-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathContiguousArray.swift
1370 lines (1269 loc) · 52.2 KB
/
ContiguousArray.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- ContiguousArray.swift --------------------------------*- swift -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Three generic, mutable array-like types with value semantics.
//
// - `ContiguousArray<Element>` is a fast, contiguous array of `Element` with
// a known backing store.
//
//===----------------------------------------------------------------------===//
/// A contiguously stored array.
///
/// The `ContiguousArray` type is a specialized array that always stores its
/// elements in a contiguous region of memory. This contrasts with `Array`,
/// which can store its elements in either a contiguous region of memory or an
/// `NSArray` instance if its `Element` type is a class or `@objc` protocol.
///
/// If your array's `Element` type is a class or `@objc` protocol and you do
/// not need to bridge the array to `NSArray` or pass the array to Objective-C
/// APIs, using `ContiguousArray` may be more efficient and have more
/// predictable performance than `Array`. If the array's `Element` type is a
/// struct or enumeration, `Array` and `ContiguousArray` should have similar
/// efficiency.
///
/// For more information about using arrays, see `Array` and `ArraySlice`, with
/// which `ContiguousArray` shares most properties and methods.
@frozen
public struct ContiguousArray<Element>: _DestructorSafeContainer {
@usableFromInline
internal typealias _Buffer = _ContiguousArrayBuffer<Element>
@usableFromInline
internal var _buffer: _Buffer
/// Initialization from an existing buffer does not have "array.init"
/// semantics because the caller may retain an alias to buffer.
@inlinable
internal init(_buffer: _Buffer) {
self._buffer = _buffer
}
}
//===--- private helpers---------------------------------------------------===//
extension ContiguousArray {
@inlinable
@_semantics("array.get_count")
internal func _getCount() -> Int {
return _buffer.count
}
@inlinable
@_semantics("array.get_capacity")
internal func _getCapacity() -> Int {
return _buffer.capacity
}
@inlinable
@_semantics("array.make_mutable")
internal mutating func _makeMutableAndUnique() {
if _slowPath(!_buffer.isMutableAndUniquelyReferenced()) {
_buffer = _Buffer(copying: _buffer)
}
}
/// Check that the given `index` is valid for subscripting, i.e.
/// `0 ≤ index < count`.
@inlinable
@inline(__always)
internal func _checkSubscript_native(_ index: Int) {
_buffer._checkValidSubscript(index)
}
/// Check that the specified `index` is valid, i.e. `0 ≤ index ≤ count`.
@inlinable
@_semantics("array.check_index")
internal func _checkIndex(_ index: Int) {
_precondition(index <= endIndex, "ContiguousArray index is out of range")
_precondition(index >= startIndex, "Negative ContiguousArray index is out of range")
}
@inlinable
@_semantics("array.get_element_address")
internal func _getElementAddress(_ index: Int) -> UnsafeMutablePointer<Element> {
return _buffer.subscriptBaseAddress + index
}
}
extension ContiguousArray: _ArrayProtocol {
/// The total number of elements that the array can contain without
/// allocating new storage.
///
/// Every array reserves a specific amount of memory to hold its contents.
/// When you add elements to an array and that array begins to exceed its
/// reserved capacity, the array allocates a larger region of memory and
/// copies its elements into the new storage. The new storage is a multiple
/// of the old storage's size. This exponential growth strategy means that
/// appending an element happens in constant time, averaging the performance
/// of many append operations. Append operations that trigger reallocation
/// have a performance cost, but they occur less and less often as the array
/// grows larger.
///
/// The following example creates an array of integers from an array literal,
/// then appends the elements of another collection. Before appending, the
/// array allocates new storage that is large enough store the resulting
/// elements.
///
/// var numbers = [10, 20, 30, 40, 50]
/// // numbers.count == 5
/// // numbers.capacity == 5
///
/// numbers.append(contentsOf: stride(from: 60, through: 100, by: 10))
/// // numbers.count == 10
/// // numbers.capacity == 12
@inlinable
public var capacity: Int {
return _getCapacity()
}
/// An object that guarantees the lifetime of this array's elements.
@inlinable
public // @testable
var _owner: AnyObject? {
return _buffer.owner
}
/// If the elements are stored contiguously, a pointer to the first
/// element. Otherwise, `nil`.
