-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathVariableNameUtils.cpp
746 lines (639 loc) · 25.8 KB
/
VariableNameUtils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
//===--- VariableNameUtils.cpp --------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-variable-name-inference"
#include "swift/Basic/Assertions.h"
#include "swift/SILOptimizer/Utils/VariableNameUtils.h"
#include "swift/SIL/AddressWalker.h"
#include "swift/SIL/Test.h"
using namespace swift;
namespace {
struct AddressWalkerState {
bool foundError = false;
InstructionSet writes;
AddressWalkerState(SILFunction *fn) : writes(fn) {}
};
} // namespace
static SILValue
findRootValueForNonTupleTempAllocation(AllocationInst *allocInst,
AddressWalkerState &state) {
// These are instructions which we are ok with looking through when
// identifying our allocation. It must always refer to the entire allocation.
auto isAlloc = [&](SILValue value) -> bool {
if (auto *ieai = dyn_cast<InitExistentialAddrInst>(value))
value = ieai->getOperand();
return value == SILValue(allocInst);
};
// Walk from our allocation to one of our writes. Then make sure that the
// write writes to our entire value.
for (auto &inst : allocInst->getParent()->getRangeStartingAtInst(allocInst)) {
// See if we have a full tuple value.
if (!state.writes.contains(&inst))
continue;
if (auto *copyAddr = dyn_cast<CopyAddrInst>(&inst)) {
if (isAlloc(copyAddr->getDest()) &&
copyAddr->isInitializationOfDest()) {
return copyAddr->getSrc();
}
}
if (auto *si = dyn_cast<StoreInst>(&inst)) {
if (isAlloc(si->getDest()) &&
si->getOwnershipQualifier() != StoreOwnershipQualifier::Assign) {
return si->getSrc();
}
}
if (auto *sbi = dyn_cast<StoreBorrowInst>(&inst)) {
if (isAlloc(sbi->getDest()))
return sbi->getSrc();
}
// If we do not identify the write... return SILValue(). We weren't able
// to understand the write.
break;
}
return SILValue();
}
static SILValue findRootValueForTupleTempAllocation(AllocationInst *allocInst,
AddressWalkerState &state) {
SmallVector<SILValue, 8> tupleValues;
for (unsigned i : range(allocInst->getType().getNumTupleElements())) {
(void)i;
tupleValues.push_back(nullptr);
}
unsigned numEltsLeft = tupleValues.size();
// If we have an empty tuple, just return SILValue() for now.
//
// TODO: What does this pattern look like out of SILGen?
if (!numEltsLeft)
return SILValue();
// Walk from our allocation to one of our writes. Then make sure that the
// write writes to our entire value.
DestructureTupleInst *foundDestructure = nullptr;
SILValue foundRootAddress;
for (auto &inst : allocInst->getParent()->getRangeStartingAtInst(allocInst)) {
if (!state.writes.contains(&inst))
continue;
if (auto *copyAddr = dyn_cast<CopyAddrInst>(&inst)) {
if (copyAddr->isInitializationOfDest()) {
if (auto *tei = dyn_cast<TupleElementAddrInst>(copyAddr->getDest())) {
if (tei->getOperand() == allocInst) {
unsigned i = tei->getFieldIndex();
if (auto *otherTei = dyn_cast_or_null<TupleElementAddrInst>(
copyAddr->getSrc()->getDefiningInstruction())) {
// If we already were processing destructures, then we have a mix
// of struct/destructures... we do not support that, so bail.
if (foundDestructure)
return SILValue();
// Otherwise, update our root address. If we already had a root
// address and it doesn't match our tuple_element_addr's operand,
// bail. There is some sort of mix/match of tuple addresses that
// we do not support. We are looking for a specific SILGen
// pattern.
if (!foundRootAddress) {
foundRootAddress = otherTei->getOperand();
} else if (foundRootAddress != otherTei->getOperand()) {
return SILValue();
}
if (i != otherTei->getFieldIndex())
return SILValue();
if (tupleValues[i])
return SILValue();
tupleValues[i] = otherTei;
// If we have completely covered the tuple, break.
