-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathSILIsolationInfo.cpp
1417 lines (1244 loc) · 50.8 KB
/
SILIsolationInfo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- SILIsolationInfo.cpp ---------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/SILIsolationInfo.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/Expr.h"
#include "swift/SIL/AddressWalker.h"
#include "swift/SIL/ApplySite.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/PatternMatch.h"
#include "swift/SIL/SILGlobalVariable.h"
#include "swift/SIL/Test.h"
#include "swift/SILOptimizer/Utils/VariableNameUtils.h"
using namespace swift;
using namespace swift::PatternMatch;
static std::optional<ActorIsolation>
getGlobalActorInitIsolation(SILFunction *fn) {
auto block = fn->begin();
// Make sure our function has a single block. We should always have a single
// block today. Return nullptr otherwise.
if (block == fn->end() || std::next(block) != fn->end())
return {};
GlobalAddrInst *gai = nullptr;
if (!match(cast<SILInstruction>(block->getTerminator()),
m_ReturnInst(m_AddressToPointerInst(m_GlobalAddrInst(gai)))))
return {};
auto *globalDecl = gai->getReferencedGlobal()->getDecl();
if (!globalDecl)
return {};
// See if our globalDecl is specifically guarded.
return getActorIsolation(globalDecl);
}
class DeclRefExprAnalysis {
DeclRefExpr *result = nullptr;
// Be greedy with the small size so we very rarely allocate.
SmallVector<Expr *, 8> lookThroughExprs;
public:
bool compute(Expr *expr);
DeclRefExpr *getResult() const {
assert(result && "Not computed?!");
return result;
}
ArrayRef<Expr *> getLookThroughExprs() const {
assert(result && "Not computed?!");
return lookThroughExprs;
}
void print(llvm::raw_ostream &os) const {
if (!result) {
os << "DeclRefExprAnalysis: None.";
return;
}
os << "DeclRefExprAnalysis:\n";
result->dump(os);
os << "\n";
if (lookThroughExprs.size()) {
os << "LookThroughExprs:\n";
for (auto *expr : lookThroughExprs) {
expr->dump(os, 4);
}
}
}
SWIFT_DEBUG_DUMP { print(llvm::dbgs()); }
bool hasNonisolatedUnsafe() const {
// See if our initial member_ref_expr is actor instance isolated.
for (auto *expr : lookThroughExprs) {
// We can skip load expr.
if (isa<LoadExpr>(expr))
continue;
if (auto *mri = dyn_cast<MemberRefExpr>(expr)) {
if (mri->hasDecl()) {
auto isolation = swift::getActorIsolation(mri->getDecl().getDecl());
if (isolation.isNonisolatedUnsafe())
return true;
}
}
break;
}
return false;
}
};
bool DeclRefExprAnalysis::compute(Expr *expr) {
struct LocalWalker final : ASTWalker {
DeclRefExprAnalysis &parentAnalysis;
LocalWalker(DeclRefExprAnalysis &parentAnalysis)
: parentAnalysis(parentAnalysis) {}
PreWalkResult<Expr *> walkToExprPre(Expr *expr) override {
assert(!parentAnalysis.result && "Shouldn't have a result yet");
if (auto *dre = dyn_cast<DeclRefExpr>(expr)) {
parentAnalysis.result = dre;
return Action::Stop();
}
if (isa<CoerceExpr, MemberRefExpr, ImplicitConversionExpr, IdentityExpr>(
expr)) {
parentAnalysis.lookThroughExprs.push_back(expr);
return Action::Continue(expr);
}
return Action::Stop();
}
};
LocalWalker walker(*this);
if (auto *ae = dyn_cast<AssignExpr>(expr)) {
ae->getSrc()->walk(walker);
} else {
expr->walk(walker);
}
return result;
}
static SILIsolationInfo
inferIsolationInfoForTempAllocStack(AllocStackInst *asi) {
// We want to search for an alloc_stack that is not from a VarDecl and that is
// initially isolated along all paths to the same actor isolation. If they
// differ, then we emit a we do not understand error.
struct AddressWalkerState {
AllocStackInst *asi = nullptr;
SmallVector<Operand *, 8> indirectResultUses;
llvm::SmallSetVector<SILInstruction *, 8> writes;
Operand *sameBlockIndirectResultUses = nullptr;
};
struct AddressWalker final : TransitiveAddressWalker<AddressWalker> {
AddressWalkerState &state;
AddressWalker(AddressWalkerState &state) : state(state) {
assert(state.asi);
}
bool visitUse(Operand *use) {
// If we do not write to memory, then it is harmless.