@inlinable
public var _baseAddressIfContiguous: UnsafeMutablePointer<Element>? {
@inline(__always) // FIXME(TODO: JIRA): Hack around test failure
get { return _buffer.firstElementAddressIfContiguous }
}
@inlinable
internal var _baseAddress: UnsafeMutablePointer<Element> {
return _buffer.firstElementAddress
}
}
extension ContiguousArray: RandomAccessCollection, MutableCollection {
/// The index type for arrays, `Int`.
public typealias Index = Int
/// The type that represents the indices that are valid for subscripting an
/// array, in ascending order.
public typealias Indices = Range<Int>
/// The type that allows iteration over an array's elements.
public typealias Iterator = IndexingIterator<ContiguousArray>
/// The position of the first element in a nonempty array.
///
/// For an instance of `ContiguousArray`, `startIndex` is always zero. If the array
/// is empty, `startIndex` is equal to `endIndex`.
@inlinable
public var startIndex: Int {
return 0
}
/// The array's "past the end" position---that is, the position one greater
/// than the last valid subscript argument.
///
/// When you need a range that includes the last element of an array, use the
/// half-open range operator (`..<`) with `endIndex`. The `..<` operator
/// creates a range that doesn't include the upper bound, so it's always
/// safe to use with `endIndex`. For example:
///
/// let numbers = [10, 20, 30, 40, 50]
/// if let i = numbers.firstIndex(of: 30) {
/// print(numbers[i ..< numbers.endIndex])
/// }
/// // Prints "[30, 40, 50]"
///
/// If the array is empty, `endIndex` is equal to `startIndex`.
public var endIndex: Int {
@inlinable
get {
return _getCount()
}
}
/// Returns the position immediately after the given index.
///
/// - Parameter i: A valid index of the collection. `i` must be less than
/// `endIndex`.
/// - Returns: The index immediately after `i`.
@inlinable
public func index(after i: Int) -> Int {
// NOTE: this is a manual specialization of index movement for a Strideable
// index that is required for Array performance. The optimizer is not
// capable of creating partial specializations yet.
// NOTE: Range checks are not performed here, because it is done later by
// the subscript function.
return i + 1
}
/// Replaces the given index with its successor.
///
/// - Parameter i: A valid index of the collection. `i` must be less than
/// `endIndex`.
@inlinable
public func formIndex(after i: inout Int) {
// NOTE: this is a manual specialization of index movement for a Strideable
// index that is required for Array performance. The optimizer is not
// capable of creating partial specializations yet.
// NOTE: Range checks are not performed here, because it is done later by
// the subscript function.
i += 1
}
/// Returns the position immediately before the given index.
///
/// - Parameter i: A valid index of the collection. `i` must be greater than
/// `startIndex`.
/// - Returns: The index immediately before `i`.
@inlinable
public func index(before i: Int) -> Int {
// NOTE: this is a manual specialization of index movement for a Strideable
// index that is required for Array performance. The optimizer is not
// capable of creating partial specializations yet.
// NOTE: Range checks are not performed here, because it is done later by
// the subscript function.
return i - 1
}
/// Replaces the given index with its predecessor.
///
/// - Parameter i: A valid index of the collection. `i` must be greater than
/// `startIndex`.
@inlinable
public func formIndex(before i: inout Int) {
// NOTE: this is a manual specialization of index movement for a Strideable
// index that is required for Array performance. The optimizer is not
// capable of creating partial specializations yet.
// NOTE: Range checks are not performed here, because it is done later by
// the subscript function.
i -= 1
}
/// Returns an index that is the specified distance from the given index.
///
/// The following example obtains an index advanced four positions from an
/// array's starting index and then prints the element at that position.
///
/// let numbers = [10, 20, 30, 40, 50]
/// let i = numbers.index(numbers.startIndex, offsetBy: 4)
/// print(numbers[i])
/// // Prints "50"
///
/// The value passed as `distance` must not offset `i` beyond the bounds of
/// the collection.
///
/// - Parameters:
/// - i: A valid index of the array.
/// - distance: The distance to offset `i`.
/// - Returns: An index offset by `distance` from the index `i`. If
/// `distance` is positive, this is the same value as the result of
/// `distance` calls to `index(after:)`. If `distance` is negative, this
/// is the same value as the result of `abs(distance)` calls to
/// `index(before:)`.
