-
Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathPartitionUtils.cpp
925 lines (803 loc) · 32 KB
/
PartitionUtils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
//===--- PartitionUtils.cpp -----------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2023 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Utils/PartitionUtils.h"
// We only use this so we can implement print on our type erased errors.
#include "swift/SILOptimizer/Analysis/RegionAnalysis.h"
#include "swift/SILOptimizer/Utils/VariableNameUtils.h"
using namespace swift;
using namespace swift::PartitionPrimitives;
//===----------------------------------------------------------------------===//
// MARK: PartitionOpError
//===----------------------------------------------------------------------===//
void PartitionOpError::UnknownCodePatternError::print(
llvm::raw_ostream &os, RegionAnalysisValueMap &valueMap) const {
os << " Emitting Error. Kind: Unknown Code Pattern Error\n"
<< " Inst: " << *op->getSourceInst();
}
void PartitionOpError::LocalUseAfterSendError::print(
llvm::raw_ostream &os, RegionAnalysisValueMap &valueMap) const {
os << " Emitting Error. Kind: Use After Send\n"
<< " Sending Inst: " << *sendingOp->getUser()
<< " Sending Op Value: " << sendingOp->get()
<< " Require Inst: " << *op->getSourceInst() << " ID: %%"
<< sentElement << "\n"
<< " Rep: " << valueMap.getRepresentativeValue(sentElement)
<< " Sending Op Num: " << sendingOp->getOperandNumber() << '\n';
}
void PartitionOpError::SentNeverSendableError::print(
llvm::raw_ostream &os, RegionAnalysisValueMap &info) const {
os << " Emitting Error. Kind: Sent Non Sendable\n"
<< " ID: %%" << sentElement << "\n"
<< " Rep: " << *info.getRepresentative(sentElement)
<< " Dynamic Isolation Region: ";
isolationRegionInfo.printForOneLineLogging(os);
os << '\n';
if (auto isolatedValue = isolationRegionInfo->maybeGetIsolatedValue()) {
os << " Isolated Value: " << isolatedValue;
auto name = VariableNameInferrer::inferName(isolatedValue);
os << " Isolated Value Name: "
<< (name.has_value() ? name->get() : "none") << '\n';
} else {
os << " Isolated Value: none\n";
};
}
void PartitionOpError::AssignNeverSendableIntoSendingResultError::print(
llvm::raw_ostream &os, RegionAnalysisValueMap &valueMap) const {
os << " Emitting Error. Kind: Assign Isolated Into Sending Result!\n"
<< " Assign Inst: " << *op->getSourceInst()
<< " Dest Value: " << *destValue
<< " Dest Element: " << destElement << '\n'
<< " Src Value: " << srcValue
<< " Src Element: " << srcElement << '\n'
<< " Src Rep: " << valueMap.getRepresentativeValue(srcElement)
<< " Src Isolation: " << srcIsolationRegionInfo << '\n';
}
void PartitionOpError::InOutSendingNotInitializedAtExitError::print(
llvm::raw_ostream &os, RegionAnalysisValueMap &valueMap) const {
os << " Emitting Error. Kind: InOut Not Reinitialized At End Of "
"Function\n"
<< " Sending Inst: " << *sendingOp->getUser()
<< " Sending Op Value: " << sendingOp->get()
<< " Require Inst: " << *op->getSourceInst() << " ID: %%"
<< sentElement << "\n"
<< " Rep: " << valueMap.getRepresentativeValue(sentElement)
<< " Sending Op Num: " << sendingOp->getOperandNumber() << '\n';
}
void PartitionOpError::InOutSendingNotDisconnectedAtExitError::print(
llvm::raw_ostream &os, RegionAnalysisValueMap &valueMap) const {
os << " Emitting Error. Kind: InOut Sending ActorIsolated "
"at end of "
"Function Error!\n"
<< " ID: %%" << inoutSendingElement << "\n"
<< " Rep: " << valueMap.getRepresentativeValue(inoutSendingElement)
<< " Dynamic Isolation Region: ";
isolationInfo.printForOneLineLogging(os);
os << '\n';
}
void PartitionOpError::NonSendableIsolationCrossingResultError::print(
llvm::raw_ostream &os, RegionAnalysisValueMap &valueMap) const {
os << " Emitting Error. Kind: NonSendableIsolationCrossingResultError\n"
" Inst: "
<< *op->getSourceInst() << " Result ID: %%" << returnValueElement
<< '\n';
}
//===----------------------------------------------------------------------===//
// MARK: PartitionOp
//===----------------------------------------------------------------------===//
