-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathCanonicalizeInstruction.cpp
620 lines (557 loc) · 24 KB
/
CanonicalizeInstruction.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
//===--- CanonicalizeInstruction.cpp - canonical SIL peepholes ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// SSA-peephole transformations that yield a more canonical SIL representation.
///
/// A superset of simplifyInstruction.
///
//===----------------------------------------------------------------------===//
// CanonicalizeInstruction defines a default DEBUG_TYPE: "sil-canonicalize"
#include "swift/Basic/Assertions.h"
#include "swift/SILOptimizer/Utils/CanonicalizeInstruction.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SILOptimizer/Analysis/SimplifyInstruction.h"
#include "swift/SILOptimizer/Utils/DebugOptUtils.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
// Tracing within the implementation can also be activated by the pass.
#define DEBUG_TYPE pass.debugType
// Vtable anchor.
CanonicalizeInstruction::~CanonicalizeInstruction() {}
// Helper to delete an instruction, or mark it for deletion.
//
// Return an iterator to the next non-deleted instruction. The incoming iterator
// may already have advanced beyond 'inst'.
static SILBasicBlock::iterator killInstruction(SILInstruction *inst,
SILBasicBlock::iterator nextII,
CanonicalizeInstruction &pass) {
if (nextII == inst->getIterator())
++nextII;
pass.killInstruction(inst);
return nextII;
}
// Helper to delete, or mark for deletion, an instruction with potential debug
// or end of scope uses. All "real" uses must already be removed.
//
// fix_lifetime uses are not currently handled here. They are generally
// (incorrectly) treated as "incidental" uses, but no canonicalizations need
// them yet.
static SILBasicBlock::iterator
killInstAndIncidentalUses(SingleValueInstruction *inst,
SILBasicBlock::iterator nextII,
CanonicalizeInstruction &pass) {
while (!inst->use_empty()) {
auto *user = inst->use_begin()->getUser();
assert(user->isDebugInstruction() || isEndOfScopeMarker(user));
nextII = killInstruction(user, nextII, pass);
}
return killInstruction(inst, nextII, pass);
}
//===----------------------------------------------------------------------===//
// Instruction Simplification
//===----------------------------------------------------------------------===//
// If simplification is successful, return a valid iterator to the next
// instruction that wasn't erased.
static std::optional<SILBasicBlock::iterator>
simplifyAndReplace(SILInstruction *inst, CanonicalizeInstruction &pass) {
// Erase the simplified instruction and any instructions that end its
// scope. Nothing needs to be added to the worklist except for Result,
// because the instruction and all non-replaced users will be deleted.
pass.callbacks.resetHadCallbackInvocation();
auto result = simplifyAndReplaceAllSimplifiedUsesAndErase(
inst, pass.callbacks, &pass.deadEndBlocks);
if (!pass.callbacks.hadCallbackInvocation())
return std::nullopt;
return result;
}
//===----------------------------------------------------------------------===//
// Canonicalize Memory Operations
//===----------------------------------------------------------------------===//
// Replace all uses of an original struct or tuple extract instruction with the
// given load instruction. The caller ensures that the load only loads the
// extracted field.
//
// \p extract has the form:
// (struct_extract (load %base), #field)
//
// \p loadInst has the form:
// (load (struct_element_addr %base, #field)
static void replaceUsesOfExtract(SingleValueInstruction *extract,
LoadOperation loadInst,
CanonicalizeInstruction &pass) {
assert(extract->getType() == loadInst->getType());
SingleValueInstruction *loadedVal = *loadInst;
if (auto qual = loadInst.getOwnershipQualifier()) {
if (*qual == LoadOwnershipQualifier::Copy) {
// Borrow the load-copied subelement, with precisely the same scope as
// the aggregate borrow.
assert(extract->getNumOperands() == 1);
auto *origBorrow = cast<BeginBorrowInst>(extract->getOperand(0));
auto *newBorrow = SILBuilderWithScope(origBorrow)
.createBeginBorrow(loadInst->getLoc(), *loadInst);
pass.notifyNewInstruction(newBorrow);
assert(extract == origBorrow->getSingleNonEndingUse()->getUser());
for (auto *origEnd : origBorrow->getEndBorrows()) {
auto *endBorrow = SILBuilderWithScope(origEnd).createEndBorrow(
origEnd->getLoc(), newBorrow);
pass.notifyNewInstruction(endBorrow);
}
loadedVal = newBorrow;
}
}
LLVM_DEBUG(llvm::dbgs() << "Replacing " << *extract << " with "
<< *loadedVal << "\n");
extract->replaceAllUsesWith(loadedVal);
}
// Given a load with multiple struct_extracts/tuple_extracts and no other uses,
// canonicalize the load into several (struct_element_addr (load)) pairs.
