-
Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathModuleInterfaceSupport.cpp
923 lines (790 loc) · 36.1 KB
/
ModuleInterfaceSupport.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
//===------- ModuleInterfaceSupport.cpp - swiftinterface files ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2019 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Frontend/ModuleInterfaceSupport.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/FileSystem.h"
#include "swift/AST/Module.h"
#include "swift/AST/ModuleNameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/AST/TypeRepr.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Frontend/Frontend.h"
#include "swift/Frontend/PrintingDiagnosticConsumer.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/Serialization/SerializationOptions.h"
#include "swift/Serialization/Validation.h"
#include "clang/Basic/Module.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/StringSaver.h"
using namespace swift;
// MARK: Module interface header comments
version::Version swift::InterfaceFormatVersion({1, 0});
/// Prints to \p out a comment containing a format version number, tool version
/// string as well as any relevant command-line flags in \p Opts used to
/// construct \p M.
static void printToolVersionAndFlagsComment(raw_ostream &out,
ModuleInterfaceOptions const &Opts,
ModuleDecl *M,
llvm::SmallSet<StringRef, 4>
&AliasModuleNamesTargets) {
auto &Ctx = M->getASTContext();
auto ToolsVersion =
getSwiftInterfaceCompilerVersionForCurrentCompiler(Ctx);
out << "// " SWIFT_INTERFACE_FORMAT_VERSION_KEY ": "
<< InterfaceFormatVersion << "\n";
out << "// " SWIFT_COMPILER_VERSION_KEY ": "
<< ToolsVersion << "\n";
out << "// " SWIFT_MODULE_FLAGS_KEY ": " << Opts.PublicFlags.Flags;
if (Opts.InterfaceContentMode >= PrintOptions::InterfaceMode::Private &&
!Opts.PrivateFlags.Flags.empty())
out << " " << Opts.PrivateFlags.Flags;
if (Opts.InterfaceContentMode >= PrintOptions::InterfaceMode::Package &&
!Opts.PackageFlags.Flags.empty())
out << " " << Opts.PackageFlags.Flags;
// Insert additional -module-alias flags
if (Opts.AliasModuleNames) {
StringRef moduleName = M->getNameStr();
AliasModuleNamesTargets.insert(M->getNameStr());
out << " -module-alias " << MODULE_DISAMBIGUATING_PREFIX <<
moduleName << "=" << moduleName;
ModuleDecl::ImportFilter filter = {ModuleDecl::ImportFilterKind::Default,
ModuleDecl::ImportFilterKind::Exported};
if (!Opts.printPublicInterface())
filter |= ModuleDecl::ImportFilterKind::SPIOnly;
if (Opts.printPackageInterface())
filter |= ModuleDecl::ImportFilterKind::PackageOnly;
SmallVector<ImportedModule> imports;
M->getImportedModules(imports, filter);
M->getImplicitImportsForModuleInterface(imports);
for (ImportedModule import: imports) {
StringRef importedName = import.importedModule->getNameStr();
// Skip Swift as it's commonly used in inlinable code,
// and Builtin as it's imported implicitly by name.
if (importedName == STDLIB_NAME ||
importedName == BUILTIN_NAME)
continue;
// Aliasing Foundation confuses the typechecker (rdar://128897610).
if (importedName == "Foundation")
continue;
if (AliasModuleNamesTargets.insert(importedName).second) {
out << " -module-alias " << MODULE_DISAMBIGUATING_PREFIX <<
importedName << "=" << importedName;
}
}
}
out << "\n";
// Add swift-module-flags-ignorable: if non-empty.
