-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathTypeCheckDeclObjC.cpp
2667 lines (2288 loc) · 95.7 KB
/
TypeCheckDeclObjC.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- TypeCheckDeclObjC.cpp - Type Checking for ObjC Declarations ------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for Objective-C-specific
// aspects of declarations.
//
//===----------------------------------------------------------------------===//
#include "TypeCheckObjC.h"
#include "TypeChecker.h"
#include "TypeCheckConcurrency.h"
#include "TypeCheckProtocol.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Decl.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/ForeignErrorConvention.h"
#include "swift/AST/ImportCache.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Basic/StringExtras.h"
using namespace swift;
#pragma mark Determine whether an entity is representable in Objective-C.
DiagnosticBehavior
swift::behaviorLimitForObjCReason(ObjCReason reason, ASTContext &ctx) {
switch(reason) {
case ObjCReason::ExplicitlyCDecl:
case ObjCReason::ExplicitlyDynamic:
case ObjCReason::ExplicitlyObjC:
case ObjCReason::ExplicitlyIBOutlet:
case ObjCReason::ExplicitlyIBAction:
case ObjCReason::ExplicitlyIBSegueAction:
case ObjCReason::ExplicitlyNSManaged:
case ObjCReason::MemberOfObjCProtocol:
case ObjCReason::OverridesObjC:
case ObjCReason::WitnessToObjC:
case ObjCReason::ImplicitlyObjC:
case ObjCReason::MemberOfObjCExtension:
return DiagnosticBehavior::Unspecified;
case ObjCReason::ExplicitlyIBInspectable:
case ObjCReason::ExplicitlyGKInspectable:
if (!ctx.LangOpts.EnableSwift3ObjCInference)
return DiagnosticBehavior::Unspecified;
return DiagnosticBehavior::Ignore;
case ObjCReason::ExplicitlyObjCByAccessNote:
return ctx.LangOpts.getAccessNoteFailureLimit();
case ObjCReason::MemberOfObjCSubclass:
case ObjCReason::MemberOfObjCMembersClass:
case ObjCReason::ElementOfObjCEnum:
case ObjCReason::Accessor:
return DiagnosticBehavior::Ignore;
}
llvm_unreachable("unhandled reason");
}
unsigned swift::getObjCDiagnosticAttrKind(ObjCReason reason) {
switch (reason) {
case ObjCReason::ExplicitlyCDecl:
case ObjCReason::ExplicitlyDynamic:
case ObjCReason::ExplicitlyObjC:
case ObjCReason::ExplicitlyIBOutlet:
case ObjCReason::ExplicitlyIBAction:
case ObjCReason::ExplicitlyIBSegueAction:
case ObjCReason::ExplicitlyNSManaged:
case ObjCReason::MemberOfObjCProtocol:
case ObjCReason::OverridesObjC:
case ObjCReason::WitnessToObjC:
case ObjCReason::ImplicitlyObjC:
case ObjCReason::ExplicitlyIBInspectable:
case ObjCReason::ExplicitlyGKInspectable:
case ObjCReason::MemberOfObjCExtension:
case ObjCReason::ExplicitlyObjCByAccessNote:
return static_cast<unsigned>(reason);
case ObjCReason::MemberOfObjCSubclass:
case ObjCReason::MemberOfObjCMembersClass:
case ObjCReason::ElementOfObjCEnum:
case ObjCReason::Accessor:
// Diagnostics involving these ObjCReasons should always be ignored, so we
// deliberately return a value which is out of bounds for the `%select` in
// `OBJC_ATTR_SELECT`.