@inlinable
public func index(_ i: Int, offsetBy distance: Int) -> Int {
// NOTE: this is a manual specialization of index movement for a Strideable
// index that is required for Array performance. The optimizer is not
// capable of creating partial specializations yet.
// NOTE: Range checks are not performed here, because it is done later by
// the subscript function.
return i + distance
}
/// Returns an index that is the specified distance from the given index,
/// unless that distance is beyond a given limiting index.
///
/// The following example obtains an index advanced four positions from an
/// array's starting index and then prints the element at that position. The
/// operation doesn't require going beyond the limiting `numbers.endIndex`
/// value, so it succeeds.
///
/// let numbers = [10, 20, 30, 40, 50]
/// if let i = numbers.index(numbers.startIndex,
/// offsetBy: 4,
/// limitedBy: numbers.endIndex) {
/// print(numbers[i])
/// }
/// // Prints "50"
///
/// The next example attempts to retrieve an index ten positions from
/// `numbers.startIndex`, but fails, because that distance is beyond the
/// index passed as `limit`.
///
/// let j = numbers.index(numbers.startIndex,
/// offsetBy: 10,
/// limitedBy: numbers.endIndex)
/// print(j)
/// // Prints "nil"
///
/// The value passed as `distance` must not offset `i` beyond the bounds of
/// the collection, unless the index passed as `limit` prevents offsetting
/// beyond those bounds.
///
/// - Parameters:
/// - i: A valid index of the array.
/// - distance: The distance to offset `i`.
/// - limit: A valid index of the collection to use as a limit. If
/// `distance > 0`, `limit` has no effect if it is less than `i`.
/// Likewise, if `distance < 0`, `limit` has no effect if it is greater
/// than `i`.
/// - Returns: An index offset by `distance` from the index `i`, unless that
/// index would be beyond `limit` in the direction of movement. In that
/// case, the method returns `nil`.
///
/// - Complexity: O(1)
@inlinable
public func index(
_ i: Int, offsetBy distance: Int, limitedBy limit: Int
) -> Int? {
// NOTE: this is a manual specialization of index movement for a Strideable
// index that is required for Array performance. The optimizer is not
// capable of creating partial specializations yet.
// NOTE: Range checks are not performed here, because it is done later by
// the subscript function.
let l = limit - i
if distance > 0 ? l >= 0 && l < distance : l <= 0 && distance < l {
return nil
}
return i + distance
}
/// Returns the distance between two indices.
///
/// - Parameters:
/// - start: A valid index of the collection.
/// - end: Another valid index of the collection. If `end` is equal to
/// `start`, the result is zero.
/// - Returns: The distance between `start` and `end`.
@inlinable
public func distance(from start: Int, to end: Int) -> Int {
// NOTE: this is a manual specialization of index movement for a Strideable
// index that is required for Array performance. The optimizer is not
// capable of creating partial specializations yet.
// NOTE: Range checks are not performed here, because it is done later by
// the subscript function.
return end - start
}
@inlinable
public func _failEarlyRangeCheck(_ index: Int, bounds: Range<Int>) {
// NOTE: This method is a no-op for performance reasons.
}
@inlinable
public func _failEarlyRangeCheck(_ range: Range<Int>, bounds: Range<Int>) {
// NOTE: This method is a no-op for performance reasons.
}
/// Accesses the element at the specified position.
///
/// The following example uses indexed subscripting to update an array's
/// second element. After assigning the new value (`"Butler"`) at a specific
/// position, that value is immediately available at that same position.
///
/// var streets = ["Adams", "Bryant", "Channing", "Douglas", "Evarts"]
/// streets[1] = "Butler"
/// print(streets[1])
/// // Prints "Butler"
///
/// - Parameter index: The position of the element to access. `index` must be
/// greater than or equal to `startIndex` and less than `endIndex`.
///
/// - Complexity: Reading an element from an array is O(1). Writing is O(1)
/// unless the array's storage is shared with another array, in which case
/// writing is O(*n*), where *n* is the length of the array.
@inlinable
public subscript(index: Int) -> Element {
get {
_checkSubscript_native(index)
return _buffer.getElement(index)
}
_modify {
_makeMutableAndUnique()
_checkSubscript_native(index)
let address = _buffer.subscriptBaseAddress + index
yield &address.pointee
}
}
/// Accesses a contiguous subrange of the array's elements.