{
llvm::SmallVector<StringRef, 4> ignorableFlags;
if (!Opts.PublicFlags.IgnorableFlags.empty())
ignorableFlags.push_back(Opts.PublicFlags.IgnorableFlags);
if (Opts.InterfaceContentMode >= PrintOptions::InterfaceMode::Private &&
!Opts.PrivateFlags.IgnorableFlags.empty())
ignorableFlags.push_back(Opts.PrivateFlags.IgnorableFlags);
if (Opts.InterfaceContentMode >= PrintOptions::InterfaceMode::Package &&
!Opts.PackageFlags.IgnorableFlags.empty())
ignorableFlags.push_back(Opts.PackageFlags.IgnorableFlags);
out << "// " SWIFT_MODULE_FLAGS_IGNORABLE_KEY ": ";
llvm::interleave(
ignorableFlags, [&out](StringRef str) { out << str; },
[&out] { out << " "; });
out << " -interface-compiler-version " << version::getCompilerVersion();
out << "\n";
}
}
std::string
swift::getSwiftInterfaceCompilerVersionForCurrentCompiler(ASTContext &ctx) {
return swift::version::getSwiftFullVersion(
ctx.LangOpts.EffectiveLanguageVersion);
}
llvm::Regex swift::getSwiftInterfaceFormatVersionRegex() {
return llvm::Regex("^// " SWIFT_INTERFACE_FORMAT_VERSION_KEY
": ([0-9\\.]+)$", llvm::Regex::Newline);
}
llvm::Regex swift::getSwiftInterfaceCompilerVersionRegex() {
return llvm::Regex("^// " SWIFT_COMPILER_VERSION_KEY
": (.+)$", llvm::Regex::Newline);
}
llvm::Regex swift::getSwiftInterfaceCompilerToolsVersionRegex() {
return llvm::Regex("Swift version ([0-9\\.]+)", llvm::Regex::Newline);
}
// MARK(https://github.com/apple/swift/issues/43510): Module name shadowing warnings
//
// When swiftc emits a module interface, it qualifies most types with their
// module name. This usually makes the interface less ambiguous, but if a type
// exists with the same name as a module, then references to that module will
// incorrectly look inside the type instead. This breakage is not obvious until
// someone tries to load the module interface, and may sometimes only occur in
// clients' module interfaces.
//
// Truly fixing this will require a new module-qualification syntax which
// completely ignores shadowing. In lieu of that, we detect and warn about three
// common examples which are relatively actionable:
//
// 1. An `import` statement written into the module interface will
// (transitively) import a type with the module interface's name.
//
// 2. The module interface declares a type with the same name as the module the
// interface is for.
//
// 3. The module interface declares a type with the same name as a module it has
// (transitively) imported without `@_implementationOnly`.
//
// We do not check for shadowing between imported module names and imported
// declarations; this is both much rarer and much more difficult to solve.
// We silence these warnings if you use the temporary workaround flag,
// '-module-interface-preserve-types-as-written'.
/// Emit a warning explaining that \p shadowingDecl will interfere with
/// references to types in \p shadowedModule in the module interfaces of
/// \p brokenModule and its clients.
static void
diagnoseDeclShadowsModule(ModuleInterfaceOptions const &Opts,
TypeDecl *shadowingDecl, ModuleDecl *shadowedModule,
ModuleDecl *brokenModule) {
if (Opts.PreserveTypesAsWritten || Opts.AliasModuleNames ||
shadowingDecl == shadowedModule)
return;
shadowingDecl->diagnose(
diag::warning_module_shadowing_may_break_module_interface,
shadowingDecl->getDescriptiveKind(),
FullyQualified<Type>(shadowingDecl->getDeclaredInterfaceType()),
shadowedModule, brokenModule);
}
/// Check whether importing \p importedModule will bring in any declarations
/// that will shadow \p importingModule, and diagnose them if so.
static void
diagnoseIfModuleImportsShadowingDecl(ModuleInterfaceOptions const &Opts,
ModuleDecl *importedModule,
ModuleDecl *importingModule) {
using namespace namelookup;
SmallVector<ValueDecl *, 4> decls;
lookupInModule(importedModule, importingModule->getName(), decls,
NLKind::UnqualifiedLookup, ResolutionKind::TypesOnly,
importedModule, SourceLoc(),
NL_UnqualifiedDefault | NL_IncludeUsableFromInline);
for (auto decl : decls)
diagnoseDeclShadowsModule(Opts, cast<TypeDecl>(decl), importingModule,
importingModule);
}
/// Check whether \p D will shadow any modules imported by \p M, and diagnose
/// them if so.
static void diagnoseIfDeclShadowsKnownModule(ModuleInterfaceOptions const &Opts,
Decl *D, ModuleDecl *M) {
ASTContext &ctx = M->getASTContext();
// We only care about types (and modules, which are a subclass of TypeDecl);
// when the grammar expects a type name, it ignores non-types during lookup.