return ~static_cast<unsigned>(0);
}
llvm_unreachable("unhandled reason");
}
void ObjCReason::describe(const Decl *D) const {
switch (kind) {
case ObjCReason::MemberOfObjCProtocol:
D->diagnose(diag::objc_inferring_on_objc_protocol_member);
break;
case ObjCReason::OverridesObjC: {
unsigned kind = isa<VarDecl>(D) ? 0
: isa<SubscriptDecl>(D) ? 1
: isa<ConstructorDecl>(D) ? 2
: 3;
auto overridden = cast<ValueDecl>(D)->getOverriddenDecl();
overridden->diagnose(diag::objc_overriding_objc_decl,
kind, overridden->getName());
break;
}
case ObjCReason::WitnessToObjC: {
auto requirement = getObjCRequirement();
requirement->diagnose(diag::objc_witness_objc_requirement,
D->getDescriptiveKind(), requirement->getName(),
cast<ProtocolDecl>(requirement->getDeclContext())
->getName());
break;
}
case ObjCReason::ExplicitlyObjCByAccessNote:
case ObjCReason::ExplicitlyCDecl:
case ObjCReason::ExplicitlyDynamic:
case ObjCReason::ExplicitlyObjC:
case ObjCReason::ExplicitlyIBOutlet:
case ObjCReason::ExplicitlyIBAction:
case ObjCReason::ExplicitlyIBSegueAction:
case ObjCReason::ExplicitlyNSManaged:
case ObjCReason::ImplicitlyObjC:
case ObjCReason::ExplicitlyIBInspectable:
case ObjCReason::ExplicitlyGKInspectable:
case ObjCReason::MemberOfObjCExtension:
case ObjCReason::MemberOfObjCMembersClass:
case ObjCReason::MemberOfObjCSubclass:
case ObjCReason::ElementOfObjCEnum:
case ObjCReason::Accessor:
// No additional note required.
break;
}
}
void ObjCReason::setAttrInvalid() const {
if (requiresAttr(kind))
getAttr()->setInvalid();
}
static void diagnoseTypeNotRepresentableInObjC(const DeclContext *DC,
Type T,
SourceRange TypeRange,
DiagnosticBehavior behavior) {
auto &diags = DC->getASTContext().Diags;
// Special diagnostic for tuples.
if (T->is<TupleType>()) {
if (T->isVoid())
diags.diagnose(TypeRange.Start, diag::not_objc_empty_tuple)
.highlight(TypeRange)
.limitBehavior(behavior);
else
diags.diagnose(TypeRange.Start, diag::not_objc_tuple)
.highlight(TypeRange)
.limitBehavior(behavior);
return;
}
// Special diagnostic for classes.
if (auto *CD = T->getClassOrBoundGenericClass()) {
if (!CD->isObjC())
diags.diagnose(TypeRange.Start, diag::not_objc_swift_class)
.highlight(TypeRange)
.limitBehavior(behavior);
return;
}
// Special diagnostic for structs.
if (T->is<StructType>()) {
diags.diagnose(TypeRange.Start, diag::not_objc_swift_struct)
.highlight(TypeRange)
.limitBehavior(behavior);
return;
}
// Special diagnostic for enums.
if (T->is<EnumType>()) {
diags.diagnose(TypeRange.Start, diag::not_objc_swift_enum)
.highlight(TypeRange)
.limitBehavior(behavior);
return;
}
// Special diagnostic for protocols and protocol compositions.
if (T->isExistentialType()) {
if (T->isAny()) {
// Any is not @objc.
diags.diagnose(TypeRange.Start,
diag::not_objc_empty_protocol_composition)
.limitBehavior(behavior);
return;
}
auto layout = T->getExistentialLayout();
// See if the superclass is not @objc.
if (auto superclass = layout.explicitSuperclass) {
if (!superclass->getClassOrBoundGenericClass()->isObjC()) {
diags.diagnose(TypeRange.Start, diag::not_objc_class_constraint,
superclass)
.limitBehavior(behavior);
return;
}
}
// Find a protocol that is not @objc.