///
/// The returned `ArraySlice` instance uses the same indices for the same
/// elements as the original array. In particular, that slice, unlike an
/// array, may have a nonzero `startIndex` and an `endIndex` that is not
/// equal to `count`. Always use the slice's `startIndex` and `endIndex`
/// properties instead of assuming that its indices start or end at a
/// particular value.
///
/// This example demonstrates getting a slice of an array of strings, finding
/// the index of one of the strings in the slice, and then using that index
/// in the original array.
///
/// let streets = ["Adams", "Bryant", "Channing", "Douglas", "Evarts"]
/// let streetsSlice = streets[2 ..< streets.endIndex]
/// print(streetsSlice)
/// // Prints "["Channing", "Douglas", "Evarts"]"
///
/// let i = streetsSlice.firstIndex(of: "Evarts") // 4
/// print(streets[i!])
/// // Prints "Evarts"
///
/// - Parameter bounds: A range of integers. The bounds of the range must be
/// valid indices of the array.
@inlinable
public subscript(bounds: Range<Int>) -> ArraySlice<Element> {
get {
_checkIndex(bounds.lowerBound)
_checkIndex(bounds.upperBound)
return ArraySlice(_buffer: _buffer[bounds])
}
set(rhs) {
_checkIndex(bounds.lowerBound)
_checkIndex(bounds.upperBound)
// If the replacement buffer has same identity, and the ranges match,
// then this was a pinned in-place modification, nothing further needed.
if self[bounds]._buffer.identity != rhs._buffer.identity
|| bounds != rhs.startIndex..<rhs.endIndex {
self.replaceSubrange(bounds, with: rhs)
}
}
}
/// The number of elements in the array.
@inlinable
public var count: Int {
return _getCount()
}
}
extension ContiguousArray: ExpressibleByArrayLiteral {
/// Creates an array from the given array literal.
///
/// Do not call this initializer directly. It is used by the compiler when
/// you use an array literal. Instead, create a new array by using an array
/// literal as its value. To do this, enclose a comma-separated list of
/// values in square brackets.
///
/// Here, an array of strings is created from an array literal holding only
/// strings:
///
/// let ingredients: ContiguousArray =
/// ["cocoa beans", "sugar", "cocoa butter", "salt"]
///
/// - Parameter elements: A variadic list of elements of the new array.
@inlinable
public init(arrayLiteral elements: Element...) {
self.init(_buffer: ContiguousArray(elements)._buffer)
}
}
extension ContiguousArray: RangeReplaceableCollection {
/// Creates a new, empty array.
///
/// This is equivalent to initializing with an empty array literal.
/// For example:
///
/// var emptyArray = Array<Int>()
/// print(emptyArray.isEmpty)
/// // Prints "true"
///
/// emptyArray = []
/// print(emptyArray.isEmpty)
/// // Prints "true"
@inlinable
@_semantics("array.init")
public init() {
_buffer = _Buffer()
}
/// Creates an array containing the elements of a sequence.
///
/// You can use this initializer to create an array from any other type that
/// conforms to the `Sequence` protocol. For example, you might want to
/// create an array with the integers from 1 through 7. Use this initializer
/// around a range instead of typing all those numbers in an array literal.
///
/// let numbers = Array(1...7)
/// print(numbers)
/// // Prints "[1, 2, 3, 4, 5, 6, 7]"
///
/// You can also use this initializer to convert a complex sequence or
/// collection type back to an array. For example, the `keys` property of
/// a dictionary isn't an array with its own storage, it's a collection
/// that maps its elements from the dictionary only when they're
/// accessed, saving the time and space needed to allocate an array. If
/// you need to pass those keys to a method that takes an array, however,
/// use this initializer to convert that list from its type of
/// `LazyMapCollection<Dictionary<String, Int>, Int>` to a simple
/// `[String]`.
///
/// func cacheImagesWithNames(names: [String]) {
/// // custom image loading and caching
/// }
///
/// let namedHues: [String: Int] = ["Vermillion": 18, "Magenta": 302,
/// "Gold": 50, "Cerise": 320]
/// let colorNames = Array(namedHues.keys)
/// cacheImagesWithNames(colorNames)
///
/// print(colorNames)
/// // Prints "["Gold", "Cerise", "Magenta", "Vermillion"]"
///
/// - Parameter s: The sequence of elements to turn into an array.