if (!use->getUser()->mayWriteToMemory())
return true;
if (auto fas = FullApplySite::isa(use->getUser())) {
if (fas.isIndirectResultOperand(*use)) {
// If our indirect result use is in the same block...
auto *parentBlock = state.asi->getParent();
if (fas.getParent() == parentBlock) {
// If we haven't seen any indirect result use yet... just cache it
// and return true.
if (!state.sameBlockIndirectResultUses) {
state.sameBlockIndirectResultUses = use;
return true;
}
// If by walking from the alloc stack to the full apply site, we do
// not see the current sameBlockIndirectResultUses, we have a new
// newest use.
if (llvm::none_of(
llvm::make_range(state.asi->getIterator(),
fas->getIterator()),
[&](const SILInstruction &inst) {
return &inst ==
state.sameBlockIndirectResultUses->getUser();
})) {
state.sameBlockIndirectResultUses = use;
}
return true;
}
// If not, just stash it into the non-same block indirect result use
// array.
state.indirectResultUses.push_back(use);
return true;
}
}
state.writes.insert(use->getUser());
return true;
}
};
AddressWalkerState state;
state.asi = asi;
AddressWalker walker(state);
// If we fail to walk, emit an unknown patten error.
//
// FIXME: check AddressUseKind::NonEscaping != walk().
if (AddressUseKind::Unknown == std::move(walker).walk(asi)) {
return SILIsolationInfo();
}
// If we do not have any indirect result uses... we can just assign fresh.
if (!state.sameBlockIndirectResultUses && state.indirectResultUses.empty())
return SILIsolationInfo::getDisconnected(false /*isUnsafeNonIsolated*/);
// Otherwise, lets see if we had a same block indirect result.
if (state.sameBlockIndirectResultUses) {
// Check if this indirect result has a sending result. In such a case, we
// always return disconnected.
if (auto fas =
FullApplySite::isa(state.sameBlockIndirectResultUses->getUser())) {
if (fas.getSubstCalleeType()->hasSendingResult())
return SILIsolationInfo::getDisconnected(
false /*is unsafe non isolated*/);
}
// If we do not have any writes in between the alloc stack and the
// initializer, then we have a good target. Otherwise, we just return
// AssignFresh.
if (llvm::none_of(
llvm::make_range(
asi->getIterator(),
state.sameBlockIndirectResultUses->getUser()->getIterator()),
[&](SILInstruction &inst) { return state.writes.count(&inst); })) {
auto isolationInfo =
SILIsolationInfo::get(state.sameBlockIndirectResultUses->getUser());
if (isolationInfo) {
return isolationInfo;
}
}
// If we did not find an isolation info, just do a normal assign fresh.
return SILIsolationInfo::getDisconnected(false /*is unsafe non isolated*/);
}
// Check if any of our writes are within the first block. This would
// automatically stop our search and we should assign fresh. Since we are
// going over the writes here, also setup a writeBlocks set.
auto *defBlock = asi->getParent();
BasicBlockSet writeBlocks(defBlock->getParent());
for (auto *write : state.writes) {
if (write->getParent() == defBlock)
return SILIsolationInfo::getDisconnected(false /*unsafe non isolated*/);
writeBlocks.insert(write->getParent());
}
// Ok, at this point we know that we do not have any indirect result uses in
// the def block and also we do not have any writes in that initial
// block. This sets us up for our global analysis. Our plan is as follows:
//
// 1. We are going to create a set of writeBlocks and a map from SILBasicBlock
// -> first indirect result block if there isn't a write before it.
