-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathCSClosure.cpp
1565 lines (1271 loc) · 51.9 KB
/
CSClosure.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- CSClosure.cpp - Closures -----------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements constraint generation and solution application for
// closures. It provides part of the implementation of the ConstraintSystem
// class.
//
//===----------------------------------------------------------------------===//
#include "MiscDiagnostics.h"
#include "TypeChecker.h"
#include "swift/Sema/ConstraintSystem.h"
using namespace swift;
using namespace swift::constraints;
namespace {
// Produce an implicit empty tuple expression.
Expr *getVoidExpr(ASTContext &ctx) {
auto *voidExpr = TupleExpr::createEmpty(ctx,
/*LParenLoc=*/SourceLoc(),
/*RParenLoc=*/SourceLoc(),
/*Implicit=*/true);
voidExpr->setType(ctx.TheEmptyTupleType);
return voidExpr;
}
/// Find any type variable references inside of an AST node.
class TypeVariableRefFinder : public ASTWalker {
ConstraintSystem &CS;
ASTNode Parent;
llvm::SmallPtrSetImpl<TypeVariableType *> &ReferencedVars;
public:
TypeVariableRefFinder(
ConstraintSystem &cs, ASTNode parent,
llvm::SmallPtrSetImpl<TypeVariableType *> &referencedVars)
: CS(cs), Parent(parent), ReferencedVars(referencedVars) {}
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
if (auto *DRE = dyn_cast<DeclRefExpr>(expr)) {
if (auto type = CS.getTypeIfAvailable(DRE->getDecl()))
inferVariables(type);
}
return {true, expr};
}
std::pair<bool, Stmt *> walkToStmtPre(Stmt *stmt) override {
// Return statements have to reference outside result type
// since all of them are joined by it if it's not specified
// explicitly.
if (isa<ReturnStmt>(stmt)) {
if (auto *closure = getAsExpr<ClosureExpr>(Parent)) {
inferVariables(CS.getClosureType(closure)->getResult());
}
}
return {true, stmt};
}
private:
void inferVariables(Type type) {
type = type->getWithoutSpecifierType();
// Record the type variable itself because it has to
// be in scope even when already bound.
if (auto *typeVar = type->getAs<TypeVariableType>()) {
ReferencedVars.insert(typeVar);
// It is possible that contextual type of a parameter/result
// has been assigned to e.g. an anonymous or named argument
// early, to facilitate closure type checking. Such a
// type can have type variables inside e.g.
//
// func test<T>(_: (UnsafePointer<T>) -> Void) {}
//
// test { ptr in
// ...
// }
//
// Type variable representing `ptr` in the body of
// this closure would be bound to `UnsafePointer<$T>`
// in this case, where `$T` is a type variable for a
// generic parameter `T`.
type = CS.getFixedTypeRecursive(typeVar, /*wantRValue=*/false);
if (type->isEqual(typeVar))
return;
}
if (type->hasTypeVariable()) {
SmallPtrSet<TypeVariableType *, 4> typeVars;
type->getTypeVariables(typeVars);
ReferencedVars.insert(typeVars.begin(), typeVars.end());
}
}
};
/// Find any references to not yet resolved outer closure parameters
/// used in the body of the inner closure. This is required because
/// isolated conjunctions, just like single-expression closures, have
/// to be connected to type variables they are going to use, otherwise
/// they'll get placed in a separate solver component and would never
/// produce a solution.
class UnresolvedClosureParameterCollector : public ASTWalker {
ConstraintSystem &CS;
llvm::SmallSetVector<TypeVariableType *, 4> Vars;
public:
UnresolvedClosureParameterCollector(ConstraintSystem &cs) : CS(cs) {}
std::pair<bool, Expr *> walkToExprPre(Expr *expr) override {
if (auto *DRE = dyn_cast<DeclRefExpr>(expr)) {
auto *decl = DRE->getDecl();
if (isa<ParamDecl>(decl)) {
if (auto type = CS.getTypeIfAvailable(decl)) {
if (auto *typeVar = type->getAs<TypeVariableType>()) {
Vars.insert(typeVar);
} else if (type->hasTypeVariable()) {
// Parameter or result type could be only partially
// resolved e.g. `{ (x: X) -> Void in ... }` where
// `X` is a generic type.