void PartitionOp::print(llvm::raw_ostream &os, bool extraSpace) const {
constexpr static char extraSpaceLiteral[10] = " ";
switch (opKind) {
case PartitionOpKind::Assign: {
os << "assign ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << opArgs[0] << " = %%" << opArgs[1];
break;
}
case PartitionOpKind::AssignFresh:
os << "assign_fresh %%" << opArgs[0];
break;
case PartitionOpKind::Send: {
os << "send ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << opArgs[0];
break;
}
case PartitionOpKind::UndoSend: {
os << "undo_send ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << opArgs[0];
break;
}
case PartitionOpKind::Merge: {
os << "merge ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << opArgs[0] << " with %%" << opArgs[1];
break;
}
case PartitionOpKind::Require: {
os << "require ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << opArgs[0];
break;
}
case PartitionOpKind::UnknownPatternError:
os << "unknown pattern error ";
os << "%%" << opArgs[0];
break;
case PartitionOpKind::InOutSendingAtFunctionExit:
os << "inout_sending_at_function_exit ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << opArgs[0];
break;
case PartitionOpKind::NonSendableIsolationCrossingResult:
os << "nonsendable_isolationcrossing_result ";
if (extraSpace)
os << extraSpaceLiteral;
os << "%%" << opArgs[0];
break;
}
os << ": " << *getSourceInst();
}
//===----------------------------------------------------------------------===//
// MARK: Partition
//===----------------------------------------------------------------------===//
Partition Partition::singleRegion(SILLocation loc, ArrayRef<Element> indices,
IsolationHistory inputHistory) {
Partition p(inputHistory);
if (!indices.empty()) {
// Lowest element is our region representative and the value that our
// region takes.
Element repElement = *std::min_element(indices.begin(), indices.end());
Region repElementRegion = Region(repElement);
p.freshLabel = Region(repElementRegion + 1);
// Place all of the operations until end of scope into one history
// sequence.
p.pushHistorySequenceBoundary(loc);
// First create a region for repElement. We are going to merge all other
// regions into its region.
p.pushNewElementRegion(repElement);
llvm::SmallVector<Element, 32> nonRepElts;
for (Element index : indices) {
p.elementToRegionMap.insert_or_assign(index, repElementRegion);
if (index != repElement) {
p.pushNewElementRegion(index);
nonRepElts.push_back(index);
}
p.pushMergeElementRegions(repElement, nonRepElts);
}
}
assert(p.is_canonical_correct());
return p;
}
Partition Partition::separateRegions(SILLocation loc, ArrayRef<Element> indices,
IsolationHistory inputHistory) {
Partition p(inputHistory);
if (indices.empty())
return p;
// Place all operations in one history sequence.
p.pushHistorySequenceBoundary(loc);
auto maxIndex = Element(0);
for (Element index : indices) {
p.elementToRegionMap.insert_or_assign(index, Region(index));
p.pushNewElementRegion(index);
maxIndex = Element(std::max(maxIndex, index));
}
p.freshLabel = Region(maxIndex + 1);
assert(p.is_canonical_correct());
return p;
}
void Partition::markSent(Element val, SendingOperandSet *sendingOperandSet) {
// First see if our val is tracked. If it is not tracked, insert it and mark
// its new region as sent.
if (!isTrackingElement(val)) {
elementToRegionMap.insert_or_assign(val, freshLabel);
pushNewElementRegion(val);
regionToSendingOpMap.insert({freshLabel, sendingOperandSet});
freshLabel = Region(freshLabel + 1);
canonical = false;
return;
}
// Otherwise, we already have this value in the map. Try to insert it.
auto iter1 = elementToRegionMap.find(val);
assert(iter1 != elementToRegionMap.end());
auto iter2 = regionToSendingOpMap.insert({iter1->second, sendingOperandSet});
// If we did insert, just return. We were not tracking any state.
if (iter2.second)
return;
// Otherwise, we need to merge the sets.
iter2.first->second = iter2.first->second->merge(sendingOperandSet);
}
bool Partition::undoSend(Element val) {
// First see if our val is tracked. If it is not tracked, insert it.