//
// (struct_extract (load %base))
// ->
// (load (struct_element_addr %base, #field)
static SILBasicBlock::iterator
splitAggregateLoad(LoadOperation loadInst, CanonicalizeInstruction &pass) {
auto *block = loadInst->getParentBlock();
auto *instBeforeLoad = loadInst->getPreviousInstruction();
// Keep track of the next iterator after any newly added or to-be-deleted
// instructions. This must be valid regardless of whether the pass immediately
// deletes the instructions or simply records them for later deletion.
auto nextII = std::next(loadInst->getIterator());
bool needsBorrow;
if (auto qual = loadInst.getOwnershipQualifier()) {
switch (*qual) {
case LoadOwnershipQualifier::Unqualified:
case LoadOwnershipQualifier::Trivial:
needsBorrow = false;
break;
case LoadOwnershipQualifier::Copy:
needsBorrow = true;
break;
case LoadOwnershipQualifier::Take:
// TODO: To handle a "take", we would need to generate additional destroys
// for any fields that aren't already extracted. This would be
// out-of-place for this transform, and I'm not sure if this a case that
// needs to be handled in CanonicalizeInstruction.
return nextII;
}
} else {
// If we don't have a qual, we have a borrow.
needsBorrow = false;
}
struct ProjInstPair {
Projection proj;
SingleValueInstruction *extract;
// When sorting, just look at the projection and ignore the instruction.
// Including the instruction address in the sort key would be
// nondeterministic.
bool operator<(const ProjInstPair &rhs) const { return proj < rhs.proj; }
};
// Add load projections to a projection list.
llvm::SmallVector<ProjInstPair, 8> projections;
llvm::SmallVector<BeginBorrowInst *, 8> borrows;
llvm::SmallVector<SILInstruction *, 8> lifetimeEndingInsts;
for (auto *use : getNonDebugUses(*loadInst)) {
auto *user = use->getUser();
if (needsBorrow) {
if (auto *destroy = dyn_cast<DestroyValueInst>(user)) {
lifetimeEndingInsts.push_back(destroy);
continue;
}
auto *borrow = dyn_cast<BeginBorrowInst>(user);
if (!borrow)
return nextII;
// The transformation below also assumes a single borrow use.
auto *borrowedOper = borrow->getSingleNonEndingUse();
if (!borrowedOper)
return nextII;
borrows.push_back(borrow);
user = borrowedOper->getUser();
} else {
if (isa<EndBorrowInst>(user) &&
!loadInst.getOwnershipQualifier().has_value()) {
lifetimeEndingInsts.push_back(user);
continue;
}
}
// If we have any non SEI, TEI instruction, don't do anything here.
if (!isa<StructExtractInst>(user) && !isa<TupleExtractInst>(user))
return nextII;
auto extract = cast<SingleValueInstruction>(user);
projections.push_back({Projection(extract), extract});
}
// Sort the list so projections with the same value decl and tuples with the
// same indices will be processed together. This makes it easy to reuse the
// load from the first such projection for all subsequent projections on the
// same value decl or index.
std::sort(projections.begin(), projections.end());
// If the original load is dead, then do not delete it before
// diagnostics. Doing so would suppress DefiniteInitialization in cases like:
//
// struct S {
// let a: Int
// init() {
// _ = a // must be diagnosed as use before initialization
// a = 0
// }
// }
//
// However, if the load has any projections, it must be deleted, otherwise
// exclusivity checking is too strict:
//
// extension S {
// mutating func foo() {
// _ = a // Must be diagnosed as a read of self.a only not the whole self.
// }
// }
//
// Also, avoid degrading debug info unless it is necessary for exclusivity
// diagnostics.
//
// TODO: This logic subtly anticipates SILGen behavior. In the future, change
// SILGen to avoid emitting the full load and never delete loads in Raw SIL.
if (projections.empty() && loadInst->getModule().getStage() == SILStage::Raw)
return nextII;
// Create a new address projection instruction and load instruction for each
// unique projection.
Projection *lastProj = nullptr;
std::optional<LoadOperation> lastNewLoad;
for (auto &pair : projections) {
auto &proj = pair.proj;
auto *extract = pair.extract;
// If this projection is the same as the last projection we processed, just
// replace all uses of the projection with the load we created previously.
if (lastProj && proj == *lastProj) {
replaceUsesOfExtract(extract, *lastNewLoad, pass);
nextII = killInstruction(extract, nextII, pass);
continue;
}
// This is a unique projection. Create the new address projection and load.
lastProj = &proj;
// Insert new instructions before the original load.