SmallPtrSet<TypeVariableType *, 4> typeVars;
type->getTypeVariables(typeVars);
Vars.insert(typeVars.begin(), typeVars.end());
}
}
}
}
return {true, expr};
}
ArrayRef<TypeVariableType *> getVariables() const {
return Vars.getArrayRef();
}
};
// MARK: Constraint generation
/// Check whether it makes sense to convert this element into a constrant.
static bool isViableElement(ASTNode element) {
if (auto *decl = element.dyn_cast<Decl *>()) {
// - Ignore variable declarations, they are handled by pattern bindings;
// - Ignore #if, the chosen children should appear in the
// surrounding context;
// - Skip #warning and #error, they are handled during solution
// application.
if (isa<VarDecl>(decl) || isa<IfConfigDecl>(decl) ||
isa<PoundDiagnosticDecl>(decl))
return false;
}
if (auto *stmt = element.dyn_cast<Stmt *>()) {
// Empty brace statements are now viable because they do not require
// inference.
if (auto *braceStmt = dyn_cast<BraceStmt>(stmt)) {
return braceStmt->getNumElements() > 0;
}
}
return true;
}
using ElementInfo = std::tuple<ASTNode, ContextualTypeInfo,
/*isDiscarded=*/bool, ConstraintLocator *>;
static void createConjunction(ConstraintSystem &cs,
ArrayRef<ElementInfo> elements,
ConstraintLocator *locator) {
bool isIsolated = false;
SmallVector<Constraint *, 4> constraints;
SmallVector<TypeVariableType *, 2> referencedVars;
if (locator->directlyAt<ClosureExpr>()) {
auto *closure = castToExpr<ClosureExpr>(locator->getAnchor());
// Conjunction associated with the body of the closure has to
// reference a type variable representing closure type,
// otherwise it would get disconnected from its contextual type.
referencedVars.push_back(cs.getType(closure)->castTo<TypeVariableType>());
// Body of the closure is always isolated from its context, only
// its individual elements are allowed access to type information
// from the ouside e.g. parameters/result type.
isIsolated = true;
}
UnresolvedClosureParameterCollector paramCollector(cs);
for (const auto &entry : elements) {
ASTNode element = std::get<0>(entry);
ContextualTypeInfo context = std::get<1>(entry);
bool isDiscarded = std::get<2>(entry);
ConstraintLocator *elementLoc = std::get<3>(entry);
if (!isViableElement(element))
continue;
// If this conjunction going to represent a body of a closure,
// let's collect references to not yet resolved outer
// closure parameters.
if (isIsolated)
element.walk(paramCollector);
constraints.push_back(Constraint::createClosureBodyElement(
cs, element, context, elementLoc, isDiscarded));
}
// It's possible that there are no viable elements in the body,
// because e.g. whole body is an `#if` statement or it only has
// declarations that are checked during solution application.
// In such cases, let's avoid creating a conjunction.
if (constraints.empty())
return;
for (auto *externalVar : paramCollector.getVariables())
referencedVars.push_back(externalVar);
cs.addUnsolvedConstraint(Constraint::createConjunction(
cs, constraints, isIsolated, locator, referencedVars));
}
ElementInfo makeElement(ASTNode node, ConstraintLocator *locator,
ContextualTypeInfo context = ContextualTypeInfo(),
bool isDiscarded = false) {
return std::make_tuple(node, context, isDiscarded, locator);
}
static ProtocolDecl *getSequenceProtocol(ASTContext &ctx, SourceLoc loc,
bool inAsyncContext) {
return TypeChecker::getProtocol(ctx, loc,
inAsyncContext
? KnownProtocolKind::AsyncSequence
: KnownProtocolKind::Sequence);
}
/// Statement visitor that generates constraints for a given closure body.