--numEltsLeft;
if (!numEltsLeft)
break;
// Otherwise, continue so we keep processing.
continue;
}
}
}
}
}
if (auto *si = dyn_cast<StoreInst>(&inst)) {
if (si->getOwnershipQualifier() != StoreOwnershipQualifier::Assign) {
// Check if we are updating the entire tuple value.
if (si->getDest() == allocInst) {
// If we already found a root address (meaning we were processing
// tuple_elt_addr), bail. We have some sort of unhandled mix of
// copy_addr and store.
if (foundRootAddress)
return SILValue();
// If we already found a destructure, return SILValue(). We are
// initializing twice.
if (foundDestructure)
return SILValue();
// We are looking for a pattern where we construct a tuple from
// destructured parts.
if (auto *ti = dyn_cast<TupleInst>(si->getSrc())) {
for (auto p : llvm::enumerate(ti->getOperandValues())) {
SILValue value = lookThroughOwnershipInsts(p.value());
if (auto *dti = dyn_cast_or_null<DestructureTupleInst>(
value->getDefiningInstruction())) {
// We should always go through the same dti.
if (foundDestructure && foundDestructure != dti)
return SILValue();
if (!foundDestructure)
foundDestructure = dti;
// If we have a mixmatch of indices, we cannot look through.
if (p.index() != dti->getIndexOfResult(value))
return SILValue();
if (tupleValues[p.index()])
return SILValue();
tupleValues[p.index()] = value;
// If we have completely covered the tuple, break.
--numEltsLeft;
if (!numEltsLeft)
break;
}
}
// If we haven't completely covered the tuple, return SILValue(). We
// should completely cover the tuple.
if (numEltsLeft)
return SILValue();
// Otherwise, break since we are done.
break;
}
}
// If we store to a tuple_element_addr, update for a single value.
if (auto *tei = dyn_cast<TupleElementAddrInst>(si->getDest())) {
if (tei->getOperand() == allocInst) {
unsigned i = tei->getFieldIndex();
if (auto *dti = dyn_cast_or_null<DestructureTupleInst>(
si->getSrc()->getDefiningInstruction())) {
// If we already found a root address (meaning we were processing
// tuple_elt_addr), bail. We have some sort of unhandled mix of
// copy_addr and store [init].
if (foundRootAddress)
return SILValue();
if (!foundDestructure) {
foundDestructure = dti;
} else if (foundDestructure != dti) {
return SILValue();
}
if (i != dti->getIndexOfResult(si->getSrc()))
return SILValue();
if (tupleValues[i])
return SILValue();
tupleValues[i] = si->getSrc();
// If we have completely covered the tuple, break.
--numEltsLeft;
if (!numEltsLeft)
break;
// Otherwise, continue so we keep processing.
continue;
}
}
}
}
}
// Found a write that we did not understand... bail.
break;
}
// Now check if we have a complete tuple with all elements coming from the
// same destructure_tuple. In such a case, we can look through the
// destructure_tuple.
if (numEltsLeft)
return SILValue();
if (foundDestructure)
return foundDestructure->getOperand();
if (foundRootAddress)
return foundRootAddress;
return SILValue();
}
SILValue VariableNameInferrer::getRootValueForTemporaryAllocation(
AllocationInst *allocInst) {
struct AddressWalker final : public TransitiveAddressWalker<AddressWalker> {
AddressWalkerState &state;
AddressWalker(AddressWalkerState &state) : state(state) {}
bool visitUse(Operand *use) {
if (use->getUser()->mayWriteToMemory())
state.writes.insert(use->getUser());
return true;
}
TransitiveUseVisitation visitTransitiveUseAsEndPointUse(Operand *use) {
if (isa<StoreBorrowInst>(use->getUser()))
return TransitiveUseVisitation::OnlyUser;
return TransitiveUseVisitation::OnlyUses;
}
void onError(Operand *use) { state.foundError = true; }
};
AddressWalkerState state(allocInst->getFunction());
AddressWalker walker(state);
if (std::move(walker).walk(allocInst) == AddressUseKind::Unknown ||
state.foundError)
return SILValue();
if (allocInst->getType().is<TupleType>())
return findRootValueForTupleTempAllocation(allocInst, state);
return findRootValueForNonTupleTempAllocation(allocInst, state);
}
SILValue
VariableNameInferrer::findDebugInfoProvidingValue(SILValue searchValue) {
// NOTE: This should only return a non-empty SILValue if we actually have a
// full path (including base name) in the variable name path.