@inlinable
public init<S: Sequence>(_ s: S) where S.Element == Element {
self.init(_buffer: s._copyToContiguousArray()._buffer)
}
/// Creates a new array containing the specified number of a single, repeated
/// value.
///
/// Here's an example of creating an array initialized with five strings
/// containing the letter *Z*.
///
/// let fiveZs = Array(repeating: "Z", count: 5)
/// print(fiveZs)
/// // Prints "["Z", "Z", "Z", "Z", "Z"]"
///
/// - Parameters:
/// - repeatedValue: The element to repeat.
/// - count: The number of times to repeat the value passed in the
/// `repeating` parameter. `count` must be zero or greater.
@inlinable
@_semantics("array.init")
public init(repeating repeatedValue: Element, count: Int) {
var p: UnsafeMutablePointer<Element>
(self, p) = ContiguousArray._allocateUninitialized(count)
for _ in 0..<count {
p.initialize(to: repeatedValue)
p += 1
}
}
@inline(never)
@usableFromInline
internal static func _allocateBufferUninitialized(
minimumCapacity: Int
) -> _Buffer {
let newBuffer = _ContiguousArrayBuffer<Element>(
_uninitializedCount: 0, minimumCapacity: minimumCapacity)
return _Buffer(_buffer: newBuffer, shiftedToStartIndex: 0)
}
/// Construct a ContiguousArray of `count` uninitialized elements.
@inlinable
internal init(_uninitializedCount count: Int) {
_precondition(count >= 0, "Can't construct ContiguousArray with count < 0")
// Note: Sinking this constructor into an else branch below causes an extra
// Retain/Release.
_buffer = _Buffer()
if count > 0 {
// Creating a buffer instead of calling reserveCapacity saves doing an
// unnecessary uniqueness check. We disable inlining here to curb code
// growth.
_buffer = ContiguousArray._allocateBufferUninitialized(minimumCapacity: count)
_buffer.count = count
}
// Can't store count here because the buffer might be pointing to the
// shared empty array.
}
/// Entry point for `Array` literal construction; builds and returns
/// a ContiguousArray of `count` uninitialized elements.
@inlinable
@_semantics("array.uninitialized")
internal static func _allocateUninitialized(
_ count: Int
) -> (ContiguousArray, UnsafeMutablePointer<Element>) {
let result = ContiguousArray(_uninitializedCount: count)
return (result, result._buffer.firstElementAddress)
}
//===--- basic mutations ------------------------------------------------===//
/// Reserves enough space to store the specified number of elements.
///
/// If you are adding a known number of elements to an array, use this method
/// to avoid multiple reallocations. This method ensures that the array has
/// unique, mutable, contiguous storage, with space allocated for at least
/// the requested number of elements.
///
/// For performance reasons, the size of the newly allocated storage might be
/// greater than the requested capacity. Use the array's `capacity` property
/// to determine the size of the new storage.
///
/// Preserving an Array's Geometric Growth Strategy
/// ===============================================
///
/// If you implement a custom data structure backed by an array that grows
/// dynamically, naively calling the `reserveCapacity(_:)` method can lead
/// to worse than expected performance. Arrays need to follow a geometric
/// allocation pattern for appending elements to achieve amortized
/// constant-time performance. The `Array` type's `append(_:)` and
/// `append(contentsOf:)` methods take care of this detail for you, but
/// `reserveCapacity(_:)` allocates only as much space as you tell it to
/// (padded to a round value), and no more. This avoids over-allocation, but
/// can result in insertion not having amortized constant-time performance.
///
/// The following code declares `values`, an array of integers, and the
/// `addTenQuadratic()` function, which adds ten more values to the `values`
/// array on each call.
///
/// var values: [Int] = [0, 1, 2, 3]
///
/// // Don't use 'reserveCapacity(_:)' like this
/// func addTenQuadratic() {
/// let newCount = values.count + 10
/// values.reserveCapacity(newCount)
/// for n in values.count..<newCount {
/// values.append(n)
/// }
/// }
///
/// The call to `reserveCapacity(_:)` increases the `values` array's capacity
/// by exactly 10 elements on each pass through `addTenQuadratic()`, which
/// is linear growth. Instead of having constant time when averaged over
/// many calls, the function may decay to performance that is linear in
/// `values.count`. This is almost certainly not what you want.