TypeDecl *TD = dyn_cast<TypeDecl>(D);
if (!TD)
return;
ModuleDecl *shadowedModule = ctx.getLoadedModule(TD->getName());
if (!shadowedModule || M->isImportedImplementationOnly(shadowedModule))
return;
diagnoseDeclShadowsModule(Opts, TD, shadowedModule, M);
}
// MARK: Import statements
/// Diagnose any scoped imports in \p imports, i.e. those with a non-empty
/// access path. These are not yet supported by module interfaces, since the
/// information about the declaration kind is not preserved through the binary
/// serialization that happens as an intermediate step in non-whole-module
/// builds.
///
/// These come from declarations like `import class FooKit.MainFooController`.
static void diagnoseScopedImports(DiagnosticEngine &diags,
ArrayRef<ImportedModule> imports){
for (const ImportedModule &importPair : imports) {
if (importPair.accessPath.empty())
continue;
diags.diagnose(importPair.accessPath.front().Loc,
diag::module_interface_scoped_import_unsupported);
}
}
/// Prints the imported modules in \p M to \p out in the form of \c import
/// source declarations.
static void printImports(raw_ostream &out,
ModuleInterfaceOptions const &Opts,
ModuleDecl *M,
const llvm::SmallSet<StringRef, 4>
&AliasModuleNamesTargets) {
auto &ctx = M->getASTContext();
// FIXME: This is very similar to what's in Serializer::writeInputBlock, but
// it's not obvious what higher-level optimization would be factored out here.
ModuleDecl::ImportFilter allImportFilter = {
ModuleDecl::ImportFilterKind::Exported,
ModuleDecl::ImportFilterKind::Default,
ModuleDecl::ImportFilterKind::ShadowedByCrossImportOverlay};
using ImportSet = llvm::SmallSet<ImportedModule, 8, ImportedModule::Order>;
auto getImports = [M](ModuleDecl::ImportFilter filter) -> ImportSet {
SmallVector<ImportedModule, 8> matchingImports;
M->getImportedModules(matchingImports, filter);
ImportSet importSet;
importSet.insert(matchingImports.begin(), matchingImports.end());
return importSet;
};
/// Collect @_spiOnly imports that are not imported elsewhere publicly.
ImportSet spiOnlyImportSet;
if (!Opts.printPublicInterface()) {
SmallVector<ImportedModule, 4> spiOnlyImports, otherImports;
M->getImportedModules(spiOnlyImports,
ModuleDecl::ImportFilterKind::SPIOnly);
ImportSet otherImportsSet = getImports(allImportFilter);
// Rule out inconsistent imports.
for (auto import: spiOnlyImports)
if (otherImportsSet.count(import) == 0)
spiOnlyImportSet.insert(import);
allImportFilter |= ModuleDecl::ImportFilterKind::SPIOnly;
}
// Collect the public imports as a subset so that we can mark them with
// '@_exported'.
ImportSet exportedImportSet =
getImports(ModuleDecl::ImportFilterKind::Exported);
// All of the above are considered `public` including `@_spiOnly public import`
// and `@_spi(name) public import`, and should override `package import`.
// Track the `public` imports here to determine whether to override.
ImportSet publicImportSet = getImports(allImportFilter);
// Used to determine whether `package import` should be overriden below.
ImportSet packageOnlyImportSet;
if (Opts.printPackageInterface()) {
packageOnlyImportSet =
getImports(ModuleDecl::ImportFilterKind::PackageOnly);
allImportFilter |= ModuleDecl::ImportFilterKind::PackageOnly;
}
SmallVector<ImportedModule, 8> allImports;
M->getImportedModules(allImports, allImportFilter);
if (Opts.PrintMissingImports)
M->getImplicitImportsForModuleInterface(allImports);
ImportedModule::removeDuplicates(allImports);
diagnoseScopedImports(ctx.Diags, allImports);
for (auto import : allImports) {
auto importedModule = import.importedModule;
if (importedModule->isOnoneSupportModule()) {
continue;
}
// Unless '-enable-builtin-module' /
// '-enable-experimental-feature BuiltinModule' was passed, do not print
// 'import Builtin' in the interface. '-parse-stdlib' still implicitly
// imports it however...
if (importedModule->isBuiltinModule() &&
!ctx.LangOpts.hasFeature(Feature::BuiltinModule)) {
continue;
}
llvm::SmallSetVector<Identifier, 4> spis;
M->lookupImportedSPIGroups(importedModule, spis);
if (exportedImportSet.count(import))
out << "@_exported ";
if (!Opts.printPublicInterface()) {
// An import visible in the private or package swiftinterface only.