if (!searchValue)
return SILValue();
LLVM_DEBUG(llvm::dbgs() << "Searching for debug info providing value for: "
<< searchValue);
ValueSet valueSet(searchValue->getFunction());
SILValue result = findDebugInfoProvidingValueHelper(searchValue, valueSet);
if (result) {
LLVM_DEBUG(llvm::dbgs() << "Result: " << result);
} else {
LLVM_DEBUG(llvm::dbgs() << "Result: None\n");
}
return result;
}
SILValue VariableNameInferrer::findDebugInfoProvidingValuePhiArg(
SILValue incomingValue, ValueSet &visitedValues) {
// We use pushSnapShot to run recursively and if we fail to find a
// value, we just pop our list to the last snapshot end of list. If we
// succeed, we do not pop and just return recusive value. Our user
// will consume variableNamePath at this point.
LLVM_DEBUG(llvm::dbgs() << "Before pushing a snap shot!\n";
variableNamePath.print(llvm::dbgs()));
unsigned oldSnapShotIndex = variableNamePath.pushSnapShot();
LLVM_DEBUG(llvm::dbgs() << "After pushing a snap shot!\n";
variableNamePath.print(llvm::dbgs()));
if (SILValue recursiveValue =
findDebugInfoProvidingValueHelper(incomingValue, visitedValues)) {
LLVM_DEBUG(llvm::dbgs() << "Returned: " << recursiveValue);
variableNamePath.returnSnapShot(oldSnapShotIndex);
return recursiveValue;
}
variableNamePath.popSnapShot(oldSnapShotIndex);
LLVM_DEBUG(llvm::dbgs() << "After popping a snap shot!\n";
variableNamePath.print(llvm::dbgs()));
return SILValue();
}
static BeginBorrowInst *hasOnlyBorrowingNonDestroyUse(SILValue searchValue) {
BeginBorrowInst *result = nullptr;
for (auto *use : searchValue->getUses()) {
if (isIncidentalUse(use->getUser()))
continue;
if (use->isConsuming()) {
if (!isa<DestroyValueInst>(use->getUser()))
return nullptr;
continue;
}
auto *bbi = dyn_cast<BeginBorrowInst>(use->getUser());
if (!bbi || !bbi->isFromVarDecl())
return nullptr;
if (result)
return nullptr;
result = bbi;
}
return result;
}
namespace {
constexpr StringLiteral UnknownDeclString = "<unknown decl>";
} // namespace
SILValue VariableNameInferrer::findDebugInfoProvidingValueHelper(
SILValue searchValue, ValueSet &visitedValues) {
assert(searchValue);
while (true) {
assert(searchValue);
// If we already visited the value, return SILValue(). This prevents issues
// caused by looping phis. We treat this as a failure and visit the either
// phi values.
if (!visitedValues.insert(searchValue))
return SILValue();
LLVM_DEBUG(llvm::dbgs() << "Value: " << *searchValue);
// Before we do anything, lets see if we have an explicit match due to a
// debug_value use.
if (auto *use = getAnyDebugUse(searchValue)) {
if (auto debugVar = DebugVarCarryingInst(use->getUser())) {
assert(debugVar.getKind() == DebugVarCarryingInst::Kind::DebugValue);
variableNamePath.push_back(debugVar.getName());
// We return the value, not the debug_info.
return searchValue;
}
}
// If we are in Ownership SSA, see if we have an owned value that has one
// use, a move_value [var decl]. In such a case, check the move_value [var
// decl] for a debug_value.
//
// This pattern comes up if we are asked to get a name for an apply that is
// used to initialize a value. The name will not yet be associated with the
// value so we have to compensate.