if (!isTrackingElement(val)) {
elementToRegionMap.insert_or_assign(val, freshLabel);
pushNewElementRegion(val);
freshLabel = Region(freshLabel + 1);
canonical = false;
return true;
}
// Otherwise, we already have this value in the map. Remove it from the
// "sending operand" map.
auto iter1 = elementToRegionMap.find(val);
assert(iter1 != elementToRegionMap.end());
return regionToSendingOpMap.erase(iter1->second);
}
void Partition::trackNewElement(Element newElt, bool updateHistory) {
SWIFT_DEFER { validateRegionToSendingOpMapRegions(); };
// First try to emplace newElt with fresh_label.
auto iter = elementToRegionMap.try_emplace(newElt, freshLabel);
// If we did insert, then we know that the value is completely new. We can
// just update the fresh_label, set canonical to false, and return.
if (iter.second) {
// Since the value is completely new, add a completely new history node to
// the history.
if (updateHistory)
pushNewElementRegion(newElt);
// Increment the fresh label so it remains fresh.
freshLabel = Region(freshLabel + 1);
canonical = false;
return;
}
// Otherwise, we have a bit more work that we need to perform:
//
// 1. We of course need to update iter to point at fresh_label.
//
// 2. We need to see if this value was the last element in its current
// region. If so, then we need to remove the region from the sending op
// map.
//
// This is important to ensure that every region in the sendingOpMap is
// also in elementToRegionMap.
auto oldRegion = iter.first->second;
iter.first->second = freshLabel;
auto getValueFromOtherRegion = [&]() -> std::optional<Element> {
for (auto pair : elementToRegionMap) {
if (pair.second == oldRegion)
return pair.first;
}
return {};
};
if (auto matchingElt = getValueFromOtherRegion()) {
if (updateHistory)
pushRemoveElementFromRegion(*matchingElt, newElt);
} else {
regionToSendingOpMap.erase(oldRegion);
if (updateHistory)
pushRemoveLastElementFromRegion(newElt);
}
if (updateHistory)
pushNewElementRegion(newElt);
// Increment the fresh label so it remains fresh.
freshLabel = Region(freshLabel + 1);
canonical = false;
}
/// Assigns \p oldElt to the region associated with \p newElt.
void Partition::assignElement(Element oldElt, Element newElt,
bool updateHistory) {
// If the old/new elt at the same, just return.
if (oldElt == newElt)
return;
SWIFT_DEFER { validateRegionToSendingOpMapRegions(); };
// First try to emplace oldElt with the newRegion.
auto newRegion = elementToRegionMap.at(newElt);
auto iter = elementToRegionMap.try_emplace(oldElt, newRegion);
// If we did an insert, then we know that oldElt was new to this
// partition. This means that we update our history for a completely new
// value in newElt's region. We also set canonical to false to ensure when
// ever we do a merge/etc, we renumber indices as appropriate.
if (iter.second) {
if (updateHistory) {
pushNewElementRegion(oldElt);
pushMergeElementRegions(newElt, oldElt);
}
canonical = false;
return;
}
// Otherwise, we did an assign.
auto oldRegion = iter.first->second;
// First check if oldRegion and newRegion are the same. In such a case, just
// return.
if (oldRegion == newRegion)
return;
// Otherwise, we need to actually assign. In such a case, we need to see if
// oldElt was the last element in oldRegion. If so, we need to erase the
// oldRegion from regionToSendingOpMap.
iter.first->second = newRegion;
auto getValueFromOtherRegion = [&]() -> std::optional<Element> {
for (auto pair : elementToRegionMap) {
if (pair.second == oldRegion)
return pair.first;
}
return {};
};
if (auto otherElt = getValueFromOtherRegion()) {
if (updateHistory)
pushRemoveElementFromRegion(*otherElt, oldElt);
} else {
regionToSendingOpMap.erase(oldRegion);
if (updateHistory)
pushRemoveLastElementFromRegion(oldElt);
}
if (updateHistory) {
pushNewElementRegion(oldElt);
pushMergeElementRegions(newElt, oldElt);
}
canonical = false;
}
Partition Partition::join(const Partition &fst, Partition &mutableSnd) {
// READ THIS! Remember, we cannot touch mutableSnd after this point. We just
// use it to canonicalize to avoid having to copy snd. After this point,
// please use the const reference snd to keep each other honest.
mutableSnd.canonicalize();
const auto &snd = mutableSnd;
// First copy fst into result and canonicalize the result.and canonicalize
// fst.