//
// 2. We walk from our def block until we reach the first indirect result
// block. We stop processing successor if we find a write block successor that
// is not also an indirect result block. This makes sense since we earlier
// required that any notates indirect result block do not have any writes in
// between the indirect result and the beginning of the block.
llvm::SmallDenseMap<SILBasicBlock *, Operand *, 2> blockToOperandMap;
for (auto *use : state.indirectResultUses) {
// If our indirect result use has a write before it in the block, do not
// store it. It cannot be our indirect result initializer.
if (writeBlocks.contains(use->getParentBlock()) &&
llvm::any_of(
use->getParentBlock()->getRangeEndingAtInst(use->getUser()),
[&](SILInstruction &inst) { return state.writes.contains(&inst); }))
continue;
// Ok, we now know that there aren't any writes before us in the block. Now
// try to insert.
auto iter = blockToOperandMap.try_emplace(use->getParentBlock(), use);
// If we actually inserted, then we are done.
if (iter.second) {
continue;
}
// Otherwise, if we are before the current value, set us to be the value
// instead.
if (llvm::none_of(
use->getParentBlock()->getRangeEndingAtInst(use->getUser()),
[&](const SILInstruction &inst) {
return &inst == iter.first->second->getUser();
})) {
iter.first->getSecond() = use;
}
}
// Ok, we now have our data all setup.
BasicBlockWorklist worklist(asi->getFunction());
for (auto *succBlock : asi->getParentBlock()->getSuccessorBlocks()) {
worklist.pushIfNotVisited(succBlock);
}
Operand *targetOperand = nullptr;
while (auto *next = worklist.pop()) {
// First check if this is one of our target blocks.
auto iter = blockToOperandMap.find(next);
// If this is our target blocks...
if (iter != blockToOperandMap.end()) {
// If we already have an assigned target block, make sure this is the same
// one. If it is, just continue. Otherwise, something happened we do not
// understand... assign fresh.
if (!targetOperand) {
targetOperand = iter->second;
continue;
}
if (targetOperand->getParentBlock() == iter->first) {
continue;
}
return SILIsolationInfo::getDisconnected(
false /*is unsafe non isolated*/);
}
// Otherwise, see if this block is a write block. If so, we have a path to a
// write block that does not go through one of our blockToOperandMap
// blocks... return assign fresh.
if (writeBlocks.contains(next))
return SILIsolationInfo::getDisconnected(
false /*is unsafe non isolated*/);
// Otherwise, visit this blocks successors if we have not yet visited them.
for (auto *succBlock : next->getSuccessorBlocks()) {
worklist.pushIfNotVisited(succBlock);
}
}
// At this point, we know that we have a single indirect result use that
// dominates all writes and other indirect result uses. We can say that our
// alloc_stack temporary is that indirect result use's isolation.
if (auto fas = FullApplySite::isa(targetOperand->getUser())) {
if (fas.getSubstCalleeType()->hasSendingResult())
return SILIsolationInfo::getDisconnected(
false /*is unsafe non isolated*/);
}
return SILIsolationInfo::get(targetOperand->getUser());
}
SILIsolationInfo SILIsolationInfo::get(SILInstruction *inst) {
if (auto fas = FullApplySite::isa(inst)) {
// Before we do anything, see if we have a sending result. In such a case,
// our full apply site result must be disconnected.
//
// NOTE: This handles the direct case of a sending result. The indirect case
// is handled above.
if (fas.getSubstCalleeType()->hasSendingResult())
return SILIsolationInfo::getDisconnected(
false /*is unsafe non isolated*/);
// Check if we have SIL based "faked" isolation crossings that we use for
// testing purposes.
//
// NOTE: Please do not use getWithIsolationCrossing in more places! We only
// want to use it here!
if (auto crossing = fas.getIsolationCrossing()) {
if (auto info = SILIsolationInfo::getWithIsolationCrossing(*crossing))
return info;
}
if (auto *isolatedOp = fas.getIsolatedArgumentOperandOrNullPtr()) {
// First look through ActorInstance agnostic values so we can find the
// type of the actual underlying actor (e.x.: copy_value,
// init_existential_ref, begin_borrow, etc).
auto actualIsolatedValue =
ActorInstance::lookThroughInsts(isolatedOp->get());
// First see if we have a .none enum inst. In such a case, we are actually
// on the nonisolated global queue.
if (auto *ei = dyn_cast<EnumInst>(actualIsolatedValue)) {
if (ei->getElement()->getParentEnum()->isOptionalDecl() &&
!ei->hasOperand()) {
// In this case, we have a .none so we are attempting to use the
// global queue. This means that the isolation effect of the
// function is disconnected since we are treating the function as
// nonisolated.
return SILIsolationInfo::getDisconnected(false);
}
}
// Then using that value, grab the AST type from the actual isolated
// value.