//
// NOTE: This is a heuristic. Feel free to tweak accordingly.
if (auto *singleUse = searchValue->getSingleUse()) {
if (auto *mvi = dyn_cast<MoveValueInst>(singleUse->getUser())) {
if (mvi->isFromVarDecl()) {
if (auto *debugUse = getAnyDebugUse(mvi)) {
if (auto debugVar = DebugVarCarryingInst(debugUse->getUser())) {
assert(debugVar.getKind() ==
DebugVarCarryingInst::Kind::DebugValue);
variableNamePath.push_back(debugVar.getName());
// We return the value, not the debug_info.
return searchValue;
}
}
}
}
}
if (auto *bbi = hasOnlyBorrowingNonDestroyUse(searchValue)) {
if (auto *debugUse = getAnyDebugUse(bbi)) {
if (auto debugVar = DebugVarCarryingInst(debugUse->getUser())) {
assert(debugVar.getKind() == DebugVarCarryingInst::Kind::DebugValue);
variableNamePath.push_back(debugVar.getName());
// We return the value, not the debug_info.
return searchValue;
}
}
}
if (auto *allocInst = dyn_cast<AllocationInst>(searchValue)) {
// If the instruction itself doesn't carry any variable info, see
// whether it's copied from another place that does.
auto allocInstHasInfo = [](AllocationInst *allocInst) {
if (allocInst->getDecl())
return true;
auto debugVar = DebugVarCarryingInst(allocInst);
return debugVar && debugVar.maybeGetName().has_value();
};
if (!allocInstHasInfo(allocInst)) {
if (auto value = getRootValueForTemporaryAllocation(allocInst)) {
searchValue = value;
continue;
}
return SILValue();
}
variableNamePath.push_back(DebugVarCarryingInst(allocInst).getName());
return allocInst;
}
if (auto *abi = dyn_cast<AllocBoxInst>(searchValue)) {
variableNamePath.push_back(DebugVarCarryingInst(abi).getName());
return abi;
}
// If we have a store_borrow, always look at the dest. We are going to see
// if we can determine if dest is a temporary alloc_stack.
if (auto *sbi = dyn_cast<StoreBorrowInst>(searchValue)) {
searchValue = sbi->getDest();
continue;
}
if (auto *globalAddrInst = dyn_cast<GlobalAddrInst>(searchValue)) {
variableNamePath.push_back(VarDeclCarryingInst(globalAddrInst).getName());
return globalAddrInst;
}
if (auto *oeInst = dyn_cast<OpenExistentialAddrInst>(searchValue)) {
searchValue = oeInst->getOperand();
continue;
}
if (auto *rei = dyn_cast<RefElementAddrInst>(searchValue)) {
variableNamePath.push_back(VarDeclCarryingInst(rei).getName());
searchValue = rei->getOperand();
continue;
}
if (auto *sei = dyn_cast<StructExtractInst>(searchValue)) {
variableNamePath.push_back(getNameFromDecl(sei->getField()));
searchValue = sei->getOperand();
continue;
}
if (auto *uedi = dyn_cast<UncheckedEnumDataInst>(searchValue)) {
variableNamePath.push_back(getNameFromDecl(uedi->getElement()));
searchValue = uedi->getOperand();
continue;
}
if (auto *tei = dyn_cast<TupleExtractInst>(searchValue)) {
variableNamePath.push_back(getStringRefForIndex(tei->getFieldIndex()));
searchValue = tei->getOperand();
continue;
}
if (auto *sei = dyn_cast<StructElementAddrInst>(searchValue)) {
variableNamePath.push_back(getNameFromDecl(sei->getField()));
searchValue = sei->getOperand();
continue;
}
if (auto *tei = dyn_cast<TupleElementAddrInst>(searchValue)) {
variableNamePath.push_back(getStringRefForIndex(tei->getFieldIndex()));
searchValue = tei->getOperand();
continue;
}
if (auto *utedai = dyn_cast<UncheckedTakeEnumDataAddrInst>(searchValue)) {
variableNamePath.push_back(getNameFromDecl(utedai->getElement()));
searchValue = utedai->getOperand();
continue;
}
// Enums only have a single possible parent and is used sometimes like a
// transformation (e.x.: constructing an optional). We want to look through
// them and add the case to the variableNamePath.
