-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathCSBindings.cpp
2056 lines (1734 loc) · 71 KB
/
CSBindings.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- CSBindings.cpp - Constraint Solver -------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements selection of bindings for type variables.
//
//===----------------------------------------------------------------------===//
#include "swift/Sema/CSBindings.h"
#include "TypeChecker.h"
#include "swift/Sema/ConstraintGraph.h"
#include "swift/Sema/ConstraintSystem.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/raw_ostream.h"
#include <tuple>
using namespace swift;
using namespace constraints;
using namespace inference;
bool BindingSet::forClosureResult() const {
return Info.TypeVar->getImpl().isClosureResultType();
}
bool BindingSet::forGenericParameter() const {
return bool(Info.TypeVar->getImpl().getGenericParameter());
}
bool BindingSet::canBeNil() const {
auto &ctx = CS.getASTContext();
return Literals.count(
ctx.getProtocol(KnownProtocolKind::ExpressibleByNilLiteral));
}
bool BindingSet::isDirectHole() const {
// Direct holes are only allowed in "diagnostic mode".
if (!CS.shouldAttemptFixes())
return false;
return Bindings.empty() && getNumViableLiteralBindings() == 0 &&
Defaults.empty() && Info.TypeVar->getImpl().canBindToHole();
}
bool PotentialBindings::isGenericParameter() const {
auto *locator = TypeVar->getImpl().getLocator();
return locator && locator->isLastElement<LocatorPathElt::GenericParameter>();
}
bool PotentialBinding::isViableForJoin() const {
return Kind == AllowedBindingKind::Supertypes &&
!BindingType->hasLValueType() &&
!BindingType->hasUnresolvedType() &&
!BindingType->hasTypeVariable() &&
!BindingType->hasPlaceholder() &&
!BindingType->hasUnboundGenericType() &&
!hasDefaultedLiteralProtocol() &&
!isDefaultableBinding();
}
bool BindingSet::isDelayed() const {
if (auto *locator = TypeVar->getImpl().getLocator()) {
if (locator->isLastElement<LocatorPathElt::MemberRefBase>()) {
// If first binding is a "fallback" to a protocol type,
// it means that this type variable should be delayed
// until it either gains more contextual information, or
// there are no other type variables to attempt to make
// forward progress.
if (Bindings.empty())
return true;
if (Bindings[0].BindingType->is<ProtocolType>())
return true;
}
// Since force unwrap preserves l-valueness, resulting
// type variable has to be delayed until either l-value
// binding becomes available or there are no other
// variables to attempt.
if (locator->directlyAt<ForceValueExpr>() &&
TypeVar->getImpl().canBindToLValue()) {
return llvm::none_of(Bindings, [](const PotentialBinding &binding) {
return binding.BindingType->is<LValueType>();
});
}
}
if (isHole()) {
auto *locator = TypeVar->getImpl().getLocator();
assert(locator && "a hole without locator?");
// Delay resolution of the code completion expression until
// the very end to give it a chance to be bound to some
// contextual type even if it's a hole.
if (locator->directlyAt<CodeCompletionExpr>())
return true;
// Delay resolution of the `nil` literal to a hole until
// the very end to give it a change to be bound to some
// other type, just like code completion expression which
// relies solely on contextual information.
if (locator->directlyAt<NilLiteralExpr>())
return true;
// It's possible that type of member couldn't be determined,
// and if so it would be beneficial to bind member to a hole
// early to propagate that information down to arguments,
// result type of a call that references such a member.
