-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathSILInliner.cpp
1193 lines (1065 loc) · 46.9 KB
/
SILInliner.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- SILInliner.cpp - Inlines SIL functions ---------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-inliner"
#include "swift/SILOptimizer/Utils/SILInliner.h"
#include "swift/AST/Builtins.h"
#include "swift/AST/DiagnosticsSIL.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/PrettyStackTrace.h"
#include "swift/SIL/SILDebugScope.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/TypeSubstCloner.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/SILOptFunctionBuilder.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
using namespace swift;
bool SILInliner::canInlineBeginApply(BeginApplyInst *BA) {
// Don't inline if we have multiple resumption sites (i.e. end_apply or
// abort_apply instructions). The current implementation clones a single
// copy of the end_apply and abort_apply paths, so it can't handle values
// that might be live in the caller across different resumption sites. To
// handle this in general, we'd need to separately clone the resume/unwind
// paths into each end/abort.
bool hasEndApply = false, hasAbortApply = false;
for (auto *use : BA->getEndApplyUses()) {
auto *user = use->getUser();
if (isa<EndApplyInst>(user)) {
if (hasEndApply) return false;
hasEndApply = true;
} else if (isa<AbortApplyInst>(user)) {
if (hasAbortApply) return false;
hasAbortApply = true;
} else {
assert(isa<EndBorrowInst>(user));
}
}
// Don't inline a coroutine with multiple yields. The current
// implementation doesn't clone code from the caller, so it can't handle
// values that might be live in the callee across different yields.
// To handle this in general, we'd need to clone code in the caller,
// both between the begin_apply and the resumption site and then
// potentially after the resumption site when there are un-mergeable
// values alive across it.
bool hasYield = false;
for (auto &B : *BA->getReferencedFunctionOrNull()) {
if (isa<YieldInst>(B.getTerminator())) {
if (hasYield) return false;
hasYield = true;
}
}
// Note that zero yields is fine; it just means the begin_apply is
// basically noreturn.
return true;
}
bool SILInliner::canInlineApplySite(FullApplySite apply) {
if (!apply.canOptimize())
return false;
if (auto BA = dyn_cast<BeginApplyInst>(apply))
return canInlineBeginApply(BA);
return true;
}
namespace {
/// Utility class for rewiring control-flow of inlined begin_apply functions.
class BeginApplySite {
SILLocation Loc;
SILBuilder *Builder;
BeginApplyInst *BeginApply;
bool HasYield = false;
EndApplyInst *EndApply = nullptr;
SILBasicBlock *EndApplyBB = nullptr;
SILBasicBlock *EndApplyReturnBB = nullptr;
AbortApplyInst *AbortApply = nullptr;
SILBasicBlock *AbortApplyBB = nullptr;
SILBasicBlock *AbortApplyReturnBB = nullptr;
SmallVector<EndBorrowInst *, 2> EndBorrows;
public:
BeginApplySite(BeginApplyInst *BeginApply, SILLocation Loc,
SILBuilder *Builder)
: Loc(Loc), Builder(Builder), BeginApply(BeginApply) {}
static std::optional<BeginApplySite> get(FullApplySite AI, SILLocation Loc,
SILBuilder *Builder) {
auto *BeginApply = dyn_cast<BeginApplyInst>(AI);
if (!BeginApply)
return std::nullopt;
return BeginApplySite(BeginApply, Loc, Builder);
}
void preprocess(SILBasicBlock *returnToBB,
SmallVectorImpl<SILInstruction *> &endBorrowInsertPts) {
SmallVector<EndApplyInst *, 1> endApplyInsts;
SmallVector<AbortApplyInst *, 1> abortApplyInsts;
BeginApply->getCoroutineEndPoints(endApplyInsts, abortApplyInsts,
&EndBorrows);
while (!endApplyInsts.empty()) {
auto *endApply = endApplyInsts.pop_back_val();
collectEndApply(endApply);
endBorrowInsertPts.push_back(&*std::next(endApply->getIterator()));
}
while (!abortApplyInsts.empty()) {
auto *abortApply = abortApplyInsts.pop_back_val();
collectAbortApply(abortApply);
endBorrowInsertPts.push_back(&*std::next(abortApply->getIterator()));
}
}
// Split the basic block before the end/abort_apply. We will insert code
// to jump to the resume/unwind blocks depending on the integer token
// later. And the inlined resume/unwind return blocks will jump back to
// the merge blocks.
void collectEndApply(EndApplyInst *End) {
assert(!EndApply);
EndApply = End;
EndApplyBB = EndApply->getParent();
EndApplyReturnBB = EndApplyBB->split(SILBasicBlock::iterator(EndApply));
}
void collectAbortApply(AbortApplyInst *Abort) {
assert(!AbortApply);
AbortApply = Abort;
AbortApplyBB = AbortApply->getParent();
AbortApplyReturnBB = AbortApplyBB->split(SILBasicBlock::iterator(Abort));
}
/// Perform special processing for the given terminator if necessary.