///
/// In cases like this, the simplest fix is often to simply remove the call
/// to `reserveCapacity(_:)`, and let the `append(_:)` method grow the array
/// for you.
///
/// func addTen() {
/// let newCount = values.count + 10
/// for n in values.count..<newCount {
/// values.append(n)
/// }
/// }
///
/// If you need more control over the capacity of your array, implement your
/// own geometric growth strategy, passing the size you compute to
/// `reserveCapacity(_:)`.
///
/// - Parameter minimumCapacity: The requested number of elements to store.
///
/// - Complexity: O(*n*), where *n* is the number of elements in the array.
@inlinable
@_semantics("array.mutate_unknown")
public mutating func reserveCapacity(_ minimumCapacity: Int) {
if _buffer.requestUniqueMutableBackingBuffer(
minimumCapacity: minimumCapacity) == nil {
let newBuffer = _ContiguousArrayBuffer<Element>(
_uninitializedCount: count, minimumCapacity: minimumCapacity)
_buffer._copyContents(
subRange: _buffer.indices,
initializing: newBuffer.firstElementAddress)
_buffer = _Buffer(
_buffer: newBuffer, shiftedToStartIndex: _buffer.startIndex)
}
_internalInvariant(capacity >= minimumCapacity)
}
/// Copy the contents of the current buffer to a new unique mutable buffer.
/// The count of the new buffer is set to `oldCount`, the capacity of the
/// new buffer is big enough to hold 'oldCount' + 1 elements.
@inline(never)
@inlinable // @specializable
internal mutating func _copyToNewBuffer(oldCount: Int) {
let newCount = oldCount + 1
var newBuffer = _buffer._forceCreateUniqueMutableBuffer(
countForNewBuffer: oldCount, minNewCapacity: newCount)
_buffer._arrayOutOfPlaceUpdate(
&newBuffer, oldCount, 0)
}
@inlinable
@_semantics("array.make_mutable")
internal mutating func _makeUniqueAndReserveCapacityIfNotUnique() {
if _slowPath(!_buffer.isMutableAndUniquelyReferenced()) {
_copyToNewBuffer(oldCount: _buffer.count)
}
}
@inlinable
@_semantics("array.mutate_unknown")
internal mutating func _reserveCapacityAssumingUniqueBuffer(oldCount: Int) {
// This is a performance optimization. This code used to be in an ||
// statement in the _internalInvariant below.
//
// _internalInvariant(_buffer.capacity == 0 ||
// _buffer.isMutableAndUniquelyReferenced())
//
// SR-6437
let capacity = _buffer.capacity == 0
// Due to make_mutable hoisting the situation can arise where we hoist
// _makeMutableAndUnique out of loop and use it to replace
// _makeUniqueAndReserveCapacityIfNotUnique that preceeds this call. If the
// array was empty _makeMutableAndUnique does not replace the empty array
// buffer by a unique buffer (it just replaces it by the empty array
// singleton).
// This specific case is okay because we will make the buffer unique in this
// function because we request a capacity > 0 and therefore _copyToNewBuffer
// will be called creating a new buffer.
_internalInvariant(capacity ||
_buffer.isMutableAndUniquelyReferenced())
if _slowPath(oldCount + 1 > _buffer.capacity) {
_copyToNewBuffer(oldCount: oldCount)
}
}
@inlinable
@_semantics("array.mutate_unknown")
internal mutating func _appendElementAssumeUniqueAndCapacity(
_ oldCount: Int,
newElement: __owned Element
) {
_internalInvariant(_buffer.isMutableAndUniquelyReferenced())
_internalInvariant(_buffer.capacity >= _buffer.count + 1)
_buffer.count = oldCount + 1
(_buffer.firstElementAddress + oldCount).initialize(to: newElement)
}
/// Adds a new element at the end of the array.
///
/// Use this method to append a single element to the end of a mutable array.
///
/// var numbers = [1, 2, 3, 4, 5]
/// numbers.append(100)
/// print(numbers)
/// // Prints "[1, 2, 3, 4, 5, 100]"
///
/// Because arrays increase their allocated capacity using an exponential
/// strategy, appending a single element to an array is an O(1) operation
/// when averaged over many calls to the `append(_:)` method. When an array
/// has additional capacity and is not sharing its storage with another
/// instance, appending an element is O(1). When an array needs to
/// reallocate storage before appending or its storage is shared with
/// another copy, appending is O(*n*), where *n* is the length of the array.