CanType selfASTType = actualIsolatedValue->getType().getASTType();
// Then look through optional types since in cases like where we have a
// function argument that is an Optional actor... like an optional actor
// returned from a function, we still need to be able to lookup the actor
// as being the underlying type.
selfASTType =
selfASTType->lookThroughAllOptionalTypes()->getCanonicalType();
if (auto *nomDecl = selfASTType->getAnyActor()) {
// Then see if we have a global actor. This pattern matches the output
// for doing things like GlobalActor.shared.
if (nomDecl->isGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(SILValue(), selfASTType);
}
// TODO: We really should be doing this based off of an Operand. Then
// we would get the SILValue() for the first element. Today this can
// only mess up isolation history.
return SILIsolationInfo::getActorInstanceIsolated(
SILValue(), actualIsolatedValue, nomDecl);
}
}
// See if we can infer isolation from our callee.
if (auto isolationInfo = get(fas.getCallee())) {
return isolationInfo;
}
}
if (auto *pai = dyn_cast<PartialApplyInst>(inst)) {
if (auto *ace = pai->getLoc().getAsASTNode<AbstractClosureExpr>()) {
auto actorIsolation = ace->getActorIsolation();
if (actorIsolation.isGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(
pai, actorIsolation.getGlobalActor());
}
if (actorIsolation.isActorInstanceIsolated()) {
ApplySite as(pai);
SILValue actorInstance;
for (auto &op : as.getArgumentOperands()) {
if (as.getArgumentParameterInfo(op).hasOption(
SILParameterInfo::Isolated)) {
actorInstance = op.get();
break;
}
}
if (actorInstance) {
return SILIsolationInfo::getActorInstanceIsolated(
pai, actorInstance, actorIsolation.getActor());
}
// For now, if we do not have an actor instance, just create an actor
// instance isolated without an actor instance.
//
// If we do not have an actor instance, that means that we have a
// partial apply for which the isolated parameter was not closed over
// and is an actual argument that we pass in. This means that the
// partial apply is actually flow sensitive in terms of which specific
// actor instance we are isolated to.
//
// TODO: How do we want to resolve this.
return SILIsolationInfo::getPartialApplyActorInstanceIsolated(
pai, actorIsolation.getActor());
}
assert(actorIsolation.getKind() != ActorIsolation::Erased &&
"Implement this!");
}
}
// See if the memory base is a ref_element_addr from an address. If so, add
// the actor derived flag.
//
// This is important so we properly handle setters.
if (auto *rei = dyn_cast<RefElementAddrInst>(inst)) {
auto varIsolation = swift::getActorIsolation(rei->getField());
auto *nomDecl =
rei->getOperand()->getType().getNominalOrBoundGenericNominal();
if (nomDecl->isAnyActor())
return SILIsolationInfo::getActorInstanceIsolated(rei, rei->getOperand(),
nomDecl)
.withUnsafeNonIsolated(varIsolation.isNonisolatedUnsafe());
if (auto isolation = swift::getActorIsolation(nomDecl);
isolation && isolation.isGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(
rei, isolation.getGlobalActor())
.withUnsafeNonIsolated(varIsolation.isNonisolatedUnsafe());
}
return SILIsolationInfo::getDisconnected(
varIsolation.isNonisolatedUnsafe());
}
// Check if we have a global_addr inst.
if (auto *ga = dyn_cast<GlobalAddrInst>(inst)) {
if (auto *global = ga->getReferencedGlobal()) {
if (auto *globalDecl = global->getDecl()) {
auto isolation = swift::getActorIsolation(globalDecl);
if (isolation.isGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(
ga, isolation.getGlobalActor());
}
if (isolation.isNonisolatedUnsafe()) {
return SILIsolationInfo::getDisconnected(
true /*is nonisolated(unsafe)*/);
}
}
}
}
// Treat function ref as either actor isolated or sendable.
if (auto *fri = dyn_cast<FunctionRefInst>(inst)) {
if (auto optIsolation = fri->getReferencedFunction()->getActorIsolation()) {
auto isolation = *optIsolation;
// First check if we are actor isolated at the AST level... if we are,
// then create the relevant actor isolated.
if (isolation.isActorIsolated()) {
if (isolation.isGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(
fri, isolation.getGlobalActor());
}
// TODO: We need to be able to support flow sensitive actor instances
// like we do for partial apply. Until we do so, just store SILValue()
// for this. This could cause a problem if we can construct a function
// ref and invoke it with two different actor instances of the same type
// and pass in the same parameters to both. We should error and we would
// not with this impl since we could not distinguish the two.