bool sawErrorProtocol = false;
for (auto P : layout.getProtocols()) {
auto *PD = P->getDecl();
if (PD->isSpecificProtocol(KnownProtocolKind::Error)) {
sawErrorProtocol = true;
break;
}
if (!PD->isObjC()) {
diags.diagnose(TypeRange.Start, diag::not_objc_protocol,
PD->getDeclaredInterfaceType())
.limitBehavior(behavior);
return;
}
}
if (sawErrorProtocol) {
diags.diagnose(TypeRange.Start,
diag::not_objc_error_protocol_composition)
.limitBehavior(behavior);
return;
}
return;
}
if (T->is<ArchetypeType>() || T->isTypeParameter()) {
diags.diagnose(TypeRange.Start, diag::not_objc_generic_type_param)
.highlight(TypeRange)
.limitBehavior(behavior);
return;
}
if (auto fnTy = T->getAs<FunctionType>()) {
if (fnTy->getExtInfo().isAsync()) {
diags.diagnose(TypeRange.Start, diag::not_objc_function_type_async)
.highlight(TypeRange)
.limitBehavior(behavior);
return;
}
if (fnTy->getExtInfo().isThrowing()) {
diags.diagnose(TypeRange.Start, diag::not_objc_function_type_throwing)
.highlight(TypeRange)
.limitBehavior(behavior);
return;
}
diags.diagnose(TypeRange.Start, diag::not_objc_function_type_param)
.highlight(TypeRange)
.limitBehavior(behavior);
return;
}
}
static void diagnoseFunctionParamNotRepresentable(
const AbstractFunctionDecl *AFD, unsigned NumParams,
unsigned ParamIndex, const ParamDecl *P, ObjCReason Reason) {
auto behavior = behaviorLimitForObjCReason(Reason, AFD->getASTContext());
if (NumParams == 1) {
softenIfAccessNote(AFD, Reason.getAttr(),
AFD->diagnose(diag::objc_invalid_on_func_single_param_type,
getObjCDiagnosticAttrKind(Reason))
.limitBehavior(behavior));
} else {
softenIfAccessNote(AFD, Reason.getAttr(),
AFD->diagnose(diag::objc_invalid_on_func_param_type,
ParamIndex + 1, getObjCDiagnosticAttrKind(Reason))
.limitBehavior(behavior));
}
SourceRange SR;
if (auto typeRepr = P->getTypeRepr())
SR = typeRepr->getSourceRange();
diagnoseTypeNotRepresentableInObjC(AFD, P->getType(), SR, behavior);
Reason.describe(AFD);
}
static bool isParamListRepresentableInObjC(const AbstractFunctionDecl *AFD,
const ParameterList *PL,
ObjCReason Reason) {
// If you change this function, you must add or modify a test in PrintAsObjC.
ASTContext &ctx = AFD->getASTContext();
auto &diags = ctx.Diags;
auto behavior = behaviorLimitForObjCReason(Reason, ctx);
bool IsObjC = true;
unsigned NumParams = PL->size();
for (unsigned ParamIndex = 0; ParamIndex != NumParams; ++ParamIndex) {
auto param = PL->get(ParamIndex);
// Swift Varargs are not representable in Objective-C.
if (param->isVariadic()) {
softenIfAccessNote(AFD, Reason.getAttr(),
diags.diagnose(param->getStartLoc(), diag::objc_invalid_on_func_variadic,
getObjCDiagnosticAttrKind(Reason))
.highlight(param->getSourceRange())
.limitBehavior(behavior));
Reason.describe(AFD);
return false;
}
// Swift inout parameters are not representable in Objective-C.
if (param->isInOut()) {
softenIfAccessNote(AFD, Reason.getAttr(),
diags.diagnose(param->getStartLoc(), diag::objc_invalid_on_func_inout,
getObjCDiagnosticAttrKind(Reason))
.highlight(param->getSourceRange())
.limitBehavior(behavior));
Reason.describe(AFD);
return false;
}
if (param->getType()->hasError())
return false;
if (param->getType()->isRepresentableIn(
ForeignLanguage::ObjectiveC,
const_cast<AbstractFunctionDecl *>(AFD)))
continue;
// Permit '()' when this method overrides a method with a
// foreign error convention that replaces NSErrorPointer with ()
// and this is the replaced parameter.
AbstractFunctionDecl *overridden;
if (param->getType()->isVoid() && AFD->hasThrows() &&
(overridden = AFD->getOverriddenDecl())) {
auto foreignError = overridden->getForeignErrorConvention();
if (foreignError &&
foreignError->isErrorParameterReplacedWithVoid() &&
foreignError->getErrorParameterIndex() == ParamIndex) {
continue;
}
}
IsObjC = false;
diagnoseFunctionParamNotRepresentable(AFD, NumParams, ParamIndex,
param, Reason);
}
return IsObjC;
}
/// Check whether the given declaration contains its own generic parameters,
/// and therefore is not representable in Objective-C.
static bool checkObjCWithGenericParams(const ValueDecl *VD, ObjCReason Reason) {
auto behavior = behaviorLimitForObjCReason(Reason, VD->getASTContext());
auto *GC = VD->getAsGenericContext();
assert(GC);
if (GC->getGenericParams()) {
softenIfAccessNote(VD, Reason.getAttr(),
VD->diagnose(diag::objc_invalid_with_generic_params,
VD->getDescriptiveKind(), getObjCDiagnosticAttrKind(Reason))
.limitBehavior(behavior));
Reason.describe(VD);
return true;
}
if (GC->getTrailingWhereClause()) {
softenIfAccessNote(VD, Reason.getAttr(),
VD->diagnose(diag::objc_invalid_with_generic_requirements,
VD->getDescriptiveKind(), getObjCDiagnosticAttrKind(Reason))
.limitBehavior(behavior));
Reason.describe(VD);
return true;
}
return false;
}
/// CF types cannot have @objc methods, because they don't have real class
/// objects.