class ClosureConstraintGenerator
: public StmtVisitor<ClosureConstraintGenerator, void> {
friend StmtVisitor<ClosureConstraintGenerator, void>;
ConstraintSystem &cs;
ClosureExpr *closure;
ConstraintLocator *locator;
public:
/// Whether an error was encountered while generating constraints.
bool hadError = false;
ClosureConstraintGenerator(ConstraintSystem &cs, ClosureExpr *closure,
ConstraintLocator *locator)
: cs(cs), closure(closure), locator(locator) {}
void visitPattern(Pattern *pattern, ContextualTypeInfo context) {
auto parentElement =
locator->getLastElementAs<LocatorPathElt::ClosureBodyElement>();
if (!parentElement) {
hadError = true;
return;
}
if (auto *stmt = parentElement->getElement().dyn_cast<Stmt *>()) {
if (isa<ForEachStmt>(stmt)) {
visitForEachPattern(pattern, cast<ForEachStmt>(stmt));
return;
}
if (isa<CaseStmt>(stmt)) {
visitCaseItemPattern(pattern, context);
return;
}
}
llvm_unreachable("Unsupported pattern");
}
void visitCaseItem(CaseLabelItem *caseItem, ContextualTypeInfo context) {
assert(context.purpose == CTP_CaseStmt);
// Resolve the pattern.
auto *pattern = caseItem->getPattern();
if (!caseItem->isPatternResolved()) {
pattern = TypeChecker::resolvePattern(pattern, closure,
/*isStmtCondition=*/false);
if (!pattern) {
hadError = true;
return;
}
}
// Let's generate constraints for pattern + where clause.
// The assumption is that this shouldn't be too complex
// to handle, but if it turns out to be false, this could
// always be converted into a conjunction.
// Generate constraints for pattern.
visitPattern(pattern, context);
auto *guardExpr = caseItem->getGuardExpr();
// Generate constraints for `where` clause (if any).
if (guardExpr) {
guardExpr = cs.generateConstraints(guardExpr, closure);
if (!guardExpr) {
hadError = true;
return;
}
}
// Save information about case item so it could be referenced during
// solution application.
cs.setCaseLabelItemInfo(caseItem, {pattern, guardExpr});
}
private:
/// This method handles both pattern and the sequence expression
/// associated with `for-in` loop because types in this situation
/// flow in both directions:
///
/// - From pattern to sequence, informing its element type e.g.
/// `for i: Int8 in 0 ..< 8`
///
/// - From sequence to pattern, when pattern has no type information.
void visitForEachPattern(Pattern *pattern, ForEachStmt *forEachStmt) {
auto &ctx = cs.getASTContext();
bool isAsync = forEachStmt->getAwaitLoc().isValid();
// Verify pattern.
{
auto contextualPattern =
ContextualPattern::forRawPattern(pattern, closure);
Type patternType = TypeChecker::typeCheckPattern(contextualPattern);
if (patternType->hasError()) {
hadError = true;
return;
}
}
auto *sequenceProto =
getSequenceProtocol(ctx, forEachStmt->getForLoc(), isAsync);
if (!sequenceProto) {
hadError = true;
return;
}
auto *contextualLocator = cs.getConstraintLocator(
locator, LocatorPathElt::ContextualType(CTP_ForEachStmt));
// Generate constraints to initialize the pattern.
auto initType =
cs.generateConstraints(pattern, contextualLocator,
/*shouldBindPatternOneWay=*/true,
/*patternBinding=*/nullptr, /*patternIndex=*/0);
if (!initType) {
hadError = true;
return;
}
// Let's generate constraints for sequence associated with `for-in`
// statement. We can't do that separately because pattern can inform
// a type of the sequence e.g. `for in i: Int8 in 0 ..< 8 { ... }`
auto *sequenceExpr = forEachStmt->getSequence();
auto *sequenceLocator = cs.getConstraintLocator(sequenceExpr);
{
SolutionApplicationTarget target(
sequenceExpr, closure, CTP_ForEachSequence,
sequenceProto->getDeclaredInterfaceType(),
/*isDiscarded=*/false);
if (cs.generateConstraints(target, FreeTypeVariableBinding::Disallow)) {
hadError = true;
return;
}
cs.setSolutionApplicationTarget(sequenceExpr, target);
}
Type sequenceType =
cs.createTypeVariable(sequenceLocator, TVO_CanBindToNoEscape);
// This "workaround" warrants an explanation for posterity.