//
// Note: This is done here instead of during binding inference,
// because it's possible that variable is marked as a "hole"
// (or that status is propagated to it) after constraints
// mentioned below are recorded.
return llvm::any_of(Info.DelayedBy, [&](Constraint *constraint) {
switch (constraint->getKind()) {
case ConstraintKind::ApplicableFunction:
case ConstraintKind::DynamicCallableApplicableFunction:
case ConstraintKind::BindOverload: {
return !ConstraintSystem::typeVarOccursInType(
TypeVar, CS.simplifyType(constraint->getSecondType()));
}
default:
return true;
}
});
}
return !Info.DelayedBy.empty();
}
bool BindingSet::involvesTypeVariables() const {
// This is effectively O(1) right now since bindings are re-computed
// on each step of the solver, but once bindings are computed
// incrementally it becomes more important to double-check that
// any adjacent type variables found previously are still unresolved.
return llvm::any_of(AdjacentVars, [](TypeVariableType *typeVar) {
return !typeVar->getImpl().getFixedType(/*record=*/nullptr);
});
}
bool BindingSet::isPotentiallyIncomplete() const {
// Generic parameters are always potentially incomplete.
if (Info.isGenericParameter())
return true;
// If current type variable is associated with a code completion token
// it's possible that it doesn't have enough contextual information
// to be resolved to anything so let's delay considering it until everything
// else is resolved.
if (Info.AssociatedCodeCompletionToken)
return true;
auto *locator = TypeVar->getImpl().getLocator();
if (!locator)
return false;
if (locator->isLastElement<LocatorPathElt::MemberRefBase>() &&
!Bindings.empty()) {
// If the base of the unresolved member reference like `.foo`
// couldn't be resolved we'd want to bind it to a hole at the
// very last moment possible, just like generic parameters.
if (isHole())
return true;
auto &binding = Bindings.front();
// If base type of a member chain is inferred to be a protocol type,
// let's consider this binding set to be potentially incomplete since
// that's done as a last resort effort at resolving first member.
if (auto *constraint = binding.getSource()) {
if (binding.BindingType->is<ProtocolType>() &&
constraint->getKind() == ConstraintKind::ConformsTo)
return true;
}
}
if (locator->isLastElement<LocatorPathElt::UnresolvedMemberChainResult>()) {
// If subtyping is allowed and this is a result of an implicit member chain,
// let's delay binding it to an optional until its object type resolved too or
// it has been determined that there is no possibility to resolve it. Otherwise
// we might end up missing solutions since it's allowed to implicitly unwrap
// base type of the chain but it can't be done early - type variable
// representing chain's result type has a different l-valueness comparing
// to generic parameter of the optional.
if (llvm::any_of(Bindings, [&](const PotentialBinding &binding) {
if (binding.Kind != AllowedBindingKind::Subtypes)
return false;
auto objectType = binding.BindingType->getOptionalObjectType();
return objectType && objectType->isTypeVariableOrMember();
}))
return true;
}
if (isHole()) {
// Delay resolution of the code completion expression until
// the very end to give it a chance to be bound to some
// contextual type even if it's a hole.
if (locator->directlyAt<CodeCompletionExpr>())
return true;
// Delay resolution of the `nil` literal to a hole until
// the very end to give it a change to be bound to some
// other type, just like code completion expression which
// relies solely on contextual information.
if (locator->directlyAt<NilLiteralExpr>())
return true;
}
// If there is a `bind param` constraint associated with
// current type variable, result should be aware of that
// fact. Binding set might be incomplete until
// this constraint is resolved, because we currently don't
// look-through constraints expect to `subtype` to try and
// find related bindings.
// This only affects type variable that appears one the
// right-hand side of the `bind param` constraint and
// represents result type of the closure body, because
// left-hand side gets types from overload choices.