if (spiOnlyImportSet.count(import))
out << "@_spiOnly ";
// List of imported SPI groups for local use.
for (auto spiName : spis)
out << "@_spi(" << spiName << ") ";
}
if (Opts.printPackageInterface() &&
!publicImportSet.count(import) &&
packageOnlyImportSet.count(import))
out << "package ";
else if (ctx.LangOpts.hasFeature(Feature::InternalImportsByDefault)) {
out << "public ";
}
out << "import ";
if (Opts.AliasModuleNames &&
AliasModuleNamesTargets.contains(importedModule->getName().str()))
out << MODULE_DISAMBIGUATING_PREFIX;
importedModule->getReverseFullModuleName().printForward(out);
// Write the access path we should be honoring but aren't.
// (See diagnoseScopedImports above.)
if (!import.accessPath.empty()) {
out << "/*";
for (const auto &accessPathElem : import.accessPath)
out << "." << accessPathElem.Item;
out << "*/";
}
out << "\n";
diagnoseIfModuleImportsShadowingDecl(Opts, importedModule, M);
}
}
// MARK: Dummy protocol conformances
// FIXME: Copied from ASTPrinter.cpp...
static bool isPublicOrUsableFromInline(const ValueDecl *VD) {
AccessScope scope =
VD->getFormalAccessScope(/*useDC*/nullptr,
/*treatUsableFromInlineAsPublic*/true);
return scope.isPublic();
}
static bool isPublicOrUsableFromInline(Type ty) {
// Note the double negative here: we're looking for any referenced decls that
// are *not* public-or-usableFromInline.
return !ty.findIf([](Type typePart) -> bool {
// FIXME: If we have an internal typealias for a non-internal type, we ought
// to be able to print it by desugaring.
if (auto *aliasTy = dyn_cast<TypeAliasType>(typePart.getPointer()))
return !isPublicOrUsableFromInline(aliasTy->getDecl());
if (auto *nominal = typePart->getAnyNominal())
return !isPublicOrUsableFromInline(nominal);
return false;
});
}
namespace {
/// Collects protocols that are conformed to by a particular nominal. Since
/// ASTPrinter will only print the public ones, the non-public ones get left by
/// the wayside. This is a problem when a non-public protocol inherits from a
/// public protocol; the generated module interface still needs to make that
/// dependency public.
///
/// The solution implemented here is to generate synthetic extensions that
/// declare the extra conformances. This isn't perfect (it loses the sugared
/// spelling of the protocol type, as well as the locality in the file), but it
/// does work.
class InheritedProtocolCollector {
static const StringLiteral DummyProtocolName;
using AvailableAttrList = SmallVector<SemanticAvailableAttr>;
using OriginallyDefinedInAttrList =
TinyPtrVector<const OriginallyDefinedInAttr *>;
using ProtocolAndAvailability =
std::tuple<ProtocolDecl *, AvailableAttrList,
ProtocolConformanceOptions, OriginallyDefinedInAttrList>;
/// Protocols that will be included by the ASTPrinter without any extra work.
SmallVector<ProtocolDecl *, 8> IncludedProtocols;
/// Protocols that will not be printed by the ASTPrinter, along with the
/// availability they were declared with.
SmallVector<ProtocolAndAvailability, 8> ExtraProtocols;
/// Protocols that can be printed, but whose conformances are constrained with
/// something that \e can't be printed.
SmallVector<const ProtocolType *, 8> ConditionalConformanceProtocols;
/// Helper to extract the `@available` attributes on a decl.
static AvailableAttrList
getAvailabilityAttrs(const Decl *D, std::optional<AvailableAttrList> &cache) {
if (cache.has_value())
return cache.value();
cache.emplace();
while (D) {
for (auto nextAttr : D->getSemanticAvailableAttrs()) {
// FIXME: This is just approximating the effects of nested availability
// attributes for the same platform; formally they'd need to be merged.