if (auto *e = dyn_cast<EnumInst>(searchValue)) {
if (e->hasOperand()) {
variableNamePath.push_back(getNameFromDecl(e->getElement()));
searchValue = e->getOperand();
continue;
}
}
if (auto *dti = dyn_cast_or_null<DestructureTupleInst>(
searchValue->getDefiningInstruction())) {
variableNamePath.push_back(
getStringRefForIndex(*dti->getIndexOfResult(searchValue)));
searchValue = dti->getOperand();
continue;
}
if (auto *dsi = dyn_cast_or_null<DestructureStructInst>(
searchValue->getDefiningInstruction())) {
unsigned index = *dsi->getIndexOfResult(searchValue);
variableNamePath.push_back(
getNameFromDecl(dsi->getStructDecl()->getStoredProperties()[index]));
searchValue = dsi->getOperand();
continue;
}
if (auto *fArg = dyn_cast<SILFunctionArgument>(searchValue)) {
if (auto *decl = fArg->getDecl()) {
variableNamePath.push_back(decl->getBaseName().userFacingName());
return fArg;
}
}
// If we have a phi argument, visit each of the incoming values and pick the
// first one that gives us a name.
if (auto *phiArg = dyn_cast<SILPhiArgument>(searchValue)) {
if (auto *term = phiArg->getSingleTerminator()) {
if (auto *swi = dyn_cast<SwitchEnumInst>(term)) {
if (auto value = findDebugInfoProvidingValuePhiArg(swi->getOperand(),
visitedValues))
return value;
}
}
SmallVector<SILValue, 8> incomingValues;
if (phiArg->getIncomingPhiValues(incomingValues)) {
for (auto value : incomingValues) {
if (auto resultValue =
findDebugInfoProvidingValuePhiArg(value, visitedValues))
return resultValue;
}
}
}
auto getNamePathComponentFromCallee = [&](FullApplySite call) -> SILValue {
// Use the name of the property being accessed if we can get to it.
if (call.getSubstCalleeType()->hasSelfParam()) {
if (auto *f = dyn_cast<FunctionRefBaseInst>(call.getCallee())) {
if (auto dc = f->getInitiallyReferencedFunction()->getDeclContext()) {
variableNamePath.push_back(getNameFromDecl(dc->getAsDecl()));
return call.getSelfArgument();
}
}
if (auto *mi = dyn_cast<MethodInst>(call.getCallee())) {
variableNamePath.push_back(
getNameFromDecl(mi->getMember().getDecl()));
return call.getSelfArgument();
}
}
return SILValue();
};
// Read or modify accessor.
if (auto bai = dyn_cast_or_null<BeginApplyInst>(
searchValue->getDefiningInstruction())) {
if (auto selfParam = getNamePathComponentFromCallee(bai)) {
searchValue = selfParam;
continue;
}
}
if (options.contains(Flag::InferSelfThroughAllAccessors)) {
if (auto *inst = searchValue->getDefiningInstruction()) {
if (auto fas = FullApplySite::isa(inst)) {
if (auto selfParam = getNamePathComponentFromCallee(fas)) {
searchValue = selfParam;
continue;
}
}
}
}
// Addressor accessor.
if (auto ptrToAddr =
dyn_cast<PointerToAddressInst>(stripAccessMarkers(searchValue))) {
// The addressor can either produce the raw pointer itself or an
// `UnsafePointer` stdlib type wrapping it.
ApplyInst *addressorInvocation;
if (auto structExtract =
dyn_cast<StructExtractInst>(ptrToAddr->getOperand())) {
addressorInvocation = dyn_cast<ApplyInst>(structExtract->getOperand());
} else {
addressorInvocation = dyn_cast<ApplyInst>(ptrToAddr->getOperand());
}
if (addressorInvocation) {
if (auto selfParam =
getNamePathComponentFromCallee(addressorInvocation)) {
searchValue = selfParam;
continue;
}
}
}
// Look through a function conversion thunk if we have one.
if (auto *pai = dyn_cast<PartialApplyInst>(searchValue)) {
if (auto *fn = pai->getCalleeFunction()) {
if (fn->isThunk() && ApplySite(pai).getNumArguments() == 1) {
SILValue value = ApplySite(pai).getArgument(0);
if (value->getType().isFunction()) {
searchValue = value;
continue;
}
}
}
}
// Otherwise, try to see if we have a single value instruction we can look
// through.