if (llvm::any_of(
Info.EquivalentTo,
[&](const std::pair<TypeVariableType *, Constraint *> &equivalence) {
auto *constraint = equivalence.second;
return constraint->getKind() == ConstraintKind::BindParam &&
constraint->getSecondType()->isEqual(TypeVar);
}))
return true;
return false;
}
void BindingSet::inferTransitiveProtocolRequirements(
llvm::SmallDenseMap<TypeVariableType *, BindingSet> &inferredBindings) {
if (TransitiveProtocols)
return;
llvm::SmallVector<std::pair<TypeVariableType *, TypeVariableType *>, 4>
workList;
llvm::SmallPtrSet<TypeVariableType *, 4> visitedRelations;
llvm::SmallDenseMap<TypeVariableType *, SmallPtrSet<Constraint *, 4>, 4>
protocols;
auto addToWorkList = [&](TypeVariableType *parent,
TypeVariableType *typeVar) {
if (visitedRelations.insert(typeVar).second)
workList.push_back({parent, typeVar});
};
auto propagateProtocolsTo =
[&protocols](TypeVariableType *dstVar,
const ArrayRef<Constraint *> &direct,
const SmallPtrSetImpl<Constraint *> &transitive) {
auto &destination = protocols[dstVar];
if (direct.size() > 0)
destination.insert(direct.begin(), direct.end());
if (transitive.size() > 0)
destination.insert(transitive.begin(), transitive.end());
};
addToWorkList(nullptr, TypeVar);
do {
auto *currentVar = workList.back().second;
auto cachedBindings = inferredBindings.find(currentVar);
if (cachedBindings == inferredBindings.end()) {
workList.pop_back();
continue;
}
auto &bindings = cachedBindings->getSecond();
// If current variable already has transitive protocol
// conformances inferred, there is no need to look deeper
// into subtype/equivalence chain.
if (bindings.TransitiveProtocols) {
TypeVariableType *parent = nullptr;
std::tie(parent, currentVar) = workList.pop_back_val();
assert(parent);
propagateProtocolsTo(parent, bindings.getConformanceRequirements(),
*bindings.TransitiveProtocols);
continue;
}
for (const auto &entry : bindings.Info.SubtypeOf)
addToWorkList(currentVar, entry.first);
// If current type variable is part of an equivalence
// class, make it a "representative" and let it infer
// supertypes and direct protocol requirements from
// other members and their equivalence classes.
SmallSetVector<TypeVariableType *, 4> equivalenceClass;
{
SmallVector<TypeVariableType *, 4> workList;
workList.push_back(currentVar);
do {
auto *typeVar = workList.pop_back_val();
if (!equivalenceClass.insert(typeVar))
continue;
auto bindingSet = inferredBindings.find(typeVar);
if (bindingSet == inferredBindings.end())
continue;
auto &equivalences = bindingSet->getSecond().Info.EquivalentTo;
for (const auto &eqVar : equivalences) {
workList.push_back(eqVar.first);
}
} while (!workList.empty());
}
for (const auto &memberVar : equivalenceClass) {
if (memberVar == currentVar)
continue;
auto eqBindings = inferredBindings.find(memberVar);
if (eqBindings == inferredBindings.end())
continue;
const auto &bindings = eqBindings->getSecond();
llvm::SmallPtrSet<Constraint *, 2> placeholder;
// Add any direct protocols from members of the
// equivalence class, so they could be propagated
// to all of the members.
propagateProtocolsTo(currentVar, bindings.getConformanceRequirements(),
placeholder);
// Since type variables are equal, current type variable
// becomes a subtype to any supertype found in the current
// equivalence class.
for (const auto &eqEntry : bindings.Info.SubtypeOf)
addToWorkList(currentVar, eqEntry.first);
}
// More subtype/equivalences relations have been added.
if (workList.back().second != currentVar)
continue;
TypeVariableType *parent = nullptr;
std::tie(parent, currentVar) = workList.pop_back_val();
// At all of the protocols associated with current type variable
// are transitive to its parent, propogate them down the subtype/equivalence
// chain.
if (parent) {
propagateProtocolsTo(parent, bindings.getConformanceRequirements(),
protocols[currentVar]);
}
auto &inferredProtocols = protocols[currentVar];
llvm::SmallPtrSet<Constraint *, 4> protocolsForEquivalence;
// Equivalence class should contain both:
// - direct protocol requirements of the current type
// variable;
// - all of the transitive protocols inferred through
// the members of the equivalence class.