// FIXME: [availability] This should compare availability domains.
bool alreadyHasMoreSpecificAttrForThisPlatform = llvm::any_of(
*cache, [nextAttr](SemanticAvailableAttr existingAttr) {
return existingAttr.getPlatform() == nextAttr.getPlatform();
});
if (alreadyHasMoreSpecificAttrForThisPlatform)
continue;
cache->push_back(nextAttr);
}
D = D->getDeclContext()->getAsDecl();
}
return cache.value();
}
static OriginallyDefinedInAttrList
getOriginallyDefinedInAttrList(const Decl *D) {
OriginallyDefinedInAttrList results;
while (D) {
for (auto *result :
D->getAttrs().getAttributes<OriginallyDefinedInAttr>()) {
results.push_back(result);
}
D = D->getDeclContext()->getAsDecl();
}
return results;
}
static bool canPrintProtocolTypeNormally(Type type, const Decl *D) {
return isPublicOrUsableFromInline(type);
}
static ProtocolConformanceOptions filterOptions(ProtocolConformanceOptions options) {
options -= ProtocolConformanceFlags::Preconcurrency;
options -= ProtocolConformanceFlags::Retroactive;
return options;
}
static ProtocolConformanceOptions getConformanceOptions(ProtocolConformance *conformance) {
if (auto normal = dyn_cast<NormalProtocolConformance>(conformance->getRootConformance()))
return filterOptions(normal->getOptions());
return {};
}
/// For each type in \p directlyInherited, classify the protocols it refers to
/// as included for printing or not, and record them in the appropriate
/// vectors.
///
/// If \p skipExtra is true then avoid recording any extra protocols to
/// print, such as synthesized conformances or conformances to non-public
/// protocols.
void recordProtocols(InheritedTypes directlyInherited, const Decl *D,
bool skipExtra = false) {
PrettyStackTraceDecl stackTrace("recording protocols for", D);
std::optional<AvailableAttrList> availableAttrs;
for (int i : directlyInherited.getIndices()) {
Type inheritedTy = directlyInherited.getResolvedType(i);
if (!inheritedTy || !inheritedTy->isExistentialType())
continue;
bool canPrintNormally = canPrintProtocolTypeNormally(inheritedTy, D);
if (!canPrintNormally && skipExtra)
continue;
auto inherited = directlyInherited.getEntry(i);
ExistentialLayout layout = inheritedTy->getExistentialLayout();
for (ProtocolDecl *protoDecl : layout.getProtocols()) {
if (canPrintNormally)
IncludedProtocols.push_back(protoDecl);
else
ExtraProtocols.push_back(ProtocolAndAvailability(
protoDecl, getAvailabilityAttrs(D, availableAttrs),
filterOptions(inherited.getOptions()),
getOriginallyDefinedInAttrList(D)));
}
// FIXME: This ignores layout constraints, but currently we don't support
// any of those besides 'AnyObject'.
}
if (skipExtra)
return;
// Check for synthesized protocols, like Hashable on enums.
if (auto *nominal = dyn_cast<NominalTypeDecl>(D)) {
SmallVector<ProtocolConformance *, 4> localConformances =
nominal->getLocalConformances(ConformanceLookupKind::NonInherited);
for (auto *conf : localConformances) {
if (conf->getSourceKind() != ConformanceEntryKind::Synthesized)
continue;
ExtraProtocols.push_back(ProtocolAndAvailability(
conf->getProtocol(), getAvailabilityAttrs(D, availableAttrs),
getConformanceOptions(conf), getOriginallyDefinedInAttrList(D)));
}
}
}
/// For each type directly inherited by \p extension, record any protocols
/// that we would have printed in ConditionalConformanceProtocols.
void recordConditionalConformances(const ExtensionDecl *extension) {
auto inheritedTypes = extension->getInherited();
for (unsigned i : inheritedTypes.getIndices()) {
Type inheritedTy = inheritedTypes.getResolvedType(i);
if (!inheritedTy || !inheritedTy->isExistentialType())
continue;
ExistentialLayout layout = inheritedTy->getExistentialLayout();
for (ProtocolDecl *protoDecl : layout.getProtocols()) {
auto protoTy = protoDecl->getDeclaredInterfaceType()->castTo<ProtocolType>();
if (!isPublicOrUsableFromInline(protoTy))
continue;
ConditionalConformanceProtocols.push_back(protoTy);
}
// FIXME: This ignores layout constraints, but currently we don't support
// any of those besides 'AnyObject'.
}
}
public:
using PerTypeMap = llvm::MapVector<const NominalTypeDecl *,
InheritedProtocolCollector>;
/// Given that we're about to print \p D, record its protocols in \p map.