///
/// \return false to use the normal inlining logic
bool processTerminator(
TermInst *terminator, SILBasicBlock *returnToBB,
llvm::function_ref<SILBasicBlock *(SILBasicBlock *)> remapBlock,
llvm::function_ref<SILValue(SILValue)> getMappedValue) {
// A yield branches to the begin_apply return block passing the yielded
// results as branch arguments. Collect the yields target block for
// resuming later. Pass an integer token to the begin_apply return block
// to mark the yield we came from.
if (auto *yield = dyn_cast<YieldInst>(terminator)) {
assert(!HasYield);
HasYield = true;
// Pairwise replace the yielded values of the BeginApply with the
// values that were yielded.
auto calleeYields = yield->getYieldedValues();
auto callerYields = BeginApply->getYieldedValues();
assert(calleeYields.size() == callerYields.size());
SmallVector<BeginBorrowInst *, 2> guaranteedYields;
for (auto i : indices(calleeYields)) {
auto remappedYield = getMappedValue(calleeYields[i]);
// When owned values are yielded @guaranteed, the mapped value must be
// borrowed and the result be substituted in place of the originally
// yielded value. Otherwise, there could be uses of the original value
// which require an @guaranteed operand into which we'd be attempting to
// substitute an @owned operand.
if (calleeYields[i]->getOwnershipKind() == OwnershipKind::Owned &&
!yield->getOperandRef(i).isConsuming() &&
Builder->getFunction().hasOwnership()) {
auto *bbi = Builder->createBeginBorrow(Loc, remappedYield);
guaranteedYields.push_back(bbi);
remappedYield = bbi;
}
callerYields[i]->replaceAllUsesWith(remappedYield);
}
Builder->createBranch(Loc, returnToBB);
// Add branches at the resumption sites to the resume/unwind block.
if (EndApply) {
SavedInsertionPointRAII savedIP(*Builder, EndApplyBB);
auto resumeBB = remapBlock(yield->getResumeBB());
for (auto *bbi : guaranteedYields) {
Builder->createEndBorrow(EndApply->getLoc(), bbi);
}
Builder->createBranch(EndApply->getLoc(), resumeBB);
}
if (AbortApply) {
SavedInsertionPointRAII savedIP(*Builder, AbortApplyBB);
auto unwindBB = remapBlock(yield->getUnwindBB());
for (auto *bbi : guaranteedYields) {
Builder->createEndBorrow(EndApply->getLoc(), bbi);
}
Builder->createBranch(AbortApply->getLoc(), unwindBB);
}
return true;
}
// 'return' and 'unwind' instructions turn into branches to the
// end_apply/abort_apply return blocks, respectively. If those blocks
// are null, it's because there weren't any of the corresponding
// instructions in the caller. That means this entire path is
// unreachable.
if (isa<ReturnInst>(terminator) || isa<UnwindInst>(terminator)) {
ReturnInst *retInst = dyn_cast<ReturnInst>(terminator);
auto *returnBB = retInst ? EndApplyReturnBB : AbortApplyReturnBB;
if (retInst && EndApply)
EndApply->replaceAllUsesWith(getMappedValue(retInst->getOperand()));
if (returnBB) {
Builder->createBranch(Loc, returnBB);
} else {
Builder->createUnreachable(Loc);
}
return true;
}
assert(!isa<ThrowInst>(terminator) &&
"Unexpected throw instruction in yield_once function");
// Otherwise, we just map the instruction normally.
return false;
}
/// Complete the begin_apply-specific inlining work. Delete vestiges of the
/// apply site except the callee value. Return a valid iterator after the
/// original begin_apply.
void complete() {
// If there was no yield in the coroutine, then control never reaches
// the end of the begin_apply, so all the downstream code is unreachable.
// Make sure the function is well-formed, since we otherwise rely on
// having visited a yield instruction.
if (!HasYield) {
// Make sure the split resumption blocks have terminators.
if (EndApplyBB) {
SavedInsertionPointRAII savedIP(*Builder, EndApplyBB);
Builder->createUnreachable(Loc);
}
if (AbortApplyBB) {
SavedInsertionPointRAII savedIP(*Builder, AbortApplyBB);
Builder->createUnreachable(Loc);
}
// Replace all the yielded values in the callee with undef.
for (auto calleeYield : BeginApply->getYieldedValues()) {
calleeYield->replaceAllUsesWith(SILUndef::get(calleeYield));
}
}
// Remove the resumption sites.