Partition result = fst;
result.canonicalize();
// Push a history join so when processing, we know the next element to
// process.
result.pushCFGHistoryJoin(snd.history);
// For each (sndEltNumber, sndRegionNumber) in snd_reduced...
for (auto pair : snd.elementToRegionMap) {
auto sndEltNumber = pair.first;
auto sndRegionNumber = pair.second;
// Check if result has sndEltNumber already within it...
{
auto resultIter = result.elementToRegionMap.find(sndEltNumber);
if (result.elementToRegionMap.end() != resultIter) {
auto resultRegion = resultIter->second;
// If we do and Element(sndRegionNumber) isn't the same element as
// sndEltNumber, then we know that sndEltNumber isn't the
// representative element of its region in sndReduced. We need to
// ensure that in result, that representative and our current
// value are in the same region. If they are the same value, we can
// just reuse sndEltNumber's region in result for the sending
// check.
if (sndEltNumber != Element(sndRegionNumber)) {
// NOTE: History is updated by Partition::merge(...).
resultRegion = result.merge(sndEltNumber, Element(sndRegionNumber));
}
// Then if sndRegionNumber is sent in sndReduced, make sure mergedRegion
// is sent in result.
auto sndIter = snd.regionToSendingOpMap.find(sndRegionNumber);
if (sndIter != snd.regionToSendingOpMap.end()) {
auto resultIter = result.regionToSendingOpMap.insert(
{resultRegion, sndIter->second});
if (!resultIter.second) {
resultIter.first->second =
resultIter.first->second->merge(sndIter->second);
}
}
continue;
}
}
// At this point, we know that sndEltNumber is not in result.
//
// Check if the representative element number
// (i.e. Element(sndRegionNumber)) for this element in snd is in result. In
// that case, we know that we visited the representative number before we
// visited this elt number (since we are processing in order) so what ever
// is mapped to that number in snd must be the correct region for this
// element as well since this number is guaranteed to be greater than our
// representative and the number mapped to our representative in result must
// be
// <= our representative.
//
// In this case, we do not need to propagate 'send' into resultRegion
// since we would have handled that already when we visited our earlier
// representative element number.
{
auto iter = result.elementToRegionMap.find(Element(sndRegionNumber));
if (iter != result.elementToRegionMap.end()) {
result.elementToRegionMap.insert({sndEltNumber, iter->second});
result.pushMergeElementRegions(sndEltNumber, Element(sndRegionNumber));
// We want fresh_label to always be one element larger than our
// maximum element.
if (result.freshLabel <= Region(sndEltNumber))
result.freshLabel = Region(sndEltNumber + 1);
continue;
}
}
// Otherwise, we have an element that is not in result and its
// representative is not in result. This means that we must be our
// representative in snd since we should have visited our representative
// earlier if we were not due to our traversal being in order. Thus just add
// this to result.
assert(sndEltNumber == Element(sndRegionNumber));
result.elementToRegionMap.insert({sndEltNumber, sndRegionNumber});
result.pushNewElementRegion(sndEltNumber);
auto sndIter = snd.regionToSendingOpMap.find(sndRegionNumber);
if (sndIter != snd.regionToSendingOpMap.end()) {
auto fstIter = result.regionToSendingOpMap.insert(
{sndRegionNumber, sndIter->second});
if (!fstIter.second)
fstIter.first->second = fstIter.first->second->merge(sndIter->second);
}
if (result.freshLabel <= sndRegionNumber)
result.freshLabel = Region(sndEltNumber + 1);
}
// We should have preserved canonicality during the computation above. It
// would be wasteful to need to canonicalize twice.
assert(result.is_canonical_correct());
// result is now the join.
return result;
}
bool Partition::popHistory(
SmallVectorImpl<IsolationHistory> &foundJoinedHistories) {
// We only allow for history rewinding if we are not tracking any
// sending operands. This is because the history rewinding does not
// care about sending. One can either construct a new Partition from
// the current Partition using Partition::removeSendingOperandSet or clear
// the sending information using Partition::clearSendingOperandState().
assert(regionToSendingOpMap.empty() &&
"Can only rewind history if not tracking any sending operands");
if (!history.getHead())
return false;
// Just put in a continue here to ensure that clang-format doesn't do weird
// things with the semicolon.