SILBuilderWithScope LoadBuilder(*loadInst);
auto *projInst =
proj.createAddressProjection(LoadBuilder, loadInst->getLoc(),
loadInst->getOperand(0))
.get();
pass.notifyNewInstruction(projInst);
// When loading a trivial subelement, convert ownership.
std::optional<LoadOwnershipQualifier> loadOwnership =
loadInst.getOwnershipQualifier();
if (loadOwnership.has_value()) {
if (*loadOwnership != LoadOwnershipQualifier::Unqualified &&
projInst->getType().isTrivial(*projInst->getFunction()))
loadOwnership = LoadOwnershipQualifier::Trivial;
} else {
if (projInst->getType().isTrivial(*projInst->getFunction()))
loadOwnership = LoadOwnershipQualifier::Trivial;
}
if (loadOwnership) {
lastNewLoad =
LoadBuilder.createLoad(loadInst->getLoc(), projInst, *loadOwnership);
} else {
lastNewLoad = LoadBuilder.createLoadBorrow(loadInst->getLoc(), projInst);
}
pass.notifyNewInstruction(**lastNewLoad);
if (loadOwnership) {
if (*loadOwnership == LoadOwnershipQualifier::Copy) {
// Destroy the loaded value wherever the aggregate load was destroyed.
assert(loadInst.getOwnershipQualifier() ==
LoadOwnershipQualifier::Copy);
for (SILInstruction *destroy : lifetimeEndingInsts) {
auto *newInst = SILBuilderWithScope(destroy).createDestroyValue(
destroy->getLoc(), lastNewLoad->getLoadInst());
pass.notifyNewInstruction(newInst);
}
}
} else {
for (SILInstruction *destroy : lifetimeEndingInsts) {
auto *newInst = SILBuilderWithScope(destroy).createEndBorrow(
destroy->getLoc(), **lastNewLoad);
pass.notifyNewInstruction(newInst);
}
}
replaceUsesOfExtract(extract, *lastNewLoad, pass);
nextII = killInstruction(extract, nextII, pass);
}
// Preserve the original load's debug information.
if (pass.preserveDebugInfo) {
swift::salvageLoadDebugInfo(loadInst);
}
// Remove the now unused borrows.
for (auto *borrow : borrows)
nextII = killInstAndIncidentalUses(borrow, nextII, pass);
// Erase the old load.
for (auto *destroy : lifetimeEndingInsts)
nextII = killInstruction(destroy, nextII, pass);
// TODO: remove this hack to advance the iterator beyond debug_value and check
// SILInstruction::isDeleted() in the caller instead.
while (nextII != loadInst->getParent()->end()
&& nextII->isDebugInstruction()) {
++nextII;
}
deleteAllDebugUses(*loadInst, pass.getCallbacks());
nextII = killInstAndIncidentalUses(*loadInst, nextII, pass);
/// A change has been made; and the load instruction is deleted. The caller
/// should now process the instruction where the load was before.
///
/// BEFORE TRANSFORM | AFTER TRANSFORM
/// prequel_2 | prequel_2
/// prequel_1 | prequel_1
/// load | +-> ???
/// sequel_1 | | ???
/// sequel_2 | | ???
/// |
/// The instruction the caller should process next.
if (instBeforeLoad)
return instBeforeLoad->getNextInstruction()->getIterator();
else
return block->begin();
}
// Given a store within a single property struct, recursively form the parent
// struct values and promote the store to the outer struct type.
//
// (store (struct_element_addr %base) object)
// ->
// (store %base (struct object))
//
// TODO: supporting enums here would be very easy. The main thing is adding
// support in `createAggFromFirstLevelProjections`.
// Note: we will not be able to support tuples because we cannot have a
// single-element tuple.
static SILBasicBlock::iterator
broadenSingleElementStores(StoreInst *storeInst,
CanonicalizeInstruction &pass) {
// Keep track of the next iterator after any newly added or to-be-deleted
// instructions. This must be valid regardless of whether the pass immediately
// deletes the instructions or simply records them for later deletion.
auto nextII = std::next(storeInst->getIterator());
auto *f = storeInst->getFunction();
ProjectionPath projections(storeInst->getDest()->getType());
SILValue op = storeInst->getDest();
while (isa<StructElementAddrInst>(op)) {
auto *inst = cast<SingleValueInstruction>(op);
SILValue baseAddr = inst->getOperand(0);
SILType baseAddrType = baseAddr->getType();
auto *decl = baseAddrType.getStructOrBoundGenericStruct();
assert(
!decl->isResilient(f->getModule().getSwiftModule(),
f->getResilienceExpansion()) &&
"This code assumes resilient structs can not have fragile fields. If "
"this assert is hit, this has been changed. Please update this code.");
// Bail if the store's destination is not a struct_element_addr or if the
// store's destination (%base) is not a loadable type. If %base is not a
// loadable type, we can't create it as a struct later on.