{
auto directRequirements = bindings.getConformanceRequirements();
protocolsForEquivalence.insert(directRequirements.begin(),
directRequirements.end());
protocolsForEquivalence.insert(inferredProtocols.begin(),
inferredProtocols.end());
}
// Propogate inferred protocols to all of the members of the
// equivalence class.
for (const auto &equivalence : bindings.Info.EquivalentTo) {
auto eqBindings = inferredBindings.find(equivalence.first);
if (eqBindings != inferredBindings.end()) {
auto &bindings = eqBindings->getSecond();
bindings.TransitiveProtocols.emplace(protocolsForEquivalence.begin(),
protocolsForEquivalence.end());
}
}
// Update the bindings associated with current type variable,
// to avoid repeating this inference process.
bindings.TransitiveProtocols.emplace(inferredProtocols.begin(),
inferredProtocols.end());
} while (!workList.empty());
}
void BindingSet::inferTransitiveBindings(
const llvm::SmallDenseMap<TypeVariableType *, BindingSet>
&inferredBindings) {
using BindingKind = AllowedBindingKind;
for (const auto &entry : Info.SupertypeOf) {
auto relatedBindings = inferredBindings.find(entry.first);
if (relatedBindings == inferredBindings.end())
continue;
auto &bindings = relatedBindings->getSecond();
// FIXME: This is a workaround necessary because solver doesn't filter
// bindings based on protocol requirements placed on a type variable.
//
// Forward propagate (subtype -> supertype) only literal conformance
// requirements since that helps solver to infer more types at
// parameter positions.
//
// \code
// func foo<T: ExpressibleByStringLiteral>(_: String, _: T) -> T {
// fatalError()
// }
//
// func bar(_: Any?) {}
//
// func test() {
// bar(foo("", ""))
// }
// \endcode
//
// If one of the literal arguments doesn't propagate its
// `ExpressibleByStringLiteral` conformance, we'd end up picking
// `T` with only one type `Any?` which is incorrect.
for (const auto &literal : bindings.Literals)
addLiteralRequirement(literal.second.getSource());
// Infer transitive defaults.
for (const auto &def : bindings.Defaults) {
if (def.getSecond()->getKind() == ConstraintKind::DefaultClosureType)
continue;
addDefault(def.second);
}
// TODO: We shouldn't need this in the future.
if (entry.second->getKind() != ConstraintKind::Subtype)
continue;
for (auto &binding : bindings.Bindings) {
// We need the binding kind for the potential binding to
// either be Exact or Supertypes in order for it to make sense
// to add Supertype bindings based on the relationship between
// our type variables.
if (binding.Kind != BindingKind::Exact &&
binding.Kind != BindingKind::Supertypes)
continue;
auto type = binding.BindingType;
if (type->isPlaceholder())
continue;
if (ConstraintSystem::typeVarOccursInType(TypeVar, type))
continue;
addBinding(binding.withSameSource(type, BindingKind::Supertypes));
}
}
}
void BindingSet::finalize(
llvm::SmallDenseMap<TypeVariableType *, BindingSet> &inferredBindings) {
inferTransitiveBindings(inferredBindings);
determineLiteralCoverage();
if (auto *locator = TypeVar->getImpl().getLocator()) {
if (locator->isLastElement<LocatorPathElt::MemberRefBase>()) {
// If this is a base of an unresolved member chain, as a last
// resort effort let's infer base to be a protocol type based
// on contextual conformance requirements.
//
// This allows us to find solutions in cases like this:
//
// \code
// func foo<T: P>(_: T) {}
// foo(.bar) <- `.bar` should be a static member of `P`.