static bool checkObjCInForeignClassContext(const ValueDecl *VD,
ObjCReason Reason) {
auto behavior = behaviorLimitForObjCReason(Reason, VD->getASTContext());
auto type = VD->getDeclContext()->getDeclaredInterfaceType();
if (!type)
return false;
auto clas = type->getClassOrBoundGenericClass();
if (!clas)
return false;
switch (clas->getForeignClassKind()) {
case ClassDecl::ForeignKind::Normal:
return false;
case ClassDecl::ForeignKind::CFType:
VD->diagnose(diag::objc_invalid_on_foreign_class,
getObjCDiagnosticAttrKind(Reason))
.limitBehavior(behavior);
Reason.describe(VD);
break;
case ClassDecl::ForeignKind::RuntimeOnly:
VD->diagnose(diag::objc_in_objc_runtime_visible,
VD->getDescriptiveKind(), getObjCDiagnosticAttrKind(Reason),
clas->getName())
.limitBehavior(behavior);
Reason.describe(VD);
break;
}
return true;
}
/// Actor-isolated declarations cannot be @objc.
static bool checkObjCActorIsolation(const ValueDecl *VD,
ObjCReason Reason) {
// Check actor isolation.
switch (auto restriction = ActorIsolationRestriction::forDeclaration(
const_cast<ValueDecl *>(VD), VD->getDeclContext(),
/*fromExpression=*/false)) {
case ActorIsolationRestriction::CrossActorSelf:
// FIXME: Substitution map?
diagnoseNonSendableTypesInReference(
const_cast<ValueDecl *>(VD), VD->getDeclContext(),
VD->getLoc(), ConcurrentReferenceKind::CrossActor);
return false;
case ActorIsolationRestriction::ActorSelf:
// Actor-isolated functions cannot be @objc.
VD->diagnose(diag::actor_isolated_objc, VD->getDescriptiveKind(),
VD->getName());
Reason.describe(VD);
if (auto FD = dyn_cast<FuncDecl>(VD)) {
addAsyncNotes(const_cast<FuncDecl *>(FD));
}
return true;
case ActorIsolationRestriction::GlobalActorUnsafe:
case ActorIsolationRestriction::GlobalActor:
// FIXME: Consider whether to limit @objc on global-actor-qualified
// declarations.
case ActorIsolationRestriction::Unrestricted:
case ActorIsolationRestriction::Unsafe:
return false;
}
}
static VersionRange getMinOSVersionForClassStubs(const llvm::Triple &target) {
if (target.isMacOSX())
return VersionRange::allGTE(llvm::VersionTuple(10, 15, 0));
if (target.isiOS()) // also returns true on tvOS
return VersionRange::allGTE(llvm::VersionTuple(13, 0, 0));
if (target.isWatchOS())
return VersionRange::allGTE(llvm::VersionTuple(6, 0, 0));
return VersionRange::all();
}
static bool checkObjCClassStubAvailability(ASTContext &ctx, const Decl *decl) {
auto minRange = getMinOSVersionForClassStubs(ctx.LangOpts.Target);
auto targetRange = AvailabilityContext::forDeploymentTarget(ctx);
if (targetRange.getOSVersion().isContainedIn(minRange))
return true;
auto declRange = AvailabilityInference::availableRange(decl, ctx);
return declRange.getOSVersion().isContainedIn(minRange);
}
static const ClassDecl *getResilientAncestor(ModuleDecl *mod,
const ClassDecl *classDecl) {
auto *superclassDecl = classDecl;
for (;;) {
if (superclassDecl->hasResilientMetadata(mod,
ResilienceExpansion::Maximal))
return superclassDecl;
superclassDecl = superclassDecl->getSuperclassDecl();
}
}
/// Check whether the given declaration occurs within a constrained
/// extension, or an extension of a generic class, or an
/// extension of an Objective-C runtime visible class, and
/// therefore is not representable in Objective-C.
