameLookupOptions options = defaultMemberTypeLookupOptions);
/// Given an expression that's known to be an infix operator,
/// look up its precedence group.
PrecedenceGroupDecl *lookupPrecedenceGroupForInfixOperator(DeclContext *dc,
Expr *op);
PrecedenceGroupLookupResult
lookupPrecedenceGroup(DeclContext *dc, Identifier name, SourceLoc nameLoc);
enum class UnsupportedMemberTypeAccessKind : uint8_t {
None,
TypeAliasOfUnboundGeneric,
TypeAliasOfExistential,
AssociatedTypeOfUnboundGeneric,
AssociatedTypeOfExistential,
NominalTypeOfUnboundGeneric
};
/// Check whether the given declaration can be written as a
/// member of the given base type.
UnsupportedMemberTypeAccessKind
isUnsupportedMemberTypeAccess(Type type, TypeDecl *typeDecl,
bool hasUnboundOpener);
/// @}
/// \name Overload resolution
///
/// Routines that perform overload resolution or provide diagnostics related
/// to overload resolution.
/// @{
/// Compare two declarations to determine whether one is more specialized
/// than the other.
///
/// A declaration is more specialized than another declaration if its type
/// is a subtype of the other declaration's type (ignoring the 'self'
/// parameter of function declarations) and if
Comparison compareDeclarations(DeclContext *dc, ValueDecl *decl1,
ValueDecl *decl2);
/// Checks whether the first decl is a refinement of the second
/// decl, meaning that the second decl can always be used in place
/// of the first one and the expression will still type check.
bool isDeclRefinementOf(ValueDecl *declA, ValueDecl *declB);
/// Build a type-checked reference to the given value.
Expr *buildCheckedRefExpr(VarDecl *D, DeclContext *UseDC, DeclNameLoc nameLoc,
bool Implicit);
/// Build a reference to a declaration, where name lookup returned
/// the given set of declarations.
Expr *buildRefExpr(ArrayRef<ValueDecl *> Decls, DeclContext *UseDC,
DeclNameLoc NameLoc, bool Implicit,
FunctionRefKind functionRefKind);
/// @}
/// Retrieve a specific, known protocol.
///
/// \param loc The location at which we need to look for the protocol.
/// \param kind The known protocol we're looking for.
///
/// \returns null if the protocol is not available. This represents a
/// problem with the Standard Library.
ProtocolDecl *getProtocol(ASTContext &ctx, SourceLoc loc,
KnownProtocolKind kind);
/// Retrieve the literal protocol for the given expression.
///
/// \returns the literal protocol, if known and available, or null if the
/// expression does not have an associated literal protocol.
ProtocolDecl *getLiteralProtocol(ASTContext &ctx, Expr *expr);
DeclName getObjectLiteralConstructorName(ASTContext &ctx,
ObjectLiteralExpr *expr);
/// Get the module appropriate for looking up standard library types.
///
/// This is "Swift", if that module is imported, or the current module if
/// we're parsing the standard library.
ModuleDecl *getStdlibModule(const DeclContext *dc);
Expr *buildDefaultInitializer(Type type);
/// \name Resilience diagnostics
bool diagnoseInlinableDeclRefAccess(SourceLoc loc, const ValueDecl *D,
const ExportContext &where);
/// Given that a declaration is used from a particular context which
/// exposes it in the interface of the current module, diagnose if it cannot
/// reasonably be shared.
bool diagnoseDeclRefExportability(SourceLoc loc,
const ValueDecl *D,
const ExportContext &where);
/// Given that a conformance is used from a particular context which
/// exposes it in the interface of the current module, diagnose if the
/// conformance is SPI or visible via an implementation-only import.
bool diagnoseConformanceExportability(SourceLoc loc,
const RootProtocolConformance *rootConf,
const ExtensionDecl *ext,
const ExportContext &where);
/// \name Availability checking
///
/// Routines that perform API availability checking and type checking of
/// potentially unavailable API elements
/// @{
/// Returns true if the availability of the witness
/// is sufficient to safely conform to the requirement in the context
/// the provided conformance. On return, requiredAvailability holds th
/// availability levels required for conformance.
bool
isAvailabilitySafeForConformance(ProtocolDecl *proto, ValueDecl *requirement,
ValueDecl *witness, DeclContext *dc,
AvailabilityContext &requiredAvailability);
/// Returns an over-approximation of the range of operating system versions
/// that could the passed-in location could be executing upon for
/// the target platform. If MostRefined != nullptr, set to the most-refined
/// TRC found while approximating.
AvailabilityContext overApproximateAvailabilityAtLocation(
SourceLoc loc, const DeclContext *DC,
const TypeRefinementContext **MostRefined = nullptr);
/// Walk the AST to build the hierarchy of TypeRefinementContexts
void buildTypeRefinementContextHierarchy(SourceFile &SF);
/// Walk the AST to complete the hierarchy of TypeRefinementContexts for
/// the delayed function body of \p AFD.
void buildTypeRefinementContextHierarchyDelayed(SourceFile &SF, AbstractFunctionDecl *AFD);
/// Build the hierarchy of TypeRefinementContexts for the entire
/// source file, if it has not already been built. Returns the root
/// TypeRefinementContext for the source file.
TypeRefinementContext *getOrBuildTypeRefinementContext(SourceFile *SF);
/// Returns a diagnostic indicating why the declaration cannot be annotated
/// with an @available() attribute indicating it is potentially unavailable
/// or None if this is allowed.
Optional<Diag<>>
diagnosticIfDeclCannotBePotentiallyUnavailable(const Decl *D);
/// Same as \c checkDeclarationAvailability but doesn't give a reason for
/// unavailability.
bool isDeclarationUnavailable(
const Decl *D, const DeclContext *referenceDC,
llvm::function_ref<AvailabilityContext()> getAvailabilityContext);