if (EndApply)
EndApply->eraseFromParent();
if (AbortApply)
AbortApply->eraseFromParent();
for (auto *EndBorrow : EndBorrows)
EndBorrow->eraseFromParent();
if (auto allocation = BeginApply->getCalleeAllocationResult()) {
SmallVector<SILInstruction *, 4> users(allocation->getUsers());
for (auto *user : users) {
auto *dsi = cast<DeallocStackInst>(user);
dsi->eraseFromParent();
}
}
assert(!BeginApply->hasUsesOfAnyResult());
}
};
} // end anonymous namespace
namespace swift {
class SILInlineCloner
: public TypeSubstCloner<SILInlineCloner, SILOptFunctionBuilder> {
friend class SILInstructionVisitor<SILInlineCloner>;
friend class SILCloner<SILInlineCloner>;
using SuperTy = TypeSubstCloner<SILInlineCloner, SILOptFunctionBuilder>;
using InlineKind = SILInliner::InlineKind;
SILOptFunctionBuilder &FuncBuilder;
InlineKind IKind;
// The original, noninlined apply site. These become invalid after fixUp,
// which is called as the last step in SILCloner::cloneFunctionBody.
FullApplySite Apply;
std::optional<BeginApplySite> BeginApply;
InstructionDeleter &deleter;
/// The location representing the inlined instructions.
///
/// This location wraps the call site AST node that is being inlined.
/// Alternatively, it can be the SIL file location of the call site (in case
/// of SIL-to-SIL transformations).
SILLocation Loc;
const SILDebugScope *CallSiteScope = nullptr;
llvm::SmallDenseMap<const SILDebugScope *, const SILDebugScope *, 8>
InlinedScopeCache;
// Block in the original caller serving as the successor of the inlined
// control path.
SILBasicBlock *ReturnToBB = nullptr;
public:
SILInlineCloner(SILFunction *CalleeFunction, FullApplySite Apply,
SILOptFunctionBuilder &FuncBuilder, InlineKind IKind,
SubstitutionMap ApplySubs,
InstructionDeleter &deleter);
SILFunction *getCalleeFunction() const { return &Original; }
void cloneInline(ArrayRef<SILValue> AppliedArgs);
protected:
SILValue borrowFunctionArgument(SILValue callArg, unsigned index);
SILValue moveFunctionArgument(SILValue callArg, unsigned index);
void visitDebugValueInst(DebugValueInst *Inst);
void visitHopToExecutorInst(HopToExecutorInst *Inst);
void visitTerminator(SILBasicBlock *BB);
/// This hook is called after either of the top-level visitors:
/// cloneReachableBlocks or cloneSILFunction.
///
/// After `preFixUp` is called `commonFixUp` will be called.
void preFixUp(SILFunction *calleeFunction);
/// After postFixUp, the SIL must be valid and semantically equivalent to the
/// SIL before cloning.
void postFixUp(SILFunction *calleeFunction);
const SILDebugScope *getOrCreateInlineScope(const SILDebugScope *DS);
void postProcess(SILInstruction *Orig, SILInstruction *Cloned) {
// We just updated the debug scope information. Intentionally
// don't call SILClonerWithScopes<SILInlineCloner>::postProcess().
SILCloner<SILInlineCloner>::postProcess(Orig, Cloned);
}
SILLocation remapLocation(SILLocation InLoc) {
// For performance inlining return the original location.
if (IKind == InlineKind::PerformanceInline)
return InLoc;
// Inlined location wraps the call site that is being inlined, regardless of
// the input location.
return Loc;
}
const SILDebugScope *remapScope(const SILDebugScope *DS) {
if (IKind == InlineKind::MandatoryInline)
// Transparent functions are absorbed into the call
// site. No soup, err, debugging for you!
return CallSiteScope;
else
// Create an inlined version of the scope.
return getOrCreateInlineScope(DS);
}
};
} // namespace swift
SILBasicBlock *
SILInliner::inlineFunction(SILFunction *calleeFunction, FullApplySite apply,
ArrayRef<SILValue> appliedArgs) {
PrettyStackTraceSILFunction calleeTraceRAII("inlining", calleeFunction);
PrettyStackTraceSILFunction callerTraceRAII("...into", apply.getFunction());
assert(canInlineApplySite(apply)
&& "Asked to inline function that is unable to be inlined?!");
SILInlineCloner cloner(calleeFunction, apply, FuncBuilder, IKind, ApplySubs,
deleter);
cloner.cloneInline(appliedArgs);
return cloner.getLastClonedBB();
}
SILBasicBlock *
SILInliner::inlineFullApply(FullApplySite apply,
SILInliner::InlineKind inlineKind,
SILOptFunctionBuilder &funcBuilder,
InstructionDeleter &deleter) {
assert(apply.canOptimize());
assert(!apply.getFunction()->hasOwnership() ||
apply.getReferencedFunctionOrNull()->hasOwnership());
SmallVector<SILValue, 8> appliedArgs;
for (const auto arg : apply.getArguments())
appliedArgs.push_back(arg);
SILInliner Inliner(funcBuilder, deleter, inlineKind, apply.getSubstitutionMap());
return Inliner.inlineFunction(apply.getReferencedFunctionOrNull(), apply,
appliedArgs);
}
static SILLocation selectLoc(bool mandatory, SILLocation orig) {
// Compute the SILLocation which should be used by all the inlined
// instructions.