///
/// - Parameter newElement: The element to append to the array.
///
/// - Complexity: O(1) on average, over many calls to `append(_:)` on the
/// same array.
@inlinable
@_semantics("array.append_element")
public mutating func append(_ newElement: __owned Element) {
_makeUniqueAndReserveCapacityIfNotUnique()
let oldCount = _getCount()
_reserveCapacityAssumingUniqueBuffer(oldCount: oldCount)
_appendElementAssumeUniqueAndCapacity(oldCount, newElement: newElement)
}
/// Adds the elements of a sequence to the end of the array.
///
/// Use this method to append the elements of a sequence to the end of this
/// array. This example appends the elements of a `Range<Int>` instance
/// to an array of integers.
///
/// var numbers = [1, 2, 3, 4, 5]
/// numbers.append(contentsOf: 10...15)
/// print(numbers)
/// // Prints "[1, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15]"
///
/// - Parameter newElements: The elements to append to the array.
///
/// - Complexity: O(*m*) on average, where *m* is the length of
/// `newElements`, over many calls to `append(contentsOf:)` on the same
/// array.
@inlinable
@_semantics("array.append_contentsOf")
public mutating func append<S: Sequence>(contentsOf newElements: __owned S)
where S.Element == Element {
let newElementsCount = newElements.underestimatedCount
reserveCapacityForAppend(newElementsCount: newElementsCount)
let oldCount = self.count
let startNewElements = _buffer.firstElementAddress + oldCount
let buf = UnsafeMutableBufferPointer(
start: startNewElements,
count: self.capacity - oldCount)
let (remainder,writtenUpTo) = buf.initialize(from: newElements)
// trap on underflow from the sequence's underestimate:
let writtenCount = buf.distance(from: buf.startIndex, to: writtenUpTo)
_precondition(newElementsCount <= writtenCount,
"newElements.underestimatedCount was an overestimate")
// can't check for overflow as sequences can underestimate
_buffer.count += writtenCount
if writtenUpTo == buf.endIndex {
// there may be elements that didn't fit in the existing buffer,
// append them in slow sequence-only mode
_buffer._arrayAppendSequence(IteratorSequence(remainder))
}
}
@inlinable
@_semantics("array.reserve_capacity_for_append")
internal mutating func reserveCapacityForAppend(newElementsCount: Int) {
let oldCount = self.count
let oldCapacity = self.capacity
let newCount = oldCount + newElementsCount
// Ensure uniqueness, mutability, and sufficient storage. Note that
// for consistency, we need unique self even if newElements is empty.
self.reserveCapacity(
newCount > oldCapacity ?
Swift.max(newCount, _growArrayCapacity(oldCapacity))
: newCount)
}
@inlinable
public mutating func _customRemoveLast() -> Element? {
let newCount = _getCount() - 1
_precondition(newCount >= 0, "Can't removeLast from an empty ContiguousArray")
_makeUniqueAndReserveCapacityIfNotUnique()
let pointer = (_buffer.firstElementAddress + newCount)
let element = pointer.move()
_buffer.count = newCount
return element
}
/// Removes and returns the element at the specified position.
///
/// All the elements following the specified position are moved up to
/// close the gap.
///
/// var measurements: [Double] = [1.1, 1.5, 2.9, 1.2, 1.5, 1.3, 1.2]
/// let removed = measurements.remove(at: 2)
/// print(measurements)
/// // Prints "[1.1, 1.5, 1.2, 1.5, 1.3, 1.2]"
///
/// - Parameter index: The position of the element to remove. `index` must
/// be a valid index of the array.
/// - Returns: The element at the specified index.
///
/// - Complexity: O(*n*), where *n* is the length of the array.
@inlinable
@discardableResult
public mutating func remove(at index: Int) -> Element {
_precondition(index < endIndex, "Index out of range")
_precondition(index >= startIndex, "Index out of range")
_makeUniqueAndReserveCapacityIfNotUnique()
let newCount = _getCount() - 1
let pointer = (_buffer.firstElementAddress + index)
let result = pointer.move()
pointer.moveInitialize(from: pointer + 1, count: newCount - index)
_buffer.count = newCount
return result
}
/// Inserts a new element at the specified position.