// \endcode
if (!hasViableBindings()) {
inferTransitiveProtocolRequirements(inferredBindings);
if (TransitiveProtocols.hasValue()) {
for (auto *constraint : *TransitiveProtocols) {
auto protocolTy = constraint->getSecondType();
addBinding({protocolTy, AllowedBindingKind::Exact, constraint});
}
}
}
}
if (CS.shouldAttemptFixes() &&
locator->isLastElement<LocatorPathElt::UnresolvedMemberChainResult>()) {
// Let's see whether this chain is valid, if it isn't then to avoid
// diagnosing the same issue multiple different ways, let's infer
// result of the chain to be a hole.
auto *resultExpr =
castToExpr<UnresolvedMemberChainResultExpr>(locator->getAnchor());
auto *baseLocator = CS.getConstraintLocator(
resultExpr->getChainBase(), ConstraintLocator::UnresolvedMember);
if (CS.hasFixFor(
baseLocator,
FixKind::AllowInvalidStaticMemberRefOnProtocolMetatype)) {
CS.recordPotentialHole(TypeVar);
// Clear all of the previously collected bindings which are inferred
// from inside of a member chain.
Bindings.remove_if([](const PotentialBinding &binding) {
return binding.Kind == AllowedBindingKind::Supertypes;
});
}
}
}
}
void BindingSet::addBinding(PotentialBinding binding) {
if (Bindings.count(binding))
return;
if (!isViable(binding))
return;
SmallPtrSet<TypeVariableType *, 4> referencedTypeVars;
binding.BindingType->getTypeVariables(referencedTypeVars);
// If type variable is not allowed to bind to `lvalue`,
// let's check if type of potential binding has any
// type variables, which are allowed to bind to `lvalue`,
// and postpone such type from consideration.
//
// This check is done here and not in `checkTypeOfBinding`
// because the l-valueness of the variable might change during
// solving and that would not be reflected in the graph.
if (!TypeVar->getImpl().canBindToLValue()) {
for (auto *typeVar : referencedTypeVars) {
if (typeVar->getImpl().canBindToLValue())
return;
}
}
// Since Double and CGFloat are effectively the same type due to an
// implicit conversion between them, always prefer Double over CGFloat
// when possible.
//
// Note: This optimization can't be performed for closure parameters
// because their type could be converted only at the point of
// use in the closure body.
if (!TypeVar->getImpl().isClosureParameterType()) {
auto type = binding.BindingType;
if (type->isCGFloat() &&
llvm::any_of(Bindings, [](const PotentialBinding &binding) {
return binding.BindingType->isDouble();
}))
return;
if (type->isDouble()) {
auto inferredCGFloat =
llvm::find_if(Bindings, [](const PotentialBinding &binding) {
return binding.BindingType->isCGFloat();
});
if (inferredCGFloat != Bindings.end()) {
Bindings.erase(inferredCGFloat);
Bindings.insert(inferredCGFloat->withType(type));
return;
}
}
}
// If this is a non-defaulted supertype binding,
// check whether we can combine it with another
// supertype binding by computing the 'join' of the types.
if (binding.isViableForJoin()) {
auto isAcceptableJoin = [](Type type) {
return !type->isAny() && (!type->getOptionalObjectType() ||
!type->getOptionalObjectType()->isAny());
};
SmallVector<PotentialBinding, 4> joined;
for (auto existingBinding = Bindings.begin();
existingBinding != Bindings.end();) {
if (existingBinding->isViableForJoin()) {
auto join =
Type::join(existingBinding->BindingType, binding.BindingType);
if (join && isAcceptableJoin(*join)) {
// Result of the join has to use new binding because it refers
// to the constraint that triggered the join that replaced the
// existing binding.
joined.push_back(binding.withType(*join));
// Remove existing binding from the set.