//
// The reason why we can't simplify use \c getType(sequenceExpr) here
// is due to how dependent member types are handled by \c simplifyTypeImpl
// - if the base type didn't change (and it wouldn't because it's a fully
// resolved concrete type) after simplification attempt the
// whole dependent member type would be just re-created without attempting
// to resolve it, so we have to use an intermediary here so that
// \c elementType and \c iteratorType can be resolved correctly.
cs.addConstraint(ConstraintKind::Conversion, cs.getType(sequenceExpr),
sequenceType, sequenceLocator);
auto elementAssocType = sequenceProto->getAssociatedType(ctx.Id_Element);
Type elementType = DependentMemberType::get(sequenceType, elementAssocType);
auto iteratorAssocType = sequenceProto->getAssociatedType(
isAsync ? ctx.Id_AsyncIterator : ctx.Id_Iterator);
Type iteratorType =
DependentMemberType::get(sequenceType, iteratorAssocType);
cs.addConstraint(
ConstraintKind::Conversion, elementType, initType,
cs.getConstraintLocator(contextualLocator,
ConstraintLocator::SequenceElementType));
// Reference the makeIterator witness.
FuncDecl *makeIterator = isAsync ? ctx.getAsyncSequenceMakeAsyncIterator()
: ctx.getSequenceMakeIterator();
Type makeIteratorType =
cs.createTypeVariable(locator, TVO_CanBindToNoEscape);
cs.addValueWitnessConstraint(LValueType::get(sequenceType), makeIterator,
makeIteratorType, closure,
FunctionRefKind::Compound, contextualLocator);
// After successful constraint generation, let's record
// solution application target with all relevant information.
{
auto target = SolutionApplicationTarget::forForEachStmt(
forEachStmt, sequenceProto, closure,
/*bindTypeVarsOneWay=*/true,
/*contextualPurpose=*/CTP_ForEachSequence);
auto &targetInfo = target.getForEachStmtInfo();
targetInfo.sequenceType = sequenceType;
targetInfo.elementType = elementType;
targetInfo.iteratorType = iteratorType;
targetInfo.initType = initType;
target.setPattern(pattern);
cs.setSolutionApplicationTarget(forEachStmt, target);
}
}
void visitCaseItemPattern(Pattern *pattern, ContextualTypeInfo context) {
Type patternType =
cs.generateConstraints(pattern, locator, /*bindPatternVarsOneWay=*/true,
/*patternBinding=*/nullptr, /*patternIndex=*/0);
if (!patternType) {
hadError = true;
return;
}
// Convert the contextual type to the pattern, which establishes the
// bindings.
cs.addConstraint(ConstraintKind::Conversion, context.getType(), patternType,
locator);
// For any pattern variable that has a parent variable (i.e., another
// pattern variable with the same name in the same case), require that
// the types be equivalent.
pattern->forEachNode([&](Pattern *pattern) {
auto namedPattern = dyn_cast<NamedPattern>(pattern);
if (!namedPattern)
return;
auto var = namedPattern->getDecl();
if (auto parentVar = var->getParentVarDecl()) {
cs.addConstraint(
ConstraintKind::Equal, cs.getType(parentVar), cs.getType(var),
cs.getConstraintLocator(
locator, LocatorPathElt::PatternMatch(namedPattern)));
}
});
}
void visitDecl(Decl *decl) {
if (isSupportedMultiStatementClosure()) {
if (auto patternBinding = dyn_cast<PatternBindingDecl>(decl)) {
SolutionApplicationTarget target(patternBinding);
if (cs.generateConstraints(target, FreeTypeVariableBinding::Disallow))
hadError = true;
return;
}
}
// Just ignore #if; the chosen children should appear in the
// surrounding context. This isn't good for source tools but it
// at least works.
if (isa<IfConfigDecl>(decl))
return;
// Skip #warning/#error; we'll handle them when applying the closure.
if (isa<PoundDiagnosticDecl>(decl))
return;
// Ignore variable declarations, because they're always handled within
// their enclosing pattern bindings.
if (isa<VarDecl>(decl))
return;
// Other declarations will be handled at application time.