if (isolation.getKind() == ActorIsolation::ActorInstance) {
return SILIsolationInfo::getFlowSensitiveActorIsolated(fri,
isolation);
}
assert(isolation.getKind() != ActorIsolation::Erased &&
"Implement this!");
}
// Then check if we have something that is nonisolated unsafe.
if (isolation.isNonisolatedUnsafe()) {
// First check if our function_ref is a method of a global actor
// isolated type. In such a case, we create a global actor isolated
// nonisolated(unsafe) so that if we assign the value to another
// variable, the variable still says that it is the appropriate global
// actor isolated thing.
//
// E.x.:
//
// @MainActor
// struct X { nonisolated(unsafe) var x: NonSendableThing { ... } }
//
// We want X.x to be safe to use... but to have that 'z' in the
// following is considered MainActor isolated.
//
// let z = X.x
//
auto *func = fri->getReferencedFunction();
auto funcType = func->getLoweredFunctionType();
if (funcType->hasSelfParam()) {
auto selfParam = funcType->getSelfInstanceType(
fri->getModule(), func->getTypeExpansionContext());
if (auto *nomDecl = selfParam->getNominalOrBoundGenericNominal()) {
auto nomDeclIsolation = swift::getActorIsolation(nomDecl);
if (nomDeclIsolation.isGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(
fri, nomDeclIsolation.getGlobalActor())
.withUnsafeNonIsolated(true);
}
}
}
}
}
// Otherwise, lets look at the AST and see if our function ref is from an
// autoclosure.
if (auto *autoclosure = fri->getLoc().getAsASTNode<AutoClosureExpr>()) {
if (auto *funcType = autoclosure->getType()->getAs<AnyFunctionType>()) {
if (funcType->hasGlobalActor()) {
if (funcType->hasGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(
fri, funcType->getGlobalActor());
}
}
if (auto *resultFType =
funcType->getResult()->getAs<AnyFunctionType>()) {
if (resultFType->hasGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(
fri, resultFType->getGlobalActor());
}
}
}
}
}
if (auto *cmi = dyn_cast<ClassMethodInst>(inst)) {
// Ok, we know that we do not have an actor... but we might have a global
// actor isolated method. Use the AST to compute the actor isolation and
// check if we are self. If we are not self, we want this to be
// disconnected.
if (auto *expr = cmi->getLoc().getAsASTNode<Expr>()) {
DeclRefExprAnalysis exprAnalysis;
if (exprAnalysis.compute(expr)) {
auto *dre = exprAnalysis.getResult();
// First see if we can get any information from the actual var decl of
// the class_method. We could find isolation or if our value is marked
// as nonisolated(unsafe), we could find that as well. If we have
// nonisolated(unsafe), we just propagate the value. Otherwise, we
// return the isolation.
bool isNonIsolatedUnsafe = exprAnalysis.hasNonisolatedUnsafe();
{
auto isolation = swift::getActorIsolation(dre->getDecl());
if (isolation.isActorIsolated()) {
// Check if we have a global actor and handle it appropriately.
if (isolation.getKind() == ActorIsolation::GlobalActor) {
bool localNonIsolatedUnsafe =
isNonIsolatedUnsafe | isolation.isNonisolatedUnsafe();
return SILIsolationInfo::getGlobalActorIsolated(
cmi, isolation.getGlobalActor())
.withUnsafeNonIsolated(localNonIsolatedUnsafe);
}
// In this case, we have an actor instance that is self.
if (isolation.getKind() != ActorIsolation::ActorInstance &&
isolation.isActorInstanceForSelfParameter()) {
bool localNonIsolatedUnsafe =
isNonIsolatedUnsafe | isolation.isNonisolatedUnsafe();
return SILIsolationInfo::getActorInstanceIsolated(
cmi, cmi->getOperand(),
cmi->getOperand()
->getType()
.getNominalOrBoundGenericNominal())
.withUnsafeNonIsolated(localNonIsolatedUnsafe);
}
}
}
if (auto type = dre->getType()->getNominalOrBoundGenericNominal()) {
if (auto isolation = swift::getActorIsolation(type)) {
if (isolation.isActorIsolated()) {
// Check if we have a global actor and handle it appropriately.