if (mandatory)
return MandatoryInlinedLocation(orig);
else {
return InlinedLocation(orig);
}
}
SILInlineCloner::SILInlineCloner(
SILFunction *calleeFunction, FullApplySite apply,
SILOptFunctionBuilder &funcBuilder, InlineKind inlineKind,
SubstitutionMap applySubs,
InstructionDeleter &deleter)
: SuperTy(*apply.getFunction(), *calleeFunction, applySubs,
/*DT=*/nullptr, /*Inlining=*/true),
FuncBuilder(funcBuilder), IKind(inlineKind), Apply(apply),
deleter(deleter),
Loc(selectLoc(inlineKind == InlineKind::MandatoryInline, apply.getLoc())) {
SILFunction &F = getBuilder().getFunction();
assert(apply.getFunction() && apply.getFunction() == &F
&& "Inliner called on apply instruction in wrong function?");
assert(((calleeFunction->getRepresentation()
!= SILFunctionTypeRepresentation::ObjCMethod
&& calleeFunction->getRepresentation()
!= SILFunctionTypeRepresentation::CFunctionPointer)
|| IKind == InlineKind::PerformanceInline)
&& "Cannot inline Objective-C methods or C functions in mandatory "
"inlining");
auto applyScope = apply.getDebugScope();
// FIXME: Turn this into an assertion instead.
if (!applyScope)
applyScope = apply.getFunction()->getDebugScope();
if (IKind == InlineKind::MandatoryInline) {
// Mandatory inlining: every instruction inherits scope/location
// from the call site.
CallSiteScope = applyScope;
} else {
// Performance inlining. Construct a proper inline scope pointing
// back to the call site.
CallSiteScope = new (F.getModule()) SILDebugScope(
apply.getLoc(), nullptr, applyScope, applyScope->InlinedCallSite);
}
assert(CallSiteScope && "call site has no scope");
assert(CallSiteScope->getParentFunction() == &F);
// Set up the coroutine-specific inliner if applicable.
BeginApply = BeginApplySite::get(apply, Loc, &getBuilder());
}
// Clone the entire callee function into the caller function at the apply site.
// Delete the original apply and all dead arguments except the callee.
void SILInlineCloner::cloneInline(ArrayRef<SILValue> AppliedArgs) {
assert(getCalleeFunction()->getArguments().size() == AppliedArgs.size()
&& "Unexpected number of callee arguments.");
getBuilder().setInsertionPoint(Apply.getInstruction());
SmallVector<SILValue, 4> entryArgs;
entryArgs.reserve(AppliedArgs.size());
auto calleeConv = getCalleeFunction()->getConventions();
SmallBitVector borrowedArgs(AppliedArgs.size());
SmallBitVector copiedArgs(AppliedArgs.size());
SmallBitVector inCxxArgs(AppliedArgs.size());
if (!Apply->getFunction()->hasOwnership()) {
for (auto p : llvm::enumerate(AppliedArgs)) {
SILValue callArg = p.value();
entryArgs.push_back(callArg);
}
} else {
for (auto p : llvm::enumerate(AppliedArgs)) {
SILValue callArg = p.value();
SWIFT_DEFER { entryArgs.push_back(callArg); };
unsigned idx = p.index();
if (idx >= calleeConv.getSILArgIndexOfFirstParam()) {
auto paramInfo = calleeConv.getParamInfoForSILArg(idx);
if (callArg->getType().isAddress()) {
// If lexical lifetimes are enabled, any alloc_stacks in the caller
// that are passed to the callee being inlined (except mutating
// exclusive accesses) need to be promoted to be lexical. Otherwise,
// destroy_addrs could be hoisted through the body of the newly
// inlined function without regard to the deinit barriers it contains.
//
// TODO: [begin_borrow_addr] Instead of marking the alloc_stack as a
// whole lexical, just mark the inlined range lexical via
// begin_borrow_addr [lexical]/end_borrow_addr just as is done
// with values.
auto &module = Apply.getFunction()->getModule();
auto enableLexicalLifetimes =
module.getASTContext().SILOpts.supportsLexicalLifetimes(module);
if (!enableLexicalLifetimes)
continue;
// Exclusive mutating accesses don't entail a lexical scope.
if (paramInfo.getConvention() == ParameterConvention::Indirect_Inout)
continue;
auto storage = AccessStorageWithBase::compute(callArg);
if (auto *asi = dyn_cast_or_null<AllocStackInst>(storage.base))
asi->setIsLexical();
} else {
// Insert begin/end borrow for guaranteed arguments.
if (paramInfo.isGuaranteedInCaller()) {
if (SILValue newValue = borrowFunctionArgument(callArg, idx)) {
callArg = newValue;
borrowedArgs[idx] = true;
}
} else if (paramInfo.isConsumedInCaller()) {
if (SILValue newValue = moveFunctionArgument(callArg, idx)) {
callArg = newValue;
}
}
}
if (paramInfo.getConvention() == ParameterConvention::Indirect_In_CXX)
inCxxArgs[idx] = true;
}
}
}
// Create the return block and set ReturnToBB for use in visitTerminator
// callbacks.