}
void visitBreakStmt(BreakStmt *breakStmt) {
if (!isSupportedMultiStatementClosure())
llvm_unreachable("Unsupported statement: Break");
}
void visitContinueStmt(ContinueStmt *continueStmt) {
if (!isSupportedMultiStatementClosure())
llvm_unreachable("Unsupported statement: Continue");
}
void visitDeferStmt(DeferStmt *deferStmt) {
if (!isSupportedMultiStatementClosure())
llvm_unreachable("Unsupported statement: Defer");
}
void visitFallthroughStmt(FallthroughStmt *fallthroughStmt) {
if (!isSupportedMultiStatementClosure())
llvm_unreachable("Unsupported statement: Fallthrough");
}
void visitIfStmt(IfStmt *ifStmt) {
if (!isSupportedMultiStatementClosure())
llvm_unreachable("Unsupported statement: If");
SmallVector<ElementInfo, 4> elements;
// Condition
{
auto *condLoc =
cs.getConstraintLocator(locator, ConstraintLocator::Condition);
elements.push_back(makeElement(ifStmt->getCondPointer(), condLoc));
}
// Then Branch
{
auto *thenLoc = cs.getConstraintLocator(
locator, LocatorPathElt::TernaryBranch(/*then=*/true));
elements.push_back(makeElement(ifStmt->getThenStmt(), thenLoc));
}
// Else Branch (if any).
if (auto *elseStmt = ifStmt->getElseStmt()) {
auto *elseLoc = cs.getConstraintLocator(
locator, LocatorPathElt::TernaryBranch(/*then=*/false));
elements.push_back(makeElement(ifStmt->getElseStmt(), elseLoc));
}
createConjunction(cs, elements, locator);
}
void visitGuardStmt(GuardStmt *guardStmt) {
if (!isSupportedMultiStatementClosure())
llvm_unreachable("Unsupported statement: Guard");
createConjunction(cs,
{makeElement(guardStmt->getCondPointer(),
cs.getConstraintLocator(
locator, ConstraintLocator::Condition)),
makeElement(guardStmt->getBody(), locator)},
locator);
}
void visitWhileStmt(WhileStmt *whileStmt) {
if (!isSupportedMultiStatementClosure())
llvm_unreachable("Unsupported statement: Guard");
createConjunction(cs,
{makeElement(whileStmt->getCondPointer(),
cs.getConstraintLocator(
locator, ConstraintLocator::Condition)),
makeElement(whileStmt->getBody(), locator)},
locator);
}
void visitDoStmt(DoStmt *doStmt) {
if (!isSupportedMultiStatementClosure())
llvm_unreachable("Unsupported statement: Do");
visitBraceStmt(doStmt->getBody());
}
void visitRepeatWhileStmt(RepeatWhileStmt *repeatWhileStmt) {
if (!isSupportedMultiStatementClosure())
llvm_unreachable("Unsupported statement: RepeatWhile");
createConjunction(cs,
{makeElement(repeatWhileStmt->getCond(),
cs.getConstraintLocator(
locator, ConstraintLocator::Condition),
getContextForCondition()),
makeElement(repeatWhileStmt->getBody(), locator)},
locator);
}
void visitPoundAssertStmt(PoundAssertStmt *poundAssertStmt) {
if (!isSupportedMultiStatementClosure())
llvm_unreachable("Unsupported statement: PoundAssert");
createConjunction(cs,
{makeElement(poundAssertStmt->getCondition(),
cs.getConstraintLocator(
locator, ConstraintLocator::Condition),
getContextForCondition())},
locator);
}
void visitThrowStmt(ThrowStmt *throwStmt) {
if (!isSupportedMultiStatementClosure())
llvm_unreachable("Unsupported statement: Throw");
Type errType =
cs.getASTContext().getErrorDecl()->getDeclaredInterfaceType();
if (!errType) {
hadError = true;
return;
}
auto *errorExpr = throwStmt->getSubExpr();
createConjunction(
cs,
{makeElement(
errorExpr,
cs.getConstraintLocator(
locator, LocatorPathElt::ClosureBodyElement(errorExpr)),
{errType, CTP_ThrowStmt})},
locator);
}
void visitForEachStmt(ForEachStmt *forEachStmt) {
if (!isSupportedMultiStatementClosure())
llvm_unreachable("Unsupported statement: ForEach");
auto *stmtLoc = cs.getConstraintLocator(locator);
SmallVector<ElementInfo, 4> elements;
// For-each pattern.