while (popHistoryOnce(foundJoinedHistories))
continue;
// Return if our history head is non-null so our user knows if there are more
// things to pop.
return history.getHead();
}
void Partition::print(llvm::raw_ostream &os) const {
SmallFrozenMultiMap<Region, Element, 8> multimap;
for (auto [eltNo, regionNo] : elementToRegionMap)
multimap.insert(regionNo, eltNo);
multimap.setFrozen();
os << "[";
for (auto [regionNo, elementNumbers] : multimap.getRange()) {
auto iter = regionToSendingOpMap.find(regionNo);
bool wasSent = iter != regionToSendingOpMap.end();
if (wasSent) {
os << '{';
} else {
os << '(';
}
int j = 0;
for (Element i : elementNumbers) {
os << (j++ ? " " : "") << i;
}
if (wasSent) {
os << '}';
} else {
os << ')';
}
}
os << "]\n";
}
void Partition::printVerbose(llvm::raw_ostream &os) const {
SmallFrozenMultiMap<Region, Element, 8> multimap;
for (auto [eltNo, regionNo] : elementToRegionMap)
multimap.insert(regionNo, eltNo);
multimap.setFrozen();
for (auto [regionNo, elementNumbers] : multimap.getRange()) {
auto iter = regionToSendingOpMap.find(regionNo);
bool wasSent = iter != regionToSendingOpMap.end();
os << "Region: " << regionNo << ". ";
if (wasSent) {
os << '{';
} else {
os << '(';
}
int j = 0;
for (Element i : elementNumbers) {
os << (j++ ? " " : "") << i;
}
if (wasSent) {
os << '}';
} else {
os << ')';
}
os << "\n";
os << "SentInsts:\n";
if (wasSent) {
for (auto op : iter->second->data()) {
os << " ";
op->print(os);
}
} else {
os << "None.\n";
}
}
}
void Partition::printHistory(llvm::raw_ostream &os) const {
llvm::dbgs() << "History Dump!\n";
const auto *head = history.head;
if (!head)
return;
do {
switch (head->getKind()) {
case IsolationHistory::Node::AddNewRegionForElement:
os << "AddNewRegionForElement: " << head->getFirstArgAsElement();
break;
case IsolationHistory::Node::RemoveLastElementFromRegion:
os << "RemoveLastElementFromRegion: " << head->getFirstArgAsElement();
break;
case IsolationHistory::Node::RemoveElementFromRegion: {
os << "RemoveElementFromRegion: " << head->getFirstArgAsElement();
auto extraArgs = head->getAdditionalElementArgs();
if (extraArgs.empty())
break;
llvm::interleave(extraArgs, os, ", ");
break;
}
case IsolationHistory::Node::MergeElementRegions: {
os << "MergeElementRegions: " << head->getFirstArgAsElement();
auto extraArgs = head->getAdditionalElementArgs();
if (extraArgs.empty())
break;
os << ", ";
llvm::interleave(extraArgs, os, ", ");
break;
}
case IsolationHistory::Node::CFGHistoryJoin:
os << "CFGHistoryJoin";
break;
case IsolationHistory::Node::SequenceBoundary:
os << "SequenceBoundary";
break;
}
os << "\n";
} while ((head = head->getParent()));
}
bool Partition::is_canonical_correct() const {
#ifdef NDEBUG
return true;
#else
if (!canonical)
return true; // vacuously correct
auto fail = [&](Element i, int type) {
llvm::errs() << "FAIL(i=" << i << "; type=" << type << "): ";
print(llvm::errs());
return false;
};
for (auto &[eltNo, regionNo] : elementToRegionMap) {
// Labels should not exceed fresh_label.
if (regionNo >= freshLabel)
return fail(eltNo, 0);
// The label of a region should be at most as large as each index in it.
if ((unsigned)regionNo > eltNo)
return fail(eltNo, 1);
// Each region label should also be an element of the partition.
if (!elementToRegionMap.count(Element(regionNo)))
return fail(eltNo, 2);
// Each element that is also a region label should be mapped to itself.
if (elementToRegionMap.at(Element(regionNo)) != regionNo)
return fail(eltNo, 3);
}
// Before we do anything, validate region to region to sending op map.