// If our aggregate has unreferenced storage then we can never prove if it
// actually has a single field.
if (!baseAddrType.isLoadable(*f) ||
baseAddrType.aggregateHasUnreferenceableStorage() ||
decl->getStoredProperties().size() != 1)
break;
// If the struct is a move-only type, even though the single element in
// the struct is trivial, the struct would be non-trivial. In this case, we
// need a much more compelx analysis to determine the store ownership
// qualifier. Such an analysis is not suitable in the canonicalize pass. So,
// bail out.
if (baseAddrType.isMoveOnly()) {
break;
}
projections.push_back(Projection(inst));
op = baseAddr;
}
// If we couldn't create a projection, bail.
if (projections.empty())
return nextII;
// Now work our way back up. At this point we know all operations we are going
// to do succeed (cast<SingleValueInst>, createAggFromFirstLevelProjections,
// etc.) so we can omit null checks. We should not bail at this point (we
// could create a double consume, or worse).
SILBuilderWithScope builder(storeInst);
SILValue result = storeInst->getSrc();
SILValue storeAddr = storeInst->getDest();
for (Projection proj : llvm::reverse(projections)) {
storeAddr = cast<SingleValueInstruction>(storeAddr)->getOperand(0);
result = proj.createAggFromFirstLevelProjections(
builder, storeInst->getLoc(),
storeAddr->getType().getObjectType(), {result})
.get();
}
// Store the new struct-wrapped value into the final base address.
builder.createStore(storeInst->getLoc(), result, storeAddr,
storeInst->getOwnershipQualifier());
// Erase the original store.
return killInstruction(storeInst, nextII, pass);
}
//===----------------------------------------------------------------------===//
// Simple ARC Peepholes
//===----------------------------------------------------------------------===//
/// "dead" copies are removed in OSSA, but this may shorten object lifetimes,
/// changing program semantics in unexpected ways by releasing weak references
/// and running deinitializers early. This copy may be the only thing keeping a
/// variable's reference alive. But just because the copy's current SSA value
/// contains no other uses does not mean that there aren't other uses that still
/// correspond to the original variable whose lifetime is protected by this
/// copy. The only way to guarantee the lifetime of a variable is to use a
/// borrow scope--copy/destroy is insufficient by itself.
///
/// FIXME: This removes debug_value instructions aggressively as part of
/// SILGenCleanup. Instead, debug_values should be canonicalized before copy
/// elimination so that we never see the pattern:
/// %b = begin_borrow
/// %c = copy %b
/// end_borrow %b
/// debug_value %c
///
/// FIXME: Technically this should be guarded by a compiler flag like
/// -enable-copy-propagation until SILGen protects scoped variables by
/// borrow scopes.
static SILBasicBlock::iterator
eliminateSimpleCopies(CopyValueInst *cvi, CanonicalizeInstruction &pass) {
auto next = std::next(cvi->getIterator());
// Eliminate copies that only have destroy_value uses.
SmallVector<DestroyValueInst *, 8> destroys;
for (Operand *use : cvi->getUses()) {
if (auto *dvi = dyn_cast<DestroyValueInst>(use->getUser())) {
destroys.push_back(dvi);
continue;
}
if (!pass.preserveDebugInfo && isa<DebugValueInst>(use->getUser())) {
continue;
}
return next;
}
while (!destroys.empty()) {
next = killInstruction(destroys.pop_back_val(), next, pass);
}
return killInstAndIncidentalUses(cvi, next, pass);
}
/// Unlike dead copy elimination, dead borrows can be safely removed because the
/// semantics of a borrow scope
static SILBasicBlock::iterator
eliminateSimpleBorrows(BeginBorrowInst *bbi, CanonicalizeInstruction &pass) {
auto next = std::next(bbi->getIterator());
// Lexical borrow scopes can only be eliminated under certain circumstances:
// (1) They can never be eliminated if the module is in the raw stage, because
// they may be needed for diagnostic.