// It has to be re-introduced later, since its type has been changed.
existingBinding = Bindings.erase(existingBinding);
continue;
}
}
++existingBinding;
}
for (const auto &binding : joined)
(void)Bindings.insert(binding);
// If new binding has been joined with at least one of existing
// bindings, there is no reason to include it into the set.
if (!joined.empty())
return;
}
for (auto *adjacentVar : referencedTypeVars)
AdjacentVars.insert(adjacentVar);
(void)Bindings.insert(std::move(binding));
}
void BindingSet::determineLiteralCoverage() {
if (Literals.empty())
return;
SmallVector<PotentialBinding, 4> adjustedBindings;
bool allowsNil = canBeNil();
for (auto &entry : Literals) {
auto &literal = entry.second;
if (!literal.viableAsBinding())
continue;
for (auto binding = Bindings.begin(); binding != Bindings.end();
++binding) {
bool isCovered = false;
Type adjustedTy;
std::tie(isCovered, adjustedTy) =
literal.isCoveredBy(*binding, allowsNil, CS.DC);
if (!isCovered)
continue;
literal.setCoveredBy(binding->getSource());
if (adjustedTy) {
Bindings.erase(binding);
Bindings.insert(binding->withType(adjustedTy));
}
break;
}
}
}
void BindingSet::addLiteralRequirement(Constraint *constraint) {
auto isDirectRequirement = [&](Constraint *constraint) -> bool {
if (auto *typeVar = constraint->getFirstType()->getAs<TypeVariableType>()) {
auto *repr = CS.getRepresentative(typeVar);
return repr == TypeVar;
}
return false;
};
auto *protocol = constraint->getProtocol();
// Let's try to coalesce integer and floating point literal protocols
// if they appear together because the only possible default type that
// could satisfy both requirements is `Double`.
{
if (protocol->isSpecificProtocol(
KnownProtocolKind::ExpressibleByIntegerLiteral)) {
auto *floatLiteral = CS.getASTContext().getProtocol(
KnownProtocolKind::ExpressibleByFloatLiteral);
if (Literals.count(floatLiteral))
return;
}
if (protocol->isSpecificProtocol(
KnownProtocolKind::ExpressibleByFloatLiteral)) {
auto *intLiteral = CS.getASTContext().getProtocol(
KnownProtocolKind::ExpressibleByIntegerLiteral);
Literals.erase(intLiteral);
}
}
if (Literals.count(protocol) > 0)
return;
bool isDirect = isDirectRequirement(constraint);
// Coverage is not applicable to `ExpressibleByNilLiteral` since it
// doesn't have a default type.
if (protocol->isSpecificProtocol(
KnownProtocolKind::ExpressibleByNilLiteral)) {
Literals.insert(
{protocol, LiteralRequirement(constraint,
/*DefaultType=*/Type(), isDirect)});
return;
}
// Check whether any of the existing bindings covers this literal
// protocol.
LiteralRequirement literal(
constraint, TypeChecker::getDefaultType(protocol, CS.DC), isDirect);
Literals.insert({protocol, std::move(literal)});
}
BindingSet::BindingScore BindingSet::formBindingScore(const BindingSet &b) {
// If there are no bindings available but this type
// variable represents a closure - let's consider it
// as having a single non-default binding - that would
// be a type inferred based on context.
// It's considered to be non-default for purposes of
// ranking because we'd like to prioritize resolving
// closures to gain more information from their bodies.
unsigned numBindings = b.Bindings.size() + b.getNumViableLiteralBindings();
auto numNonDefaultableBindings = numBindings > 0 ? numBindings
: b.TypeVar->getImpl().isClosureType() ? 1
: 0;
return std::make_tuple(b.isHole(), numNonDefaultableBindings == 0,
b.isDelayed(), b.isSubtypeOfExistentialType(),
b.involvesTypeVariables(),
static_cast<unsigned char>(b.getLiteralKind()),
-numNonDefaultableBindings);
}
Optional<BindingSet> ConstraintSystem::determineBestBindings() {
// Look for potential type variable bindings.