///
/// \sa recordProtocols
static void collectProtocols(PerTypeMap &map, const Decl *D) {
PrettyStackTraceDecl stackTrace("collecting protocols for", D);
InheritedTypes directlyInherited = InheritedTypes(D);
const NominalTypeDecl *nominal;
const IterableDeclContext *memberContext;
auto shouldInclude = [](const ExtensionDecl *extension) {
// In lazy typechecking mode we may be resolving the extended type for the
// first time here, so we need to call getExtendedType() to cause
// diagnostics to be emitted if necessary.
(void)extension->getExtendedType();
if (extension->isInvalid())
return false;
if (extension->isConstrainedExtension()) {
// Conditional conformances never apply to inherited protocols, nor
// can they provide unconditional conformances that might be used in
// other extensions.
return false;
}
return true;
};
if ((nominal = dyn_cast<NominalTypeDecl>(D))) {
memberContext = nominal;
} else if (auto *extension = dyn_cast<ExtensionDecl>(D)) {
if (!shouldInclude(extension)) {
return;
}
nominal = extension->getExtendedNominal();
memberContext = extension;
} else {
return;
}
if (!isPublicOrUsableFromInline(nominal))
return;
map[nominal].recordProtocols(directlyInherited, D);
// Collect protocols inherited from super classes
if (auto *CD = dyn_cast<ClassDecl>(D)) {
for (auto *SD = CD->getSuperclassDecl(); SD;
SD = SD->getSuperclassDecl()) {
map[nominal].recordProtocols(SD->getInherited(), SD,
/*skipExtra=*/true);
for (auto *Ext: SD->getExtensions()) {
if (shouldInclude(Ext)) {
map[nominal].recordProtocols(Ext->getInherited(), Ext,
/*skipExtra=*/true);
}
}
}
}
// Recurse to find any nested types.
for (const Decl *member : memberContext->getMembers())
collectProtocols(map, member);
}
/// If \p D is an extension providing conditional conformances, record those
/// in \p map.
///
/// \sa recordConditionalConformances
static void collectSkippedConditionalConformances(
PerTypeMap &map,
const Decl *D,
const PrintOptions &printOptions) {
auto *extension = dyn_cast<ExtensionDecl>(D);
if (!extension || !extension->isConstrainedExtension())
return;
// Skip SPI extensions in the public interface.
if (printOptions.printPublicInterface() && extension->isSPI())
return;
const NominalTypeDecl *nominal = extension->getExtendedNominal();
if (!isPublicOrUsableFromInline(nominal))
return;
map[nominal].recordConditionalConformances(extension);
// No recursion here because extensions are never nested.
}
/// Returns true if the conformance of \p nominal to \p proto is declared in
/// module \p M.
static bool conformanceDeclaredInModule(ModuleDecl *M,
const NominalTypeDecl *nominal,
ProtocolDecl *proto) {
SmallVector<ProtocolConformance *, 4> conformances;
nominal->lookupConformance(proto, conformances);
return llvm::all_of(conformances,
[M](const ProtocolConformance *conformance) -> bool {
return M == conformance->getDeclContext()->getParentModule();
});
}
/// If there were any public protocols that need to be printed (i.e. they
/// weren't conformed to explicitly or inherited by another printed protocol),
/// do so now by printing a dummy extension on \p nominal to \p out.
void
printSynthesizedExtensionIfNeeded(raw_ostream &out,
const PrintOptions &printOptions,
ModuleDecl *M,
const NominalTypeDecl *nominal) const {
PrettyStackTraceDecl stackTrace("printing synthesized extensions for",
nominal);
if (ExtraProtocols.empty())
return;
if (!printOptions.shouldPrint(nominal))
return;
/// is this nominal specifically an 'actor'?
bool actorClass = false;
if (auto klass = dyn_cast<ClassDecl>(nominal))
actorClass = klass->isActor();
SmallPtrSet<ProtocolDecl *, 16> handledProtocols;
// First record all protocols that have already been handled.
for (ProtocolDecl *proto : IncludedProtocols) {
handledProtocols.insert(proto);
auto allInherited = proto->getAllInheritedProtocols();
handledProtocols.insert(allInherited.begin(), allInherited.end());
}
// Preserve the behavior of previous implementations which formatted of
// empty extensions compactly with '{}' on the same line.
PrintOptions extensionPrintOptions = printOptions;
extensionPrintOptions.PrintEmptyMembersOnSameLine = true;
// Then walk the remaining ones, and see what we need to print.