// (2) They can never be eliminated if there is no enclosing lexical scope
// which guarantees the lifetime of the value.
if (bbi->isLexical() && (bbi->getModule().getStage() == SILStage::Raw ||
!isNestedLexicalBeginBorrow(bbi)))
return next;
// Fixed borrow scopes can't be eliminated during the raw stage since they
// control move checker behavior.
if (bbi->isFixed() && bbi->getModule().getStage() == SILStage::Raw) {
return next;
}
// Borrow scopes representing a VarDecl can't be eliminated during the raw
// stage because they may be needed for diagnostics.
if (bbi->isFromVarDecl() && bbi->getModule().getStage() == SILStage::Raw) {
return next;
}
// We know that our borrow is completely within the lifetime of its base value
// if the borrow is never reborrowed. We check for reborrows and do not
// optimize such cases. Otherwise, we can eliminate our borrow and instead use
// our operand.
auto base = bbi->getOperand();
auto baseOwnership = base->getOwnershipKind();
SmallVector<EndBorrowInst *, 8> endBorrows;
for (auto *use : getNonDebugUses(bbi)) {
if (auto *ebi = dyn_cast<EndBorrowInst>(use->getUser())) {
endBorrows.push_back(ebi);
continue;
}
// Otherwise, if we have a use that is non-lifetime ending and can accept
// our base ownership, continue.
if (!use->isLifetimeEnding() && use->canAcceptKind(baseOwnership))
continue;
return next;
}
while (!endBorrows.empty()) {
next = killInstruction(endBorrows.pop_back_val(), next, pass);
}
bbi->replaceAllUsesWith(base);
pass.notifyHasNewUsers(base);
return killInstruction(bbi, next, pass);
}
/// Delete any result having forwarding instruction that only has destroy_value
/// and debug_value uses.
static SILBasicBlock::iterator
eliminateUnneededForwardingUnarySingleValueInst(SingleValueInstruction *inst,
CanonicalizeInstruction &pass) {
auto next = std::next(inst->getIterator());
if (isa<DropDeinitInst>(inst))
return next;
if (auto *uedi = dyn_cast<UncheckedEnumDataInst>(inst)) {
if (uedi->getOperand()->getType().isValueTypeWithDeinit())
return next;
}
for (auto *use : getNonDebugUses(inst)) {
if (auto *destroy = dyn_cast<DestroyValueInst>(use->getUser())) {
if (destroy->isFullDeinitialization())
continue;
}
return next;
}
deleteAllDebugUses(inst, pass.callbacks);
SILValue op = inst->getOperand(0);
inst->replaceAllUsesWith(op);
pass.notifyHasNewUsers(op);
return killInstruction(inst, next, pass);
}
static std::optional<SILBasicBlock::iterator>
tryEliminateUnneededForwardingInst(SILInstruction *i,
CanonicalizeInstruction &pass) {
assert(ForwardingInstruction::isa(i) &&
"Must be an ownership forwarding inst");
if (auto *svi = dyn_cast<SingleValueInstruction>(i))
if (svi->getNumOperands() == 1)
return eliminateUnneededForwardingUnarySingleValueInst(svi, pass);
return std::nullopt;
}
//===----------------------------------------------------------------------===//
// Top-Level Entry Point
//===----------------------------------------------------------------------===//
SILBasicBlock::iterator
CanonicalizeInstruction::canonicalize(SILInstruction *inst) {
if (auto nextII = simplifyAndReplace(inst, *this))
return nextII.value();
if (auto li = LoadOperation(inst)) {
return splitAggregateLoad(li, *this);
}
if (auto *storeInst = dyn_cast<StoreInst>(inst)) {
return broadenSingleElementStores(storeInst, *this);
}
if (auto *cvi = dyn_cast<CopyValueInst>(inst))
return eliminateSimpleCopies(cvi, *this);
if (auto *bbi = dyn_cast<BeginBorrowInst>(inst))
return eliminateSimpleBorrows(bbi, *this);
// If we have ownership and are not in raw SIL, eliminate unneeded forwarding
// insts. We don't do this in raw SIL as not to disturb the codegen read by
// diagnostics.
//
// TODO: fix tryEliminateUnneededForwardingInst to handle debug uses.
auto *fn = inst->getFunction();
if (!preserveDebugInfo && fn->hasOwnership()
&& fn->getModule().getStage() != SILStage::Raw) {
if (ForwardingInstruction::isa(inst))
if (auto newNext = tryEliminateUnneededForwardingInst(inst, *this))
return *newNext;
}
// Skip ahead.
return std::next(inst->getIterator());
}