validateRegionToSendingOpMapRegions();
return true;
#endif
}
Region Partition::merge(Element fst, Element snd, bool updateHistory) {
assert(elementToRegionMap.count(fst) && elementToRegionMap.count(snd));
// Remember: fstRegion and sndRegion are actually elements in
// elementToRegionMap... they are just the representative of the region
// (which is the smallest element number).
auto fstRegion = elementToRegionMap.at(fst);
auto sndRegion = elementToRegionMap.at(snd);
// Our value reps are the same... we can return either. Just return fstRegion.
if (fstRegion == sndRegion)
return fstRegion;
// To maintain canonicality, we require that fstRegion is always less than
// sndRegion. If we do not have that, swap first and second state.
if (fstRegion > sndRegion) {
std::swap(fst, snd);
std::swap(fstRegion, sndRegion);
}
Region result = fstRegion;
// Rename snd and snd's entire region to fst's region.
SmallVector<Element, 32> mergedElements;
horizontalUpdate(snd, fstRegion, mergedElements);
auto iter = regionToSendingOpMap.find(sndRegion);
if (iter != regionToSendingOpMap.end()) {
auto operand = iter->second;
regionToSendingOpMap.erase(iter);
regionToSendingOpMap.insert({fstRegion, operand});
}
assert(is_canonical_correct());
assert(elementToRegionMap.at(fst) == elementToRegionMap.at(snd));
// Now that we are correct/canonicalized, add the merge to our history.
if (updateHistory)
pushMergeElementRegions(fst, mergedElements);
return result;
}
void Partition::canonicalize() {
if (canonical)
return;
canonical = true;
validateRegionToSendingOpMapRegions();
std::map<Region, Region> oldRegionToRelabeledMap;
// We rely on in-order traversal of labels to ensure that we always take the
// lowest eltNumber.
for (auto &[eltNo, regionNo] : elementToRegionMap) {
if (!oldRegionToRelabeledMap.count(regionNo)) {
// if this is the first time encountering this region label,
// then this region label should be relabelled to this index,
// so enter that into the map
oldRegionToRelabeledMap.insert_or_assign(regionNo, Region(eltNo));
}
// Update this label with either its own index, or a prior index that
// shared a region with it.
regionNo = oldRegionToRelabeledMap.at(regionNo);
// The maximum index iterated over will be used here to appropriately
// set fresh_label.
freshLabel = Region(eltNo + 1);
}
// Then relabel our regionToSendingOpMap map if we need to by swapping out the
// old map and updating.
//
// TODO: If we just used an array for this, we could just rewrite and
// re-sort and not have to deal with potential allocations.
decltype(regionToSendingOpMap) oldMap = std::move(regionToSendingOpMap);
for (auto &[oldReg, op] : oldMap) {
auto iter = oldRegionToRelabeledMap.find(oldReg);
assert(iter != oldRegionToRelabeledMap.end());
regionToSendingOpMap[iter->second] = op;
}
assert(is_canonical_correct());
}
void Partition::horizontalUpdate(
Element targetElement, Region newRegion,
llvm::SmallVectorImpl<Element> &mergedElements) {
// It is on our caller to make sure a value is in elementToRegionMap.
Region oldRegion = elementToRegionMap.at(targetElement);
// If our old region is the same as our new region, we do not have anything
// to do.
if (oldRegion == newRegion)
return;
for (auto [element, region] : elementToRegionMap) {
if (region == oldRegion) {
elementToRegionMap.insert_or_assign(element, newRegion);
mergedElements.push_back(element);
}
}
}
bool Partition::popHistoryOnce(
SmallVectorImpl<IsolationHistory> &foundJoinedHistoryNodes) {
const auto *head = history.pop();
if (!head)
return false;
// When popping, we /always/ want to canonicalize.
canonicalize();
switch (head->getKind()) {
case IsolationHistory::Node::SequenceBoundary:
return false;
case IsolationHistory::Node::AddNewRegionForElement: {
// We added an element to its own region... so we should remove it and it
// should be the last element in the region.
auto iter = elementToRegionMap.find(head->getFirstArgAsElement());
assert(iter != elementToRegionMap.end());
Region oldRegion = iter->second;
regionToSendingOpMap.erase(oldRegion);
elementToRegionMap.erase(iter);
assert(llvm::none_of(elementToRegionMap,
[&](std::pair<Element, Region> pair) {
return pair.second == oldRegion;
}) &&
"Should have been last element?!");
return true;
}
case IsolationHistory::Node::RemoveLastElementFromRegion:
// We removed an element from a region and it was the last element. Just
// add new.