if (isolation.getKind() == ActorIsolation::GlobalActor) {
bool localNonIsolatedUnsafe =
isNonIsolatedUnsafe | isolation.isNonisolatedUnsafe();
return SILIsolationInfo::getGlobalActorIsolated(
cmi, isolation.getGlobalActor())
.withUnsafeNonIsolated(localNonIsolatedUnsafe);
}
// In this case, we have an actor instance that is self.
if (isolation.getKind() != ActorIsolation::ActorInstance &&
isolation.isActorInstanceForSelfParameter()) {
bool localNonIsolatedUnsafe =
isNonIsolatedUnsafe | isolation.isNonisolatedUnsafe();
return SILIsolationInfo::getActorInstanceIsolated(
cmi, cmi->getOperand(),
cmi->getOperand()
->getType()
.getNominalOrBoundGenericNominal())
.withUnsafeNonIsolated(localNonIsolatedUnsafe);
}
}
}
}
if (isNonIsolatedUnsafe)
return SILIsolationInfo::getDisconnected(isNonIsolatedUnsafe);
}
}
}
// See if we have a struct_extract from a global actor isolated type.
if (auto *sei = dyn_cast<StructExtractInst>(inst)) {
auto varIsolation = swift::getActorIsolation(sei->getField());
if (auto isolation =
SILIsolationInfo::getGlobalActorIsolated(sei, sei->getStructDecl()))
return isolation.withUnsafeNonIsolated(
varIsolation.isNonisolatedUnsafe());
return SILIsolationInfo::getDisconnected(
varIsolation.isNonisolatedUnsafe());
}
if (auto *seai = dyn_cast<StructElementAddrInst>(inst)) {
auto varIsolation = swift::getActorIsolation(seai->getField());
if (auto isolation = SILIsolationInfo::getGlobalActorIsolated(
seai, seai->getStructDecl()))
return isolation.withUnsafeNonIsolated(
varIsolation.isNonisolatedUnsafe());
return SILIsolationInfo::getDisconnected(
varIsolation.isNonisolatedUnsafe());
}
// See if we have an unchecked_enum_data from a global actor isolated type.
if (auto *uedi = dyn_cast<UncheckedEnumDataInst>(inst)) {
return SILIsolationInfo::getGlobalActorIsolated(uedi, uedi->getEnumDecl());
}
// See if we have an unchecked_enum_data from a global actor isolated type.
if (auto *utedi = dyn_cast<UncheckedTakeEnumDataAddrInst>(inst)) {
return SILIsolationInfo::getGlobalActorIsolated(utedi,
utedi->getEnumDecl());
}
// Check if we have an unsafeMutableAddressor from a global actor, mark the
// returned value as being actor derived.
if (auto applySite = dyn_cast<ApplyInst>(inst)) {
if (auto *calleeFunction = applySite->getCalleeFunction()) {
if (calleeFunction->isGlobalInit()) {
auto isolation = getGlobalActorInitIsolation(calleeFunction);
if (isolation && isolation->isGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(
applySite, isolation->getGlobalActor());
}
}
}
}
// See if we have a convert function from a Sendable actor isolated function,
// we want to treat the result of the convert function as being actor isolated
// so that we cannot escape the value.
//
// NOTE: At this point, we already know that cfi's result is not sendable,
// since we would have exited above already.
if (auto *cfi = dyn_cast<ConvertFunctionInst>(inst)) {
SILValue operand = cfi->getOperand();
if (operand->getType().getAs<SILFunctionType>()->isSendable()) {
SILValue newValue = operand;
do {
operand = newValue;
newValue = lookThroughOwnershipInsts(operand);
if (auto *ttfi = dyn_cast<ThinToThickFunctionInst>(newValue)) {
newValue = ttfi->getOperand();
}
if (auto *cfi = dyn_cast<ConvertFunctionInst>(newValue)) {
newValue = cfi->getOperand();
}
if (auto *pai = dyn_cast<PartialApplyInst>(newValue)) {
newValue = pai->getCallee();
}
} while (newValue != operand);
if (auto *ai = dyn_cast<ApplyInst>(operand)) {
if (auto *callExpr = ai->getLoc().getAsASTNode<ApplyExpr>()) {
if (auto *callType = callExpr->getType()->getAs<AnyFunctionType>()) {
if (callType->hasGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(
ai, callType->getGlobalActor());
}
}
}
}
if (auto *fri = dyn_cast<FunctionRefInst>(operand)) {
if (auto isolation = SILIsolationInfo::get(fri)) {
return isolation;
}
}
}
}
if (auto *asi = dyn_cast<AllocStackInst>(inst)) {
if (asi->isFromVarDecl()) {
if (auto *varDecl = asi->getLoc().getAsASTNode<VarDecl>()) {
auto isolation = swift::getActorIsolation(varDecl);
if (isolation.getKind() == ActorIsolation::NonisolatedUnsafe) {
return SILIsolationInfo::getDisconnected(
true /*is nonisolated(unsafe)*/);
}
}
} else {
// Ok, we have a temporary. If it is non-Sendable...