SILBasicBlock *callerBlock = Apply.getParent();
SmallVector<SILInstruction *, 1> endBorrowInsertPts;
switch (Apply.getKind()) {
case FullApplySiteKind::ApplyInst: {
auto *AI = dyn_cast<ApplyInst>(Apply);
// Split the BB and do NOT create a branch between the old and new
// BBs; we will create the appropriate terminator manually later.
ReturnToBB =
callerBlock->split(std::next(Apply.getInstruction()->getIterator()));
endBorrowInsertPts.push_back(&*ReturnToBB->begin());
// Create an argument on the return-to BB representing the returned value.
auto *retArg =
ReturnToBB->createPhiArgument(AI->getType(), OwnershipKind::Owned);
// Replace all uses of the ApplyInst with the new argument.
AI->replaceAllUsesWith(retArg);
break;
}
case FullApplySiteKind::BeginApplyInst: {
ReturnToBB =
callerBlock->split(std::next(Apply.getInstruction()->getIterator()));
// For begin_apply, we insert the end_borrow in the end_apply, abort_apply
// blocks to ensure that our borrowed values live over both the body and
// resume block of our coroutine.
BeginApply->preprocess(ReturnToBB, endBorrowInsertPts);
break;
}
case FullApplySiteKind::TryApplyInst: {
auto *tai = cast<TryApplyInst>(Apply);
ReturnToBB = tai->getNormalBB();
endBorrowInsertPts.push_back(&*ReturnToBB->begin());
endBorrowInsertPts.push_back(&*tai->getErrorBB()->begin());
break;
}
}
// Then insert end_borrow in our end borrow block and in the throw
// block if we have one.
if (borrowedArgs.any()) {
for (unsigned i : indices(AppliedArgs)) {
if (!borrowedArgs.test(i)) {
continue;
}
for (auto *insertPt : endBorrowInsertPts) {
SILBuilderWithScope returnBuilder(insertPt, getBuilder());
returnBuilder.createEndBorrow(Apply.getLoc(), entryArgs[i]);
}
}
}
if (inCxxArgs.any()) {
for (unsigned i : indices(AppliedArgs)) {
if (!inCxxArgs.test(i)) {
continue;
}
for (auto *insertPt : endBorrowInsertPts) {
SILBuilderWithScope returnBuilder(insertPt->getParent()->begin(),
getBuilder());
returnBuilder.emitDestroyOperation(Apply.getLoc(), entryArgs[i]);
}
}
}
// Visit original BBs in depth-first preorder, starting with the
// entry block, cloning all instructions and terminators.
cloneFunctionBody(getCalleeFunction(), callerBlock, entryArgs);
// For non-throwing applies, the inlined body now unconditionally branches to
// the returned-to-code, which was previously part of the call site's basic
// block. We could trivially merge these blocks now, however, this would be
// quadratic: O(num-calls-in-block * num-instructions-in-block). Also,
// guaranteeing that caller instructions following the inlined call are in a
// separate block gives the inliner control over revisiting only the inlined
// instructions.
//
// Once all calls in a function are inlined, unconditional branches are
// eliminated by mergeBlocks.
}
void SILInlineCloner::visitTerminator(SILBasicBlock *BB) {
TermInst *Terminator = BB->getTerminator();
// Coroutine terminators need special handling.
if (BeginApply) {
if (BeginApply->processTerminator(
Terminator, ReturnToBB,
[=](SILBasicBlock *Block) -> SILBasicBlock * {
return this->remapBasicBlock(Block);
},
[=](SILValue Val) -> SILValue {
return this->getMappedValue(Val);
}))
return;
}
// Modify return terminators to branch to the return-to BB, rather
// than trying to clone the ReturnInst. Because of that, the scope
// needs to be remapped manually.
getBuilder().setCurrentDebugScope(getOpScope(Terminator->getDebugScope()));
if (auto *RI = dyn_cast<ReturnInst>(Terminator)) {
auto returnedValue = getMappedValue(RI->getOperand());
getBuilder().createBranch(getOpLocation(RI->getLoc()), ReturnToBB,
returnedValue);
return;
}
// Modify throw terminators to branch to the error-return BB, rather than
// trying to clone the ThrowInst.