Optional<BindingSet> bestBindings;
llvm::SmallDenseMap<TypeVariableType *, BindingSet> cache;
// First, let's collect all of the possible bindings.
for (auto *typeVar : getTypeVariables()) {
if (!typeVar->getImpl().hasRepresentativeOrFixed()) {
cache.insert({typeVar, getBindingsFor(typeVar, /*finalize=*/false)});
}
}
// Determine whether given type variable with its set of bindings is
// viable to be attempted on the next step of the solver. If type variable
// has no "direct" bindings of any kind e.g. direct bindings to concrete
// types, default types from "defaultable" constraints or literal
// conformances, such type variable is not viable to be evaluated to be
// attempted next.
auto isViableForRanking = [this](const BindingSet &bindings) -> bool {
auto *typeVar = bindings.getTypeVariable();
// Type variable representing a base of unresolved member chain should
// always be considered viable for ranking since it's allow to infer
// types from transitive protocol requirements.
if (auto *locator = typeVar->getImpl().getLocator()) {
if (locator->isLastElement<LocatorPathElt::MemberRefBase>())
return true;
}
// If type variable is marked as a potential hole there is always going
// to be at least one binding available for it.
if (shouldAttemptFixes() && typeVar->getImpl().canBindToHole())
return true;
return bool(bindings);
};
// Now let's see if we could infer something for related type
// variables based on other bindings.
for (auto *typeVar : getTypeVariables()) {
auto cachedBindings = cache.find(typeVar);
if (cachedBindings == cache.end())
continue;
auto &bindings = cachedBindings->getSecond();
// Before attempting to infer transitive bindings let's check
// whether there are any viable "direct" bindings associated with
// current type variable, if there are none - it means that this type
// variable could only be used to transitively infer bindings for
// other type variables and can't participate in ranking.
//
// Viable bindings include - any types inferred from constraints
// associated with given type variable, any default constraints,
// or any conformance requirements to literal protocols with can
// produce a default type.
bool isViable = isViableForRanking(bindings);
bindings.finalize(cache);
if (!bindings || !isViable)
continue;
if (isDebugMode()) {
bindings.dump(typeVar, llvm::errs(), solverState->depth * 2);
}
// If these are the first bindings, or they are better than what
// we saw before, use them instead.
if (!bestBindings || bindings < *bestBindings)
bestBindings.emplace(bindings);
}
return bestBindings;
}
/// Find the set of type variables that are inferable from the given type.
///
/// \param type The type to search.
/// \param typeVars Collects the type variables that are inferable from the
/// given type. This set is not cleared, so that multiple types can be explored
/// and introduce their results into the same set.
static void
findInferableTypeVars(Type type,
SmallPtrSetImpl<TypeVariableType *> &typeVars) {
type = type->getCanonicalType();
if (!type->hasTypeVariable())
return;
class Walker : public TypeWalker {
SmallPtrSetImpl<TypeVariableType *> &typeVars;
public:
explicit Walker(SmallPtrSetImpl<TypeVariableType *> &typeVars)
: typeVars(typeVars) {}
Action walkToTypePre(Type ty) override {
if (ty->is<DependentMemberType>())
return Action::SkipChildren;
if (auto typeVar = ty->getAs<TypeVariableType>())
typeVars.insert(typeVar);
return Action::Continue;
}
};
type.walk(Walker(typeVars));
}
void PotentialBindings::addDefault(Constraint *constraint) {
Defaults.insert(constraint);
}
bool LiteralRequirement::isCoveredBy(Type type, DeclContext *useDC) const {
auto coversDefaultType = [](Type type, Type defaultType) -> bool {
if (!defaultType->hasUnboundGenericType())
return type->isEqual(defaultType);
// For generic literal types, check whether we already have a
// specialization of this generic within our list.