//
// Note that we don't record a sequence here, it would
// be handled together with pattern because pattern can
// inform a type of sequence element e.g. `for i: Int8 in 0 ..< 8`
{
Pattern *pattern =
TypeChecker::resolvePattern(forEachStmt->getPattern(), closure,
/*isStmtCondition=*/false);
if (!pattern) {
hadError = true;
return;
}
elements.push_back(makeElement(pattern, stmtLoc));
}
// `where` clause if any.
if (auto *whereClause = forEachStmt->getWhere()) {
elements.push_back(
makeElement(whereClause, stmtLoc, getContextForCondition()));
}
// Body of the `for-in` loop.
elements.push_back(makeElement(forEachStmt->getBody(), stmtLoc));
createConjunction(cs, elements, locator);
}
void visitSwitchStmt(SwitchStmt *switchStmt) {
if (!isSupportedMultiStatementClosure())
llvm_unreachable("Unsupported statement: Switch");
auto *switchLoc = cs.getConstraintLocator(
locator, LocatorPathElt::ClosureBodyElement(switchStmt));
SmallVector<ElementInfo, 4> elements;
{
auto *subjectExpr = switchStmt->getSubjectExpr();
{
elements.push_back(makeElement(subjectExpr, switchLoc));
SolutionApplicationTarget target(subjectExpr, closure, CTP_Unused,
Type(), /*isDiscarded=*/false);
cs.setSolutionApplicationTarget(switchStmt, target);
}
for (auto rawCase : switchStmt->getRawCases())
elements.push_back(makeElement(rawCase, switchLoc));
}
createConjunction(cs, elements, switchLoc);
}
void visitDoCatchStmt(DoCatchStmt *doStmt) {
if (!isSupportedMultiStatementClosure())
llvm_unreachable("Unsupported statement: DoCatch");
auto *doLoc = cs.getConstraintLocator(
locator, LocatorPathElt::ClosureBodyElement(doStmt));
SmallVector<ElementInfo, 4> elements;
// First, let's record a body of `do` statement.
elements.push_back(makeElement(doStmt->getBody(), doLoc));
// After that has been type-checked, let's switch to
// individual `catch` statements.