if (auto *TI = dyn_cast<ThrowInst>(Terminator)) {
SILLocation Loc = getOpLocation(TI->getLoc());
switch (Apply.getKind()) {
case FullApplySiteKind::ApplyInst:
assert(cast<ApplyInst>(Apply)->isNonThrowing()
&& "apply of a function with error result must be non-throwing");
getBuilder().createUnreachable(Loc);
return;
case FullApplySiteKind::BeginApplyInst:
assert(cast<BeginApplyInst>(Apply)->isNonThrowing()
&& "apply of a function with error result must be non-throwing");
getBuilder().createUnreachable(Loc);
return;
case FullApplySiteKind::TryApplyInst:
auto tryAI = cast<TryApplyInst>(Apply);
auto returnedValue = getMappedValue(TI->getOperand());
getBuilder().createBranch(Loc, tryAI->getErrorBB(), returnedValue);
return;
}
}
// Modify throw_addr terminators to branch to the error-return BB, rather than
// trying to clone the ThrowAddrInst.
if (auto *TAI = dyn_cast<ThrowAddrInst>(Terminator)) {
SILLocation Loc = getOpLocation(TAI->getLoc());
switch (Apply.getKind()) {
case FullApplySiteKind::ApplyInst:
assert(cast<ApplyInst>(Apply)->isNonThrowing()
&& "apply of a function with error result must be non-throwing");
getBuilder().createUnreachable(Loc);
return;
case FullApplySiteKind::BeginApplyInst:
assert(cast<BeginApplyInst>(Apply)->isNonThrowing()
&& "apply of a function with error result must be non-throwing");
getBuilder().createUnreachable(Loc);
return;
case FullApplySiteKind::TryApplyInst:
auto tryAI = cast<TryApplyInst>(Apply);
getBuilder().createBranch(Loc, tryAI->getErrorBB());
return;
}
}
// Otherwise use normal visitor, which clones the existing instruction
// but remaps basic blocks and values.
visit(Terminator);
}
void SILInlineCloner::preFixUp(SILFunction *calleeFunction) {
// "Completing" the BeginApply only fixes the end of the apply scope. The
// begin_apply itself lingers.
if (BeginApply)
BeginApply->complete();
}
void SILInlineCloner::postFixUp(SILFunction *calleeFunction) {
deleter.getCallbacks().notifyWillBeDeleted(Apply.getInstruction());
deleter.forceDelete(Apply.getInstruction());
}
namespace {
enum class Scope : uint8_t {
None,
Bare,
Lexical,
};
Scope scopeForArgument(Scope nonlexicalScope, SILValue callArg, unsigned index,
SILFunction *caller, SILFunction *callee) {
if (!caller->hasOwnership()) {
// The function isn't in OSSA. Borrows/moves are not meaningful.
return Scope::None;
}
auto &mod = caller->getModule();
auto enableLexicalLifetimes =
mod.getASTContext().SILOpts.supportsLexicalLifetimes(mod);
SILFunctionArgument *argument =
cast<SILFunctionArgument>(callee->getEntryBlock()->getArgument(index));
if (!enableLexicalLifetimes) {
// Lexical lifetimes are disabled. Use the non-lexical scope:
// - for borrows, do an ownership conversion.
// - for moves, do nothing.
return nonlexicalScope;
}
if (!argument->getLifetime().isLexical()) {
// The same applies if lexical lifetimes are enabled but the function
// argument is not lexical. There is no lexical lifetime to maintain. Use
// the non-lexical scope.
return nonlexicalScope;
}
// Lexical lifetimes are enabled and the function argument is lexical.
// During inlining, we need to ensure that the lifetime is maintained.
if (callArg->isLexical()) {
// The caller's value is already lexical. It will maintain the lifetime of
// the argument. Just do an ownership conversion if needed.
return nonlexicalScope;
}
// Lexical lifetimes are enabled, the function argument's lifetime is
// lexical, but the caller's value is not lexical. Extra care is required to
// maintain the function argument's lifetime. We need to add a lexical
// scope.
return Scope::Lexical;
}
} // anonymous namespace
SILValue SILInlineCloner::borrowFunctionArgument(SILValue callArg,
unsigned index) {
// The "minimal" borrow scope: Guaranteed values are valid operands to some
// instructions that owned values are not. If the caller's value is owned,
// it must be converted (via a "bare" begin_borrow) to a guaranteed value so
// that it can be used in place of the original guaranteed value in the
// instructions that are being inlined.