static bool checkObjCInExtensionContext(const ValueDecl *value,
ObjCReason reason) {
auto behavior = behaviorLimitForObjCReason(reason, value->getASTContext());
auto DC = value->getDeclContext();
if (auto ED = dyn_cast<ExtensionDecl>(DC)) {
if (ED->getTrailingWhereClause()) {
softenIfAccessNote(value, reason.getAttr(),
value->diagnose(diag::objc_in_extension_context)
.limitBehavior(behavior));
reason.describe(value);
return true;
}
if (auto classDecl = ED->getSelfClassDecl()) {
auto *mod = value->getModuleContext();
auto &ctx = mod->getASTContext();
if (!checkObjCClassStubAvailability(ctx, value)) {
if (classDecl->checkAncestry().contains(
AncestryFlags::ResilientOther) ||
classDecl->hasResilientMetadata(mod,
ResilienceExpansion::Maximal)) {
auto &target = ctx.LangOpts.Target;
auto platform = prettyPlatformString(targetPlatform(ctx.LangOpts));
auto range = getMinOSVersionForClassStubs(target);
auto *ancestor = getResilientAncestor(mod, classDecl);
softenIfAccessNote(value, reason.getAttr(),
value->diagnose(diag::objc_in_resilient_extension,
value->getDescriptiveKind(),
ancestor->getName(),
platform,
range.getLowerEndpoint())
.limitBehavior(behavior));
reason.describe(value);
return true;
}
}
if (classDecl->isGenericContext()) {
// We do allow one special case. A @_dynamicReplacement(for:) function.
// Currently, this is only supported if the replaced decl is from a
// module compiled with -enable-implicit-dynamic.
if (value->getDynamicallyReplacedDecl() &&
value->getDynamicallyReplacedDecl()
->getModuleContext()
->isImplicitDynamicEnabled())
return false;
if (!classDecl->isTypeErasedGenericClass()) {
softenIfAccessNote(value, reason.getAttr(),
value->diagnose(diag::objc_in_generic_extension,
classDecl->isGeneric())
.limitBehavior(behavior));
reason.describe(value);
return true;
}
}
}
}
return false;
}
/// Determines whether the given type is a valid Objective-C class type that
/// can be returned as a result of a throwing function.
static bool isValidObjectiveCErrorResultType(DeclContext *dc, Type type) {
switch (type->getForeignRepresentableIn(ForeignLanguage::ObjectiveC, dc)
.first) {
case ForeignRepresentableKind::Trivial:
case ForeignRepresentableKind::None:
// Special case: If the type is Unmanaged<T>, then return true, because
// Unmanaged<T> can be represented in Objective-C (if T can be).
if (auto BGT = type->getAs<BoundGenericType>()) {
if (BGT->isUnmanaged()) {
return true;
}
}
return false;
case ForeignRepresentableKind::Object:
case ForeignRepresentableKind::Bridged:
case ForeignRepresentableKind::BridgedError:
case ForeignRepresentableKind::StaticBridged:
return true;
}
llvm_unreachable("Unhandled ForeignRepresentableKind in switch.");
}
bool swift::isRepresentableInObjC(
const AbstractFunctionDecl *AFD,
ObjCReason Reason,
Optional<ForeignAsyncConvention> &asyncConvention,
Optional<ForeignErrorConvention> &errorConvention) {
// Clear out the async and error conventions. They will be added later if
// needed.
asyncConvention = None;
errorConvention = None;
// If you change this function, you must add or modify a test in PrintAsObjC.
ASTContext &ctx = AFD->getASTContext();
DiagnosticStateRAII diagState(ctx.Diags);
if (checkObjCInForeignClassContext(AFD, Reason))
return false;
if (checkObjCWithGenericParams(AFD, Reason))
return false;
if (checkObjCInExtensionContext(AFD, Reason))
return false;
if (checkObjCActorIsolation(AFD, Reason))
return false;
auto behavior = behaviorLimitForObjCReason(Reason, ctx);
if (AFD->isOperator()) {
AFD->diagnose((isa<ProtocolDecl>(AFD->getDeclContext())
? diag::objc_operator_proto
: diag::objc_operator))
.limitBehavior(behavior);
return false;
}
if (auto accessor = dyn_cast<AccessorDecl>(AFD)) {
// Accessors can only be @objc if the storage declaration is.