for (auto *catchStmt : doStmt->getCatches())
elements.push_back(makeElement(catchStmt, doLoc));
createConjunction(cs, elements, doLoc);
}
void visitCaseStmt(CaseStmt *caseStmt) {
if (!isSupportedMultiStatementClosure())
llvm_unreachable("Unsupported statement: Case");
Type contextualTy;
{
auto parent =
locator->castLastElementTo<LocatorPathElt::ClosureBodyElement>()
.getElement();
if (parent.isStmt(StmtKind::Switch)) {
auto *switchStmt = cast<SwitchStmt>(parent.get<Stmt *>());
contextualTy = cs.getType(switchStmt->getSubjectExpr());
} else if (parent.isStmt(StmtKind::DoCatch)) {
contextualTy = cs.getASTContext().getExceptionType();
} else {
hadError = true;
return;
}
}
bindSwitchCasePatternVars(closure, caseStmt);
auto *caseLoc = cs.getConstraintLocator(
locator, LocatorPathElt::ClosureBodyElement(caseStmt));
SmallVector<ElementInfo, 4> elements;
for (auto &caseLabelItem : caseStmt->getMutableCaseLabelItems()) {
elements.push_back(
makeElement(&caseLabelItem, caseLoc, {contextualTy, CTP_CaseStmt}));
}
elements.push_back(makeElement(caseStmt->getBody(), caseLoc));
createConjunction(cs, elements, caseLoc);
}
void visitBraceStmt(BraceStmt *braceStmt) {
if (isSupportedMultiStatementClosure()) {
auto &ctx = cs.getASTContext();
if (isChildOf(StmtKind::Case)) {
auto *caseStmt = cast<CaseStmt>(
locator->castLastElementTo<LocatorPathElt::ClosureBodyElement>()
.asStmt());
for (auto caseBodyVar : caseStmt->getCaseBodyVariablesOrEmptyArray()) {
auto parentVar = caseBodyVar->getParentVarDecl();
assert(parentVar && "Case body variables always have parents");
cs.setType(caseBodyVar, cs.getType(parentVar));
}
}
SmallVector<ElementInfo, 4> elements;
for (auto element : braceStmt->getElements()) {
bool isDiscarded =
element.is<Expr *>() &&
(!ctx.LangOpts.Playground && !ctx.LangOpts.DebuggerSupport);
elements.push_back(makeElement(
element,
cs.getConstraintLocator(
locator, LocatorPathElt::ClosureBodyElement(element)),
/*contextualInfo=*/{}, isDiscarded));
}
createConjunction(cs, elements, locator);
return;
}
for (auto node : braceStmt->getElements()) {
if (auto expr = node.dyn_cast<Expr *>()) {
auto generatedExpr = cs.generateConstraints(
expr, closure, /*isInputExpression=*/false);
if (!generatedExpr) {
hadError = true;
}
} else if (auto stmt = node.dyn_cast<Stmt *>()) {
visit(stmt);
} else {
visitDecl(node.get<Decl *>());
}
}
}
void visitReturnStmt(ReturnStmt *returnStmt) {
auto contextualTy = cs.getClosureType(closure)->getResult();
// Single-expression closures are effectively a `return` statement,
// so let's give them a special locator as to indicate that.
if (closure->hasSingleExpressionBody()) {
auto *expr = returnStmt->getResult();
assert(expr && "single expression closure without expression?");
expr = cs.generateConstraints(expr, closure, /*isInputExpression=*/false);
if (!expr) {
hadError = true;
return;
}
cs.addConstraint(
ConstraintKind::Conversion, cs.getType(expr), contextualTy,
cs.getConstraintLocator(
closure, LocatorPathElt::ClosureBody(
/*hasReturn=*/!returnStmt->isImplicit())));
return;
}
Expr *resultExpr;
if (returnStmt->hasResult()) {
resultExpr = returnStmt->getResult();
assert(resultExpr && "non-empty result without expression?");
} else {
// If this is simplify `return`, let's create an empty tuple
// which is also useful if contextual turns out to be e.g. `Void?`.
resultExpr = getVoidExpr(closure->getASTContext());
}
SolutionApplicationTarget target(resultExpr, closure, CTP_ReturnStmt,
contextualTy,
/*isDiscarded=*/false);
if (cs.generateConstraints(target, FreeTypeVariableBinding::Disallow)) {
hadError = true;
return;
}
cs.setContextualType(target.getAsExpr(), TypeLoc::withoutLoc(contextualTy),
CTP_ReturnStmt);
cs.setSolutionApplicationTarget(returnStmt, target);
}
bool isSupportedMultiStatementClosure() const {
return !closure->hasSingleExpressionBody() &&
cs.participatesInInference(closure);
}
#define UNSUPPORTED_STMT(STMT) void visit##STMT##Stmt(STMT##Stmt *) { \
llvm_unreachable("Unsupported statement kind " #STMT); \
}
UNSUPPORTED_STMT(Yield)
UNSUPPORTED_STMT(Fail)
#undef UNSUPPORTED_STMT
private:
ContextualTypeInfo getContextForCondition() const {
auto boolDecl = cs.getASTContext().getBoolDecl();
assert(boolDecl && "Bool is missing");
return {boolDecl->getDeclaredInterfaceType(), CTP_Condition};
}
bool isChildOf(StmtKind kind) {
if (locator->getPath().empty())
return false;
auto parentElt =
locator->getLastElementAs<LocatorPathElt::ClosureBodyElement>();
return parentElt ? parentElt->getElement().isStmt(kind) : false;
}
};
}
bool ConstraintSystem::generateConstraints(ClosureExpr *closure) {
auto &ctx = closure->getASTContext();
if (participatesInInference(closure)) {
ClosureConstraintGenerator generator(*this, closure,
getConstraintLocator(closure));
generator.visit(closure->getBody());
if (closure->hasSingleExpressionBody())
return generator.hadError;
}
// If this closure has an empty body and no explicit result type
// let's bind result type to `Void` since that's the only type empty body
// can produce. Otherwise, if (multi-statement) closure doesn't have
// an explicit result (no `return` statements) let's default it to `Void`.