auto scopeForOwnership = callArg->getOwnershipKind() == OwnershipKind::Owned
? Scope::Bare
: Scope::None;
auto scope = scopeForArgument(scopeForOwnership, callArg, index,
Apply.getFunction(), getCalleeFunction());
IsLexical_t isLexical;
switch (scope) {
case Scope::None:
return SILValue();
case Scope::Bare:
isLexical = IsNotLexical;
break;
case Scope::Lexical:
isLexical = IsLexical;
break;
}
SILBuilderWithScope beginBuilder(Apply.getInstruction(), getBuilder());
return beginBuilder.createBeginBorrow(Apply.getLoc(), callArg, isLexical);
}
SILValue SILInlineCloner::moveFunctionArgument(SILValue callArg,
unsigned index) {
auto scope = scopeForArgument(Scope::None, callArg, index,
Apply.getFunction(), getCalleeFunction());
IsLexical_t isLexical;
switch (scope) {
case Scope::None:
return SILValue();
case Scope::Bare:
assert(false && "Non-lexical move produced during inlining!?");
isLexical = IsNotLexical;
break;
case Scope::Lexical:
isLexical = IsLexical;
break;
}
SILBuilderWithScope beginBuilder(Apply.getInstruction(), getBuilder());
return beginBuilder.createMoveValue(Apply.getLoc(), callArg, isLexical);
}
void SILInlineCloner::visitDebugValueInst(DebugValueInst *Inst) {
// The mandatory inliner drops debug_value instructions when inlining, as if
// it were a "nodebug" function in C.
if (IKind == InlineKind::MandatoryInline) return;
return SILCloner<SILInlineCloner>::visitDebugValueInst(Inst);
}
void SILInlineCloner::visitHopToExecutorInst(HopToExecutorInst *Inst) {
// Drop hop_to_executor in non async functions.
if (!Apply.getFunction()->isAsync()) {
assert(Apply.isNonAsync());
return;
}
return SILCloner<SILInlineCloner>::visitHopToExecutorInst(Inst);
}
const SILDebugScope *
SILInlineCloner::getOrCreateInlineScope(const SILDebugScope *CalleeScope) {
if (!CalleeScope)
return CallSiteScope;
auto it = InlinedScopeCache.find(CalleeScope);
if (it != InlinedScopeCache.end())
return it->second;
auto &M = getBuilder().getModule();
auto InlinedAt =
getOrCreateInlineScope(CalleeScope->InlinedCallSite);
auto *ParentFunction = CalleeScope->Parent.dyn_cast<SILFunction *>();
if (ParentFunction)
ParentFunction = remapParentFunction(
FuncBuilder, M, ParentFunction, SubsMap,
getCalleeFunction()->getLoweredFunctionType()
->getInvocationGenericSignature(),
ForInlining);
auto *ParentScope = CalleeScope->Parent.dyn_cast<const SILDebugScope *>();
auto *InlinedScope = new (M) SILDebugScope(
CalleeScope->Loc, ParentFunction,
ParentScope ? getOrCreateInlineScope(ParentScope) : nullptr, InlinedAt);
InlinedScopeCache.insert({CalleeScope, InlinedScope});
return InlinedScope;
}
template <typename... T, typename... U>
static void diagnose(ASTContext &Context, SourceLoc loc, Diag<T...> diag,
U &&...args) {
Context.Diags.diagnose(loc, diag, std::forward<U>(args)...);
}
//===----------------------------------------------------------------------===//
// Cost Model
//===----------------------------------------------------------------------===//
static InlineCost getEnforcementCost(SILAccessEnforcement enforcement) {
switch (enforcement) {
case SILAccessEnforcement::Unknown:
llvm_unreachable("evaluating cost of access with unknown enforcement?");
case SILAccessEnforcement::Dynamic:
return InlineCost::Expensive;
case SILAccessEnforcement::Static:
case SILAccessEnforcement::Unsafe:
case SILAccessEnforcement::Signed:
return InlineCost::Free;
}
llvm_unreachable("bad enforcement");
}
/// For now just assume that every SIL instruction is one to one with an LLVM
/// instruction. This is of course very much so not true.
InlineCost swift::instructionInlineCost(SILInstruction &I) {
switch (I.getKind()) {
case SILInstructionKind::IntegerLiteralInst:
case SILInstructionKind::FloatLiteralInst:
case SILInstructionKind::DebugValueInst:
case SILInstructionKind::DebugStepInst:
case SILInstructionKind::StringLiteralInst:
case SILInstructionKind::FixLifetimeInst:
case SILInstructionKind::EndBorrowInst:
case SILInstructionKind::BeginBorrowInst:
case SILInstructionKind::BorrowedFromInst:
case SILInstructionKind::MarkDependenceInst:
case SILInstructionKind::MergeIsolationRegionInst:
case SILInstructionKind::PreviousDynamicFunctionRefInst:
case SILInstructionKind::DynamicFunctionRefInst:
case SILInstructionKind::FunctionRefInst:
case SILInstructionKind::AllocGlobalInst:
case SILInstructionKind::GlobalAddrInst:
case SILInstructionKind::BaseAddrForOffsetInst:
case SILInstructionKind::EndLifetimeInst:
case SILInstructionKind::ExtendLifetimeInst:
case SILInstructionKind::UncheckedOwnershipConversionInst:
case SILInstructionKind::BindMemoryInst:
case SILInstructionKind::RebindMemoryInst:
case SILInstructionKind::MoveValueInst:
case SILInstructionKind::DropDeinitInst:
case SILInstructionKind::MarkUnresolvedNonCopyableValueInst:
case SILInstructionKind::MarkUnresolvedReferenceBindingInst:
case SILInstructionKind::CopyableToMoveOnlyWrapperValueInst:
case SILInstructionKind::MoveOnlyWrapperToCopyableValueInst:
case SILInstructionKind::SpecifyTestInst:
case SILInstructionKind::MoveOnlyWrapperToCopyableAddrInst:
case SILInstructionKind::CopyableToMoveOnlyWrapperAddrInst:
case SILInstructionKind::MoveOnlyWrapperToCopyableBoxInst:
case SILInstructionKind::IgnoredUseInst:
return InlineCost::Free;
// Typed GEPs are free.