if (isa<BeginBorrowInst>(searchValue) || isa<LoadInst>(searchValue) ||
isa<LoadBorrowInst>(searchValue) || isa<BeginAccessInst>(searchValue) ||
isa<MarkUnresolvedNonCopyableValueInst>(searchValue) ||
isa<ProjectBoxInst>(searchValue) || isa<CopyValueInst>(searchValue) ||
isa<ConvertFunctionInst>(searchValue) ||
isa<MarkUninitializedInst>(searchValue) ||
isa<MarkDependenceInst>(searchValue) ||
isa<CopyableToMoveOnlyWrapperAddrInst>(searchValue) ||
isa<MoveOnlyWrapperToCopyableAddrInst>(searchValue) ||
isa<MoveOnlyWrapperToCopyableValueInst>(searchValue) ||
isa<CopyableToMoveOnlyWrapperValueInst>(searchValue) ||
isa<EndInitLetRefInst>(searchValue) ||
isa<ConvertEscapeToNoEscapeInst>(searchValue) ||
isa<ConvertFunctionInst>(searchValue)) {
searchValue = cast<SingleValueInstruction>(searchValue)->getOperand(0);
continue;
}
// Return SILValue() if we ever get to the bottom to signal we failed to
// find anything.
return SILValue();
}
}
StringRef VariableNameInferrer::getNameFromDecl(Decl *d) {
if (d) {
if (auto accessor = dyn_cast<AccessorDecl>(d)) {
return accessor->getStorage()->getBaseName().userFacingName();
}
if (auto vd = dyn_cast<ValueDecl>(d)) {
return vd->getBaseName().userFacingName();
}
}
return UnknownDeclString;
}
void VariableNameInferrer::drainVariableNamePath() {
if (variableNamePath.empty())
return;
// Walk backwards, constructing our string.
while (true) {
resultingString += variableNamePath.pop_back_val();
if (variableNamePath.empty())
return;
resultingString += '.';
}
}
std::optional<Identifier> VariableNameInferrer::inferName(SILValue value) {
auto *fn = value->getFunction();
if (!fn)
return {};
VariableNameInferrer::Options options;
options |= VariableNameInferrer::Flag::InferSelfThroughAllAccessors;
SmallString<64> resultingName;
VariableNameInferrer inferrer(fn, options, resultingName);
if (!inferrer.inferByWalkingUsesToDefsReturningRoot(value))
return {};
return fn->getASTContext().getIdentifier(resultingName);
}
std::optional<std::pair<Identifier, SILValue>>
VariableNameInferrer::inferNameAndRoot(SILValue value) {
auto *fn = value->getFunction();
if (!fn)
return {};
VariableNameInferrer::Options options;
options |= VariableNameInferrer::Flag::InferSelfThroughAllAccessors;
SmallString<64> resultingName;
VariableNameInferrer inferrer(fn, options, resultingName);
SILValue rootValue = inferrer.inferByWalkingUsesToDefsReturningRoot(value);
if (!rootValue)
return {};
return {{fn->getASTContext().getIdentifier(resultingName), rootValue}};
}
//===----------------------------------------------------------------------===//
// MARK: Tests
//===----------------------------------------------------------------------===//
namespace swift::test {
// Arguments:
// - SILValue: value to emit a name for.
// Dumps:
// - The inferred name
// - The inferred value.
static FunctionTest VariableNameInferrerTests(
"variable_name_inference", [](auto &function, auto &arguments, auto &test) {
auto value = arguments.takeValue();
SmallString<64> finalString;
VariableNameInferrer::Options options;
options |= VariableNameInferrer::Flag::InferSelfThroughAllAccessors;
VariableNameInferrer inferrer(&function, options, finalString);
SILValue rootValue =
inferrer.inferByWalkingUsesToDefsReturningRoot(value);
llvm::outs() << "Input Value: " << *value;
if (!rootValue) {
llvm::outs() << "Name: 'unknown'\nRoot: 'unknown'\n";
return;
}
llvm::outs() << "Name: '" << finalString << "'\nRoot: " << rootValue;
});
} // namespace swift::test