// Global computed properties may however @_cdecl their accessors.
auto storage = accessor->getStorage();
bool storageIsObjC = storage->isObjC()
|| Reason == ObjCReason::ExplicitlyCDecl
|| Reason == ObjCReason::WitnessToObjC
|| Reason == ObjCReason::MemberOfObjCProtocol;
switch (accessor->getAccessorKind()) {
case AccessorKind::DidSet:
case AccessorKind::WillSet: {
// willSet/didSet implementations are never exposed to objc, they are
// always directly dispatched from the synthesized setter.
diagnoseAndRemoveAttr(accessor, Reason.getAttr(),
diag::objc_observing_accessor)
.limitBehavior(behavior);
Reason.describe(accessor);
return false;
}
case AccessorKind::Get:
if (!storageIsObjC) {
auto error = isa<VarDecl>(storage)
? diag::objc_getter_for_nonobjc_property
: diag::objc_getter_for_nonobjc_subscript;
diagnoseAndRemoveAttr(accessor, Reason.getAttr(), error)
.limitBehavior(behavior);
Reason.describe(accessor);
return false;
}
return true;
case AccessorKind::Set:
if (!storageIsObjC) {
auto error = isa<VarDecl>(storage)
? diag::objc_setter_for_nonobjc_property
: diag::objc_setter_for_nonobjc_subscript;
diagnoseAndRemoveAttr(accessor, Reason.getAttr(), error)
.limitBehavior(behavior);
Reason.describe(accessor);
return false;
}
return true;
case AccessorKind::Address:
case AccessorKind::MutableAddress:
diagnoseAndRemoveAttr(accessor, Reason.getAttr(), diag::objc_addressor)
.limitBehavior(behavior);
Reason.describe(accessor);
return false;
case AccessorKind::Read:
case AccessorKind::Modify:
diagnoseAndRemoveAttr(accessor, Reason.getAttr(),
diag::objc_coroutine_accessor)
.limitBehavior(behavior);
Reason.describe(accessor);
return false;
}
llvm_unreachable("bad kind");
}
// As a special case, an initializer with a single, named parameter of type
// '()' is always representable in Objective-C. This allows us to cope with
// zero-parameter methods with selectors that are longer than "init". For
// example, this allows:
//
// \code
// class Foo {
// @objc init(malice: ()) { } // selector is "initWithMalice"
// }
// \endcode
bool isSpecialInit = false;
if (auto init = dyn_cast<ConstructorDecl>(AFD))
isSpecialInit = init->isObjCZeroParameterWithLongSelector();
if (!isSpecialInit &&
!isParamListRepresentableInObjC(AFD,
AFD->getParameters(),
Reason)) {
return false;
}
if (auto FD = dyn_cast<FuncDecl>(AFD)) {
Type ResultType = FD->mapTypeIntoContext(FD->getResultInterfaceType());
if (!FD->hasAsync() &&
!ResultType->hasError() &&
!ResultType->isVoid() &&
!ResultType->isUninhabited() &&
!ResultType->isRepresentableIn(ForeignLanguage::ObjectiveC,
const_cast<FuncDecl *>(FD))) {
softenIfAccessNote(AFD, Reason.getAttr(),
AFD->diagnose(diag::objc_invalid_on_func_result_type,
getObjCDiagnosticAttrKind(Reason))
.limitBehavior(behavior));
diagnoseTypeNotRepresentableInObjC(FD, ResultType,
FD->getResultTypeSourceRange(),
behavior);
Reason.describe(FD);
return false;
}
}
if (AFD->hasAsync()) {
// Asynchronous functions move all of the result value and thrown error
// information into a completion handler.
auto FD = dyn_cast<FuncDecl>(AFD);
if (!FD) {
softenIfAccessNote(AFD, Reason.getAttr(),
AFD->diagnose(diag::not_objc_function_async, AFD->getDescriptiveKind())
.highlight(AFD->getAsyncLoc())
.limitBehavior(behavior));
Reason.describe(AFD);
return false;
}
// The completion handler transformation cannot properly represent a
// dynamic 'Self' type, so disallow @objc for such methods.
if (FD->hasDynamicSelfResult()) {
AFD->diagnose(diag::async_objc_dynamic_self)
.highlight(AFD->getAsyncLoc())
.limitBehavior(behavior);
Reason.describe(AFD);
return false;
}
// The completion handler parameter always goes at the end.
unsigned completionHandlerParamIndex = AFD->getParameters()->size();
// Decompose the return type to form the parameter type of the completion
// handler.