// FIXME: This will pick the availability attributes from the first sight
// of a protocol rather than the maximally available case.
for (const auto &protoAndAvailability : ExtraProtocols) {
auto proto = std::get<0>(protoAndAvailability);
auto availability = std::get<1>(protoAndAvailability);
auto isUnchecked = std::get<2>(protoAndAvailability);
auto otherAttrs = std::get<3>(protoAndAvailability);
proto->walkInheritedProtocols(
[&](ProtocolDecl *inherited) -> TypeWalker::Action {
if (!handledProtocols.insert(inherited).second)
return TypeWalker::Action::SkipNode;
// If 'nominal' is an actor, we do not synthesize its conformance
// to the Actor protocol through a dummy extension.
// There is a special restriction on the Actor protocol in that
// it is only valid to conform to Actor on an 'actor' decl,
// not extensions of that 'actor'.
if (actorClass &&
inherited->isSpecificProtocol(KnownProtocolKind::Actor))
return TypeWalker::Action::SkipNode;
// Do not synthesize an extension to print a conformance to an
// invertible protocol, as their conformances are always re-inferred
// using the interface itself.
if (auto kp = inherited->getKnownProtocolKind())
if (getInvertibleProtocolKind(*kp))
return TypeWalker::Action::SkipNode;
if (inherited->isSPI() && printOptions.printPublicInterface())
return TypeWalker::Action::Continue;
if (isPublicOrUsableFromInline(inherited) &&
conformanceDeclaredInModule(M, nominal, inherited) &&
!M->isImportedImplementationOnly(inherited->getParentModule())) {
auto protoAndAvailability = ProtocolAndAvailability(
inherited, availability, isUnchecked, otherAttrs);
printSynthesizedExtension(out, extensionPrintOptions, M, nominal,
protoAndAvailability);
return TypeWalker::Action::SkipNode;
}
return TypeWalker::Action::Continue;
});
}
}
/// Prints a dummy extension on \p nominal to \p out for a public conformance
/// to the protocol contained by \p protoAndAvailability.
static void
printSynthesizedExtension(raw_ostream &out, const PrintOptions &printOptions,
ModuleDecl *M, const NominalTypeDecl *nominal,
ProtocolAndAvailability &protoAndAvailability) {
StreamPrinter printer(out);
auto proto = std::get<0>(protoAndAvailability);
auto availability = std::get<1>(protoAndAvailability);
auto options = std::get<2>(protoAndAvailability);
auto originallyDefinedInAttrs = std::get<3>(protoAndAvailability);
// Create a synthesized ExtensionDecl for the conformance.
ASTContext &ctx = M->getASTContext();
auto inherits = ctx.AllocateCopy(llvm::ArrayRef(InheritedEntry(
TypeLoc::withoutLoc(proto->getDeclaredInterfaceType()), options)));
auto extension =
ExtensionDecl::create(ctx, SourceLoc(), nullptr, inherits,
nominal->getModuleScopeContext(), nullptr);
extension->setImplicit();
// Build up synthesized DeclAttributes for the extension.
TinyPtrVector<const DeclAttribute *> clonedAttrs;
for (auto attr : availability) {
clonedAttrs.push_back(
attr.getParsedAttr()->clone(ctx, /*implicit*/ true));
}
for (auto *attr : proto->getAttrs().getAttributes<SPIAccessControlAttr>()) {
clonedAttrs.push_back(attr->clone(ctx, /*implicit*/ true));
}
for (auto *attr : originallyDefinedInAttrs) {
clonedAttrs.push_back(attr->clone(ctx, /*implicit*/ true));
}
// Since DeclAttributes is a linked list where each added attribute becomes
// the head, we need to add these attributes in reverse order to reproduce
// the order in which previous implementations printed these attributes.
for (auto attr = clonedAttrs.rbegin(), end = clonedAttrs.rend();
attr != end; ++attr) {
extension->getAttrs().add(const_cast<DeclAttribute *>(*attr));
}
ctx.evaluator.cacheOutput(ExtendedTypeRequest{extension},
nominal->getDeclaredType());
ctx.evaluator.cacheOutput(ExtendedNominalRequest{extension},
const_cast<NominalTypeDecl *>(nominal));
extension->print(printer, printOptions);
printer << "\n";
}
/// If there were any conditional conformances that couldn't be printed,
/// make dummy extension(s) that conforms to all of them, constrained by a
/// fake protocol.