if (!hasExplicitResult(closure)) {
auto constraintKind =
(closure->hasEmptyBody() && !closure->hasExplicitResultType())
? ConstraintKind::Bind
: ConstraintKind::Defaultable;
addConstraint(
constraintKind, getClosureType(closure)->getResult(),
ctx.TheEmptyTupleType,
getConstraintLocator(closure, ConstraintLocator::ClosureResult));
}
return false;
}
bool isConditionOfStmt(ConstraintLocatorBuilder locator) {
auto last = locator.last();
if (!(last && last->is<LocatorPathElt::Condition>()))
return false;
SmallVector<LocatorPathElt, 4> path;
(void)locator.getLocatorParts(path);
path.pop_back();
if (path.empty())
return false;
if (auto closureElt = path.back().getAs<LocatorPathElt::ClosureBodyElement>())
return closureElt->getElement().dyn_cast<Stmt *>();
return false;
}
ConstraintSystem::SolutionKind
ConstraintSystem::simplifyClosureBodyElementConstraint(
ASTNode element, ContextualTypeInfo context, bool isDiscarded,
TypeMatchOptions flags, ConstraintLocatorBuilder locator) {
auto *closure = castToExpr<ClosureExpr>(locator.getAnchor());
ClosureConstraintGenerator generator(*this, closure,
getConstraintLocator(locator));
if (auto *expr = element.dyn_cast<Expr *>()) {
SolutionApplicationTarget target(expr, closure, context.purpose,
context.getType(), isDiscarded);
if (generateConstraints(target, FreeTypeVariableBinding::Disallow))
return SolutionKind::Error;
setSolutionApplicationTarget(expr, target);
return SolutionKind::Solved;
} else if (auto *stmt = element.dyn_cast<Stmt *>()) {
generator.visit(stmt);
} else if (auto *cond = element.dyn_cast<StmtCondition *>()) {
if (generateConstraints(*cond, closure))
return SolutionKind::Error;
} else if (auto *pattern = element.dyn_cast<Pattern *>()) {
generator.visitPattern(pattern, context);
} else if (auto *caseItem = element.dyn_cast<CaseLabelItem *>()) {
generator.visitCaseItem(caseItem, context);
} else {
generator.visit(element.get<Decl *>());
}
return generator.hadError ? SolutionKind::Error : SolutionKind::Solved;
}
// MARK: Solution application
namespace {
/// Statement visitor that applies constraints for a given closure body.
class ClosureConstraintApplication
: public StmtVisitor<ClosureConstraintApplication, ASTNode> {
friend StmtVisitor<ClosureConstraintApplication, ASTNode>;
Solution &solution;
ClosureExpr *closure;
Type resultType;
RewriteTargetFn rewriteTarget;
bool isSingleExpression;
public:
/// Whether an error was encountered while generating constraints.
bool hadError = false;
ClosureConstraintApplication(
Solution &solution, ClosureExpr *closure, Type resultType,
RewriteTargetFn rewriteTarget)
: solution(solution), closure(closure), resultType(resultType),
rewriteTarget(rewriteTarget),
isSingleExpression(closure->hasSingleExpressionBody()) { }