case SILInstructionKind::TupleElementAddrInst:
case SILInstructionKind::StructElementAddrInst:
case SILInstructionKind::ProjectBlockStorageInst:
return InlineCost::Free;
// tuple_pack_element_addr is just a GEP, but getting the offset
// can require accessing metadata, so conservatively treat it as
// expensive.
case SILInstructionKind::TuplePackExtractInst:
case SILInstructionKind::TuplePackElementAddrInst:
return InlineCost::Expensive;
// pack_length and type_value is just a few adds, which is close enough to
// free.
case SILInstructionKind::PackLengthInst:
case SILInstructionKind::TypeValueInst:
return InlineCost::Free;
// dynamic_pack_index is free. The other pack-indexing instructions
// are just adds of values that should be trivially dynamically
// available; that's cheap enough to still consider free under the
// same principle as typed GEPs.
case SILInstructionKind::DynamicPackIndexInst:
case SILInstructionKind::PackPackIndexInst:
case SILInstructionKind::ScalarPackIndexInst:
return InlineCost::Free;
// Pack element get/set are a GEP plus a load/store.
// Cheap, but not free.
case SILInstructionKind::PackElementGetInst:
case SILInstructionKind::PackElementSetInst:
return InlineCost::Expensive;
// Aggregates are exploded at the IR level; these are effectively no-ops.
case SILInstructionKind::TupleInst:
case SILInstructionKind::StructInst:
case SILInstructionKind::StructExtractInst:
case SILInstructionKind::TupleExtractInst:
case SILInstructionKind::DestructureStructInst:
case SILInstructionKind::DestructureTupleInst:
return InlineCost::Free;
// Unchecked casts are free.
case SILInstructionKind::AddressToPointerInst:
case SILInstructionKind::PointerToAddressInst:
case SILInstructionKind::UncheckedRefCastInst:
case SILInstructionKind::UncheckedRefCastAddrInst:
case SILInstructionKind::UncheckedAddrCastInst:
case SILInstructionKind::UncheckedTrivialBitCastInst:
case SILInstructionKind::UncheckedBitwiseCastInst:
case SILInstructionKind::UncheckedValueCastInst:
case SILInstructionKind::RawPointerToRefInst:
case SILInstructionKind::RefToRawPointerInst:
case SILInstructionKind::UpcastInst:
case SILInstructionKind::EndInitLetRefInst:
case SILInstructionKind::ThinToThickFunctionInst:
case SILInstructionKind::ConvertFunctionInst:
case SILInstructionKind::ConvertEscapeToNoEscapeInst:
case SILInstructionKind::BridgeObjectToWordInst:
return InlineCost::Free;
// Access instructions are free unless we're dynamically enforcing them.
case SILInstructionKind::BeginAccessInst:
return getEnforcementCost(cast<BeginAccessInst>(I).getEnforcement());
case SILInstructionKind::EndAccessInst:
return getEnforcementCost(cast<EndAccessInst>(I).getBeginAccess()
->getEnforcement());
case SILInstructionKind::BeginUnpairedAccessInst:
return getEnforcementCost(cast<BeginUnpairedAccessInst>(I)
.getEnforcement());
case SILInstructionKind::EndUnpairedAccessInst:
return getEnforcementCost(cast<EndUnpairedAccessInst>(I)
.getEnforcement());
// TODO: These are free if the metatype is for a Swift class.
case SILInstructionKind::ThickToObjCMetatypeInst:
case SILInstructionKind::ObjCToThickMetatypeInst:
return InlineCost::Expensive;
// TODO: Bridge object conversions imply a masking operation that should be
// "hella cheap" but not really expensive.
case SILInstructionKind::BridgeObjectToRefInst:
case SILInstructionKind::RefToBridgeObjectInst:
case SILInstructionKind::ClassifyBridgeObjectInst:
case SILInstructionKind::ValueToBridgeObjectInst:
return InlineCost::Expensive;
case SILInstructionKind::MetatypeInst:
// Thin metatypes are always free.