bool printInaccessibleConformanceExtensionIfNeeded(
raw_ostream &out, const PrintOptions &printOptions,
const NominalTypeDecl *nominal) const {
if (ConditionalConformanceProtocols.empty())
return false;
assert(nominal->isGenericContext());
auto emitExtension =
[&](ArrayRef<const ProtocolType *> conformanceProtos) {
if (!printOptions.printPublicInterface())
out << "@_spi(" << DummyProtocolName << ")\n";
out << "@available(*, unavailable)\nextension ";
nominal->getDeclaredType().print(out, printOptions);
out << " : ";
llvm::interleave(
conformanceProtos,
[&out, &printOptions](const ProtocolType *protoTy) {
protoTy->print(out, printOptions);
},
[&out] { out << ", "; });
out << " where "
<< nominal->getGenericSignature().getGenericParams()[0]->getName()
<< " : " << DummyProtocolName << " {}\n";
};
// We have to print conformances for invertible protocols in separate
// extensions, so do those first and save the rest for one extension.
SmallVector<const ProtocolType *, 8> regulars;
for (auto *proto : ConditionalConformanceProtocols) {
if (proto->getDecl()->getInvertibleProtocolKind()) {
emitExtension(proto);
continue;
}
regulars.push_back(proto);
}
emitExtension(regulars);
return true;
}
/// Print a fake protocol declaration for use by
/// #printInaccessibleConformanceExtensionIfNeeded.
static void printDummyProtocolDeclaration(raw_ostream &out) {
out << "\n@usableFromInline\ninternal protocol " << DummyProtocolName
<< " {}\n";
}
};
const StringLiteral InheritedProtocolCollector::DummyProtocolName =
"_ConstraintThatIsNotPartOfTheAPIOfThisLibrary";
} // end anonymous namespace
// MARK: Interface emission
bool swift::emitSwiftInterface(raw_ostream &out,
ModuleInterfaceOptions const &Opts,
ModuleDecl *M) {
PrettyStackTraceDecl stackTrace("emitting swiftinterface for", M);
assert(M);
llvm::SmallSet<StringRef, 4> aliasModuleNamesTargets;
printToolVersionAndFlagsComment(out, Opts, M, aliasModuleNamesTargets);
printImports(out, Opts, M, aliasModuleNamesTargets);
bool useExportedModuleNames = Opts.printPublicInterface();
const PrintOptions printOptions = PrintOptions::printSwiftInterfaceFile(
M, Opts.PreserveTypesAsWritten, Opts.PrintFullConvention,
Opts.InterfaceContentMode,
useExportedModuleNames,
Opts.AliasModuleNames, &aliasModuleNamesTargets);
InheritedProtocolCollector::PerTypeMap inheritedProtocolMap;
SmallVector<Decl *, 16> topLevelDecls;
M->getTopLevelDeclsWithAuxiliaryDecls(topLevelDecls);
for (const Decl *D : topLevelDecls) {
InheritedProtocolCollector::collectProtocols(inheritedProtocolMap, D);
if (!D->shouldPrintInContext(printOptions) ||
!printOptions.shouldPrint(D)) {
InheritedProtocolCollector::collectSkippedConditionalConformances(
inheritedProtocolMap, D, printOptions);
continue;
}
D->print(out, printOptions);
out << "\n";
diagnoseIfDeclShadowsKnownModule(Opts, const_cast<Decl *>(D), M);
}
// Print dummy extensions for any protocols that were indirectly conformed to.
bool needDummyProtocolDeclaration = false;
for (const auto &nominalAndCollector : inheritedProtocolMap) {
const NominalTypeDecl *nominal = nominalAndCollector.first;
const InheritedProtocolCollector &collector = nominalAndCollector.second;
collector.printSynthesizedExtensionIfNeeded(out, printOptions, M, nominal);
needDummyProtocolDeclaration |=
collector.printInaccessibleConformanceExtensionIfNeeded(out,
printOptions,
nominal);
}
if (needDummyProtocolDeclaration)
InheritedProtocolCollector::printDummyProtocolDeclaration(out);
if (Opts.DebugPrintInvalidSyntax)
out << "#__debug_emit_invalid_swiftinterface_syntax__\n";
return false;
}