SmallVector<AnyFunctionType::Param, 2> completionHandlerParams;
auto addCompletionHandlerParam = [&](Type type) {
// For a throwing asynchronous function, make each parameter type optional
// if that's representable in Objective-C.
if (AFD->hasThrows() &&
!type->getOptionalObjectType() &&
isValidObjectiveCErrorResultType(const_cast<FuncDecl *>(FD), type)) {
type = OptionalType::get(type);
}
completionHandlerParams.push_back(AnyFunctionType::Param(type));
// Make sure that the paraneter type is representable in Objective-C.
if (!type->isRepresentableIn(
ForeignLanguage::ObjectiveC, const_cast<FuncDecl *>(FD))) {
softenIfAccessNote(AFD, Reason.getAttr(),
AFD->diagnose(diag::objc_invalid_on_func_result_type,
getObjCDiagnosticAttrKind(Reason))
.limitBehavior(behavior));
diagnoseTypeNotRepresentableInObjC(FD, type,
FD->getResultTypeSourceRange(),
behavior);
Reason.describe(FD);
return true;
}
return false;
};
// Translate the result type of the function into parameters for the
// completion handler parameter, exploding one level of tuple if needed.
Type resultType = FD->mapTypeIntoContext(FD->getResultInterfaceType());
if (auto tupleType = resultType->getAs<TupleType>()) {
for (const auto &tupleElt : tupleType->getElements()) {
if (addCompletionHandlerParam(tupleElt.getType()))
return false;
}
} else {
if (addCompletionHandlerParam(resultType))
return false;
}
// For a throwing asynchronous function, an Error? parameter is added
// to the completion handler parameter, and will be non-nil to signal
// a thrown error.
Optional<unsigned> completionHandlerErrorParamIndex;
if (FD->hasThrows()) {
completionHandlerErrorParamIndex = completionHandlerParams.size();
addCompletionHandlerParam(OptionalType::get(ctx.getExceptionType()));
}
Type completionHandlerType = FunctionType::get(
completionHandlerParams, TupleType::getEmpty(ctx),
ASTExtInfoBuilder(FunctionTypeRepresentation::Block, false).build());
asyncConvention = ForeignAsyncConvention(
completionHandlerType->getCanonicalType(), completionHandlerParamIndex,
completionHandlerErrorParamIndex,
/* no flag argument */ None, false);
} else if (AFD->hasThrows()) {
// Synchronous throwing functions must map to a particular error convention.
DeclContext *dc = const_cast<AbstractFunctionDecl *>(AFD);
SourceLoc throwsLoc;
Type resultType;
const ConstructorDecl *ctor = nullptr;
if (auto func = dyn_cast<FuncDecl>(AFD)) {
resultType = func->getResultInterfaceType();
throwsLoc = func->getThrowsLoc();
} else {
ctor = cast<ConstructorDecl>(AFD);
throwsLoc = ctor->getThrowsLoc();
}
ForeignErrorConvention::Kind kind;
CanType errorResultType;
Type optOptionalType;
if (ctor) {
// Initializers always use the nil result convention.
kind = ForeignErrorConvention::NilResult;
// Only non-failing initializers can throw.
if (ctor->isFailable()) {
softenIfAccessNote(AFD, Reason.getAttr(),
AFD->diagnose(diag::objc_invalid_on_failing_init,
getObjCDiagnosticAttrKind(Reason))
.highlight(throwsLoc)
.limitBehavior(behavior));
Reason.describe(AFD);
return false;
}
} else if (resultType->isVoid()) {
// Functions that return nothing (void) can be throwing; they indicate
// failure with a 'false' result.
kind = ForeignErrorConvention::ZeroResult;
NominalTypeDecl *boolDecl = ctx.getObjCBoolDecl();
// On Linux, we might still run @objc tests even though there's
// no ObjectiveC Foundation, so use Swift.Bool instead of crapping
// out.
if (boolDecl == nullptr)
boolDecl = ctx.getBoolDecl();
if (boolDecl == nullptr) {
AFD->diagnose(diag::broken_bool);
return false;
}
errorResultType = boolDecl->getDeclaredInterfaceType()->getCanonicalType();
} else if (!resultType->getOptionalObjectType() &&
isValidObjectiveCErrorResultType(dc, resultType)) {
// Functions that return a (non-optional) type bridged to Objective-C
// can be throwing; they indicate failure with a nil result.