// FIXME: This assumes that, e.g., the default literal
// int/float/char/string types are never generic.
auto nominal = defaultType->getAnyNominal();
if (!nominal)
return false;
// FIXME: Check parents?
return nominal == type->getAnyNominal();
};
if (hasDefaultType() && coversDefaultType(type, getDefaultType()))
return true;
return (bool)TypeChecker::conformsToProtocol(type, getProtocol(),
useDC->getParentModule());
}
std::pair<bool, Type>
LiteralRequirement::isCoveredBy(const PotentialBinding &binding,
bool canBeNil,
DeclContext *useDC) const {
auto type = binding.BindingType;
switch (binding.Kind) {
case AllowedBindingKind::Exact:
type = binding.BindingType;
break;
case AllowedBindingKind::Subtypes:
case AllowedBindingKind::Supertypes:
type = binding.BindingType->getRValueType();
break;
}
bool requiresUnwrap = false;
do {
// Conformance check on type variable would always return true,
// but type variable can't cover anything until it's bound.
if (type->isTypeVariableOrMember() || type->isPlaceholder())
return std::make_pair(false, Type());
if (isCoveredBy(type, useDC)) {
return std::make_pair(true, requiresUnwrap ? type : binding.BindingType);
}
// Can't unwrap optionals if there is `ExpressibleByNilLiteral`
// conformance requirement placed on the type variable.
if (canBeNil)
return std::make_pair(false, Type());
// If this literal protocol is not a direct requirement it
// would not be possible to change optionality while inferring
// bindings for a supertype, so this hack doesn't apply.
if (!isDirectRequirement())
return std::make_pair(false, Type());
// If we're allowed to bind to subtypes, look through optionals.
// FIXME: This is really crappy special case of computing a reasonable
// result based on the given constraints.
if (binding.Kind == AllowedBindingKind::Subtypes) {
if (auto objTy = type->getOptionalObjectType()) {
requiresUnwrap = true;
type = objTy;
continue;
}
}
return std::make_pair(false, Type());
} while (true);
}
void PotentialBindings::addPotentialBinding(PotentialBinding binding) {
assert(!binding.BindingType->is<ErrorType>());
// If the type variable can't bind to an lvalue, make sure the
// type we pick isn't an lvalue.
if (!TypeVar->getImpl().canBindToLValue() &&
binding.BindingType->hasLValueType()) {
binding = binding.withType(binding.BindingType->getRValueType());
}
Bindings.push_back(std::move(binding));
}
void PotentialBindings::addLiteral(Constraint *constraint) {
Literals.insert(constraint);
}
bool BindingSet::isViable(PotentialBinding &binding) {
// Prevent against checking against the same opened nominal type
// over and over again. Doing so means redundant work in the best
// case. In the worst case, we'll produce lots of duplicate solutions
// for this constraint system, which is problematic for overload
// resolution.
auto type = binding.BindingType;
auto *NTD = type->getAnyNominal();
if (!NTD)
return true;
for (auto existing = Bindings.begin(); existing != Bindings.end();
++existing) {
auto existingType = existing->BindingType;
auto *existingNTD = existingType->getAnyNominal();
if (!existingNTD || NTD != existingNTD)
continue;
// If new type has a type variable it shouldn't
// be considered viable.
if (type->hasTypeVariable())
return false;
// If new type doesn't have any type variables,
// but existing binding does, let's replace existing
// binding with new one.
if (existingType->hasTypeVariable()) {
// First, let's remove all of the adjacent type
// variables associated with this binding.
{
SmallPtrSet<TypeVariableType *, 4> referencedVars;
existingType->getTypeVariables(referencedVars);
for (auto *var : referencedVars)
AdjacentVars.erase(var);
}
// And now let's remove the binding itself.
Bindings.erase(existing);
break;
}
}
return true;
}
bool BindingSet::favoredOverDisjunction(Constraint *disjunction) const {
if (isHole())
return false;
if (llvm::any_of(Bindings, [&](const PotentialBinding &binding) {
if (binding.Kind == AllowedBindingKind::Supertypes)
return false;
auto type = binding.BindingType;