if (SILIsolationInfo::isNonSendableType(asi)) {
if (auto isolation = inferIsolationInfoForTempAllocStack(asi))
return isolation;
}
}
}
if (auto *mvi = dyn_cast<MoveValueInst>(inst)) {
if (mvi->isFromVarDecl()) {
if (auto *debugInfo = getSingleDebugUse(mvi)) {
if (auto *dbg = dyn_cast<DebugValueInst>(debugInfo->getUser())) {
if (auto *varDecl = dbg->getLoc().getAsASTNode<VarDecl>()) {
auto isolation = swift::getActorIsolation(varDecl);
if (isolation.getKind() == ActorIsolation::NonisolatedUnsafe) {
return SILIsolationInfo::getDisconnected(
true /*is nonisolated(unsafe)*/);
}
}
}
}
}
}
/// Consider non-Sendable metatypes to be task-isolated, so they cannot cross
/// into another isolation domain.
if (auto *mi = dyn_cast<MetatypeInst>(inst)) {
return SILIsolationInfo::getTaskIsolated(mi);
}
// Check if we have an ApplyInst with nonisolated.
//
// NOTE: We purposely avoid using other isolation info from an ApplyExpr since
// when we use the isolation crossing on the ApplyExpr at this point,w e are
// unable to find out what the appropriate instance is (since we would have
// found it earlier if we could). This ensures that we can eliminate a case
// where we get a SILIsolationInfo with actor isolation and without a SILValue
// actor instance. This prevents a class of bad SILIsolationInfo merge errors
// caused by the actor instances not matching.
if (ApplyExpr *apply = inst->getLoc().getAsASTNode<ApplyExpr>()) {
if (auto crossing = apply->getIsolationCrossing()) {
if (crossing->getCalleeIsolation().isNonisolated()) {
return SILIsolationInfo::getDisconnected(false /*nonisolated(unsafe)*/);
}
}
}
return SILIsolationInfo();
}
SILIsolationInfo SILIsolationInfo::get(SILArgument *arg) {
// Return early if we do not have a non-Sendable type.
if (!SILIsolationInfo::isNonSendableType(arg->getType(), arg->getFunction()))
return {};
// Handle a switch_enum from a global actor isolated type.
if (auto *phiArg = dyn_cast<SILPhiArgument>(arg)) {
if (auto *singleTerm = phiArg->getSingleTerminator()) {
if (auto *swi = dyn_cast<SwitchEnumInst>(singleTerm)) {
auto enumDecl =
swi->getOperand()->getType().getEnumOrBoundGenericEnum();
return SILIsolationInfo::getGlobalActorIsolated(arg, enumDecl);
}
}
return SILIsolationInfo();
}
auto *fArg = cast<SILFunctionArgument>(arg);
// Sending is always disconnected.
if (fArg->isSending())
return SILIsolationInfo::getDisconnected(false /*nonisolated(unsafe)*/);
// If we have a closure capture that is not an indirect result or indirect
// result error, we want to treat it as sending so that we properly handle
// async lets.