///
/// The new element is inserted before the element currently at the specified
/// index. If you pass the array's `endIndex` property as the `index`
/// parameter, the new element is appended to the array.
///
/// var numbers = [1, 2, 3, 4, 5]
/// numbers.insert(100, at: 3)
/// numbers.insert(200, at: numbers.endIndex)
///
/// print(numbers)
/// // Prints "[1, 2, 3, 100, 4, 5, 200]"
///
/// - Parameter newElement: The new element to insert into the array.
/// - Parameter i: The position at which to insert the new element.
/// `index` must be a valid index of the array or equal to its `endIndex`
/// property.
///
/// - Complexity: O(*n*), where *n* is the length of the array. If
/// `i == endIndex`, this method is equivalent to `append(_:)`.
@inlinable
public mutating func insert(_ newElement: __owned Element, at i: Int) {
_checkIndex(i)
self.replaceSubrange(i..<i, with: CollectionOfOne(newElement))
}
/// Removes all elements from the array.
///
/// - Parameter keepCapacity: Pass `true` to keep the existing capacity of
/// the array after removing its elements. The default value is
/// `false`.
///
/// - Complexity: O(*n*), where *n* is the length of the array.
@inlinable
public mutating func removeAll(keepingCapacity keepCapacity: Bool = false) {
if !keepCapacity {
_buffer = _Buffer()
}
else {
self.replaceSubrange(indices, with: EmptyCollection())
}
}
//===--- algorithms -----------------------------------------------------===//
@inlinable
public mutating func _withUnsafeMutableBufferPointerIfSupported<R>(
_ body: (inout UnsafeMutableBufferPointer<Element>) throws -> R
) rethrows -> R? {
return try withUnsafeMutableBufferPointer {
(bufferPointer) -> R in
return try body(&bufferPointer)
}
}
@inlinable
public mutating func withContiguousMutableStorageIfAvailable<R>(
_ body: (inout UnsafeMutableBufferPointer<Element>) throws -> R
) rethrows -> R? {
return try withUnsafeMutableBufferPointer {
(bufferPointer) -> R in
return try body(&bufferPointer)
}
}
@inlinable
public func withContiguousStorageIfAvailable<R>(
_ body: (UnsafeBufferPointer<Element>) throws -> R
) rethrows -> R? {
return try withUnsafeBufferPointer {
(bufferPointer) -> R in
return try body(bufferPointer)
}
}
@inlinable
public __consuming func _copyToContiguousArray() -> ContiguousArray<Element> {
if let n = _buffer.requestNativeBuffer() {
return ContiguousArray(_buffer: n)
}
return _copyCollectionToContiguousArray(self)
}
}
extension ContiguousArray: CustomReflectable {
/// A mirror that reflects the array.
public var customMirror: Mirror {
return Mirror(
self,
unlabeledChildren: self,
displayStyle: .collection)
}
}
extension ContiguousArray: CustomStringConvertible, CustomDebugStringConvertible {
/// A textual representation of the array and its elements.
public var description: String {
return _makeCollectionDescription()
}
/// A textual representation of the array and its elements, suitable for
/// debugging.
public var debugDescription: String {
return _makeCollectionDescription(withTypeName: "ContiguousArray")
}
}
extension ContiguousArray {
@usableFromInline @_transparent
internal func _cPointerArgs() -> (AnyObject?, UnsafeRawPointer?) {
let p = _baseAddressIfContiguous
if _fastPath(p != nil || isEmpty) {
return (_owner, UnsafeRawPointer(p))
}
let n = ContiguousArray(self._buffer)._buffer
return (n.owner, UnsafeRawPointer(n.firstElementAddress))
}
}
extension ContiguousArray {
/// Creates an array with the specified capacity, then calls the given
/// closure with a buffer covering the array's uninitialized memory.
///
/// Inside the closure, set the `initializedCount` parameter to the number of
/// elements that are initialized by the closure. The memory in the range
/// `buffer[0..<initializedCount]` must be initialized at the end of the
/// closure's execution, and the memory in the range
/// `buffer[initializedCount...]` must be uninitialized. This postcondition
/// must hold even if the `initializer` closure throws an error.
///
/// - Note: While the resulting array may have a capacity larger than the
/// requested amount, the buffer passed to the closure will cover exactly
/// the requested number of elements.