trackNewElement(head->getFirstArgAsElement(), false /*update history*/);
return true;
case IsolationHistory::Node::RemoveElementFromRegion:
// We removed an element from a specific region. So, we need to add it
// back.
assignElement(head->getFirstArgAsElement(),
head->getAdditionalElementArgs()[1],
false /*update history*/);
return true;
case IsolationHistory::Node::MergeElementRegions: {
// We merged two regions together. We need to remove all elements from the
// previous region into their own new region.
auto elementsToExtract = head->getAdditionalElementArgs();
assert(elementsToExtract.size());
removeElement(elementsToExtract[0]);
trackNewElement(elementsToExtract[0], false /*update history*/);
for (auto e : elementsToExtract.drop_front()) {
assert(head->getFirstArgAsElement() != e &&
"We assume that we are never removing all values when undoing "
"merging");
removeElement(e);
trackNewElement(e, false /*update history*/);
merge(e, elementsToExtract[0], false /*update history*/);
}
return true;
}
case IsolationHistory::Node::CFGHistoryJoin:
// When we have a CFG History Merge, we cannot simply pop. Instead, we need
// to signal to the user that they need to visit each history node in turn
// by returning it in the out parameter.
auto newHistory = IsolationHistory(history.factory);
newHistory.head = head->getFirstArgAsNode();
foundJoinedHistoryNodes.push_back(newHistory);
return true;
}
}
//===----------------------------------------------------------------------===//
// MARK: IsolationHistory
//===----------------------------------------------------------------------===//
// Push onto the history list that \p value should be added into its own
// independent region.
IsolationHistory::Node *
IsolationHistory::pushNewElementRegion(Element element) {
unsigned size = Node::totalSizeToAlloc<Element>(0);
void *mem = factory->allocator.Allocate(size, alignof(Node));
head = new (mem) Node(Node::AddNewRegionForElement, head, element);
return getHead();
}
IsolationHistory::Node *
IsolationHistory::pushHistorySequenceBoundary(SILLocation loc) {
unsigned size = Node::totalSizeToAlloc<Element>(0);
void *mem = factory->allocator.Allocate(size, alignof(Node));
head = new (mem) Node(Node::SequenceBoundary, head, loc);
return getHead();
}
// Push onto the history that \p value should be removed from any region that it
// is apart of and placed within its own separate region.
void IsolationHistory::pushRemoveLastElementFromRegion(Element element) {
unsigned size = Node::totalSizeToAlloc<Element>(0);
void *mem = factory->allocator.Allocate(size, alignof(Node));
head = new (mem) Node(Node::RemoveLastElementFromRegion, head, element);
}
void IsolationHistory::pushRemoveElementFromRegion(
Element otherElementInOldRegion, Element element) {
unsigned size = Node::totalSizeToAlloc<Element>(1);
void *mem = factory->allocator.Allocate(size, alignof(Node));
head = new (mem) Node(Node::RemoveElementFromRegion, head, element,
{otherElementInOldRegion});
}
void IsolationHistory::pushMergeElementRegions(Element elementToMergeInto,
ArrayRef<Element> eltsToMerge) {
assert(llvm::none_of(eltsToMerge,
[&](Element elt) { return elt == elementToMergeInto; }));
unsigned size = Node::totalSizeToAlloc<Element>(eltsToMerge.size());
void *mem = factory->allocator.Allocate(size, alignof(Node));
head = new (mem)
Node(Node::MergeElementRegions, head, elementToMergeInto, eltsToMerge);
}
// Push that \p other should be merged into this region.
void IsolationHistory::pushCFGHistoryJoin(Node *otherNode) {
// If otherNode is nullptr or represents our same history, do not merge.
if (!otherNode || otherNode == head)
return;
// If we do not have any history, just take on the history of otherNode. We
// are going to merge our contents.
if (!head) {
head = otherNode;
return;
}
// Otherwise, create a node that joins our true head and other node as a side
// path we can follow.
unsigned size = Node::totalSizeToAlloc<Element>(0);
void *mem = factory->allocator.Allocate(size, alignof(Node));
head = new (mem) Node(Node(Node::CFGHistoryJoin, head, otherNode));
}
IsolationHistory::Node *IsolationHistory::pop() {
if (!head)
return nullptr;
auto *result = head;
head = head->parent;
return result;
}