//
// This pattern should only come up with async lets. See comment in
// isTransferrableFunctionArgument.
if (!fArg->isIndirectResult() && !fArg->isIndirectErrorResult() &&
fArg->isClosureCapture() &&
fArg->getFunction()->getLoweredFunctionType()->isSendable())
return SILIsolationInfo::getDisconnected(false /*nonisolated(unsafe)*/);
// Before we do anything further, see if we have an isolated parameter. This
// handles isolated self and specifically marked isolated.
if (auto *isolatedArg = fArg->getFunction()->maybeGetIsolatedArgument()) {
auto astType = isolatedArg->getType().getASTType();
if (auto *nomDecl = astType->lookThroughAllOptionalTypes()->getAnyActor()) {
return SILIsolationInfo::getActorInstanceIsolated(fArg, isolatedArg,
nomDecl);
}
}
// Otherwise, see if we need to handle this isolation computation specially
// due to information from the decl ref if we have one.
if (auto declRef = fArg->getFunction()->getDeclRef()) {
// First check if we have an allocator decl ref. If we do and we have an
// actor instance isolation, then we know that we are actively just calling
// the initializer. To just make region isolation work, treat this as
// disconnected so we can construct the actor value. Users cannot write
// allocator functions so we just need to worry about compiler generated
// code. In the case of a non-actor, we can only have an allocator that is
// global actor isolated, so we will never hit this code path.
if (declRef.kind == SILDeclRef::Kind::Allocator) {
if (auto isolation = fArg->getFunction()->getActorIsolation()) {
if (isolation->isActorInstanceIsolated()) {
return SILIsolationInfo::getDisconnected(
false /*nonisolated(unsafe)*/);
}
}
}
// Then see if we have an init accessor that is isolated to an actor
// instance, but for which we have not actually passed self. In such a case,
// we need to pass in a "fake" ActorInstance that users know is a sentinel
// for the self value.
if (auto functionIsolation = fArg->getFunction()->getActorIsolation()) {
if (functionIsolation->isActorInstanceIsolated() && declRef.getDecl()) {
if (auto *accessor =
dyn_cast_or_null<AccessorDecl>(declRef.getFuncDecl())) {
if (accessor->isInitAccessor()) {
return SILIsolationInfo::getActorInstanceIsolated(
fArg, ActorInstance::getForActorAccessorInit(),
functionIsolation->getActor());
}
}
}
}
}
// Otherwise, if we do not have an isolated argument and are not in an
// allocator, then we might be isolated via global isolation.
if (auto functionIsolation = fArg->getFunction()->getActorIsolation()) {
if (functionIsolation->isActorIsolated()) {
if (functionIsolation->isGlobalActor()) {
return SILIsolationInfo::getGlobalActorIsolated(
fArg, functionIsolation->getGlobalActor());
}
return SILIsolationInfo::getActorInstanceIsolated(
fArg, ActorInstance::getForActorAccessorInit(),
functionIsolation->getActor());
}
}
return SILIsolationInfo::getTaskIsolated(fArg);
}
void SILIsolationInfo::printOptions(llvm::raw_ostream &os) const {
auto opts = getOptions();
if (!opts)
return;
os << ": ";
llvm::SmallVector<StringLiteral, unsigned(Flag::MaxNumBits)> data;
if (opts.contains(Flag::UnsafeNonIsolated)) {
data.push_back(StringLiteral("nonisolated(unsafe)"));
opts -= Flag::UnsafeNonIsolated;
}
if (opts.contains(Flag::UnappliedIsolatedAnyParameter)) {
data.push_back(StringLiteral("unapplied_isolated_any_parameter"));
opts -= Flag::UnappliedIsolatedAnyParameter;
}
assert(!opts && "Unhandled flag?!");
assert(data.size() < unsigned(Flag::MaxNumBits) &&
"Please update MaxNumBits so that we can avoid heap allocations in "
"this SmallVector");
llvm::interleave(data, os, ", ");
}
void SILIsolationInfo::print(llvm::raw_ostream &os) const {
switch (Kind(*this)) {
case Unknown:
os << "unknown";
return;
case Disconnected:
os << "disconnected";
printOptions(os);
return;
case Actor:
if (ActorInstance instance = getActorInstance()) {
switch (instance.getKind()) {
case ActorInstance::Kind::Value: {
SILValue value = instance.getValue();
if (auto name = VariableNameInferrer::inferName(value)) {
os << "'" << *name << "'-isolated";
printOptions(os);
os << "\n";
os << "instance: " << *value;
return;
}
break;
}
case ActorInstance::Kind::ActorAccessorInit:
os << "'self'-isolated";
printOptions(os);
os << '\n';
os << "instance: actor accessor init\n";
return;
case ActorInstance::Kind::CapturedActorSelf:
os << "'self'-isolated";
printOptions(os);
os << '\n';
os << "instance: captured actor instance self\n";
return;
}
}
if (getActorIsolation().getKind() == ActorIsolation::ActorInstance) {