kind = ForeignErrorConvention::NilResult;
} else if ((optOptionalType = resultType->getOptionalObjectType()) &&
isValidObjectiveCErrorResultType(dc, optOptionalType)) {
// Cannot return an optional bridged type, because 'nil' is reserved
// to indicate failure. Call this out in a separate diagnostic.
softenIfAccessNote(AFD, Reason.getAttr(),
AFD->diagnose(diag::objc_invalid_on_throwing_optional_result,
getObjCDiagnosticAttrKind(Reason),
resultType)
.highlight(throwsLoc)
.limitBehavior(behavior));
Reason.describe(AFD);
return false;
} else {
// Other result types are not permitted.
softenIfAccessNote(AFD, Reason.getAttr(),
AFD->diagnose(diag::objc_invalid_on_throwing_result,
getObjCDiagnosticAttrKind(Reason), resultType)
.highlight(throwsLoc)
.limitBehavior(behavior));
Reason.describe(AFD);
return false;
}
// The error type is always 'AutoreleasingUnsafeMutablePointer<NSError?>?'.
auto nsErrorTy = ctx.getNSErrorType();
Type errorParameterType;
if (nsErrorTy) {
errorParameterType = OptionalType::get(nsErrorTy);
errorParameterType
= BoundGenericType::get(
ctx.getAutoreleasingUnsafeMutablePointerDecl(),
nullptr,
errorParameterType);
errorParameterType = OptionalType::get(errorParameterType);
}
// Determine the parameter index at which the error will go.
unsigned errorParameterIndex;
bool foundErrorParameterIndex = false;
// If there is an explicit @objc attribute with a name, look for
// the "error" selector piece.
if (auto objc = AFD->getAttrs().getAttribute<ObjCAttr>()) {
if (auto objcName = objc->getName()) {
auto selectorPieces = objcName->getSelectorPieces();
for (unsigned i = selectorPieces.size(); i > 0; --i) {
// If the selector piece is "error", this is the location of
// the error parameter.
auto piece = selectorPieces[i-1];
if (piece == ctx.Id_error) {
errorParameterIndex = i-1;
foundErrorParameterIndex = true;
break;
}
// If the first selector piece ends with "Error", it's here.
if (i == 1 && camel_case::getLastWord(piece.str()) == "Error") {
errorParameterIndex = i-1;
foundErrorParameterIndex = true;
break;
}
}
}
}
// If the selector did not provide an index for the error, find
// the last parameter that is not a trailing closure.
if (!foundErrorParameterIndex) {
auto *paramList = AFD->getParameters();
errorParameterIndex = paramList->size();
// Note: the errorParameterIndex is actually a SIL function
// parameter index, which means tuples are exploded. Normally
// tuple types cannot be bridged to Objective-C, except for
// one special case -- a constructor with a single named parameter
// 'foo' of tuple type becomes a zero-argument selector named
// 'initFoo'.
if (auto *CD = dyn_cast<ConstructorDecl>(AFD))
if (CD->isObjCZeroParameterWithLongSelector())
--errorParameterIndex;
while (errorParameterIndex > 0) {
// Skip over trailing closures.
auto type = paramList->get(errorParameterIndex - 1)->getType();
// It can't be a trailing closure unless it has a specific form.
// Only consider the rvalue type.
type = type->getRValueType();
// Look through one level of optionality.
if (auto objectType = type->getOptionalObjectType())
type = objectType;
// Is it a function type?
if (!type->is<AnyFunctionType>()) break;
--errorParameterIndex;
}
}
// Form the error convention.
CanType canErrorParameterType;
if (errorParameterType)
canErrorParameterType = errorParameterType->getCanonicalType();
switch (kind) {
case ForeignErrorConvention::ZeroResult:
errorConvention = ForeignErrorConvention::getZeroResult(
errorParameterIndex,
ForeignErrorConvention::IsNotOwned,
ForeignErrorConvention::IsNotReplaced,
canErrorParameterType,
errorResultType);
break;
case ForeignErrorConvention::NonZeroResult:
errorConvention = ForeignErrorConvention::getNonZeroResult(
errorParameterIndex,
ForeignErrorConvention::IsNotOwned,
ForeignErrorConvention::IsNotReplaced,
canErrorParameterType,
errorResultType);
break;
case ForeignErrorConvention::ZeroPreservedResult:
errorConvention = ForeignErrorConvention::getZeroPreservedResult(
errorParameterIndex,
ForeignErrorConvention::IsNotOwned,