-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathClangDerivedConformances.cpp
1288 lines (1108 loc) · 49.7 KB
/
ClangDerivedConformances.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- ClangDerivedConformances.cpp -------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2022 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "ClangDerivedConformances.h"
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/Assertions.h"
#include "swift/ClangImporter/ClangImporterRequests.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Overload.h"
using namespace swift;
using namespace swift::importer;
/// Alternative to `NominalTypeDecl::lookupDirect`.
/// This function does not attempt to load extensions of the nominal decl.
static TinyPtrVector<ValueDecl *>
lookupDirectWithoutExtensions(NominalTypeDecl *decl, Identifier id) {
ASTContext &ctx = decl->getASTContext();
auto *importer = static_cast<ClangImporter *>(ctx.getClangModuleLoader());
TinyPtrVector<ValueDecl *> result;
if (id.isOperator()) {
auto underlyingId =
ctx.getIdentifier(getPrivateOperatorName(std::string(id)));
TinyPtrVector<ValueDecl *> underlyingFuncs = evaluateOrDefault(
ctx.evaluator, ClangRecordMemberLookup({decl, underlyingId}), {});
for (auto it : underlyingFuncs) {
if (auto synthesizedFunc =
importer->getCXXSynthesizedOperatorFunc(cast<FuncDecl>(it)))
result.push_back(synthesizedFunc);
}
} else {
// See if there is a Clang decl with the given name.
result = evaluateOrDefault(ctx.evaluator,
ClangRecordMemberLookup({decl, id}), {});
}
// Check if there are any synthesized Swift members that match the name.
for (auto member : decl->getCurrentMembersWithoutLoading()) {
if (auto namedMember = dyn_cast<ValueDecl>(member)) {
if (namedMember->hasName() && !namedMember->getName().isSpecial() &&
namedMember->getName().getBaseIdentifier().is(id.str()) &&
// Make sure we don't add duplicate entries, as that would wrongly
// imply that lookup is ambiguous.
!llvm::is_contained(result, namedMember)) {
result.push_back(namedMember);
}
}
}
return result;
}
template <typename Decl>
static Decl *lookupDirectSingleWithoutExtensions(NominalTypeDecl *decl,
Identifier id) {
auto results = lookupDirectWithoutExtensions(decl, id);
if (results.size() != 1)
return nullptr;
return dyn_cast<Decl>(results.front());
}
static FuncDecl *getInsertFunc(NominalTypeDecl *decl,
TypeAliasDecl *valueType) {
ASTContext &ctx = decl->getASTContext();
auto insertId = ctx.getIdentifier("__insertUnsafe");
auto inserts = lookupDirectWithoutExtensions(decl, insertId);
FuncDecl *insert = nullptr;
for (auto candidate : inserts) {
if (auto candidateMethod = dyn_cast<FuncDecl>(candidate)) {
if (!candidateMethod->hasParameterList())
continue;
auto params = candidateMethod->getParameters();
if (params->size() != 1)
continue;
auto param = params->front();
if (param->getTypeInContext()->getCanonicalType() !=
valueType->getUnderlyingType()->getCanonicalType())
continue;
insert = candidateMethod;
break;
}
}
return insert;
}
static bool isStdDecl(const clang::CXXRecordDecl *clangDecl,
llvm::ArrayRef<StringRef> names) {
if (!clangDecl->isInStdNamespace())
return false;
if (!clangDecl->getIdentifier())
return false;
StringRef name = clangDecl->getName();
return llvm::is_contained(names, name);
}
static clang::TypeDecl *
lookupNestedClangTypeDecl(const clang::CXXRecordDecl *clangDecl,
StringRef name) {
clang::IdentifierInfo *nestedDeclName =
&clangDecl->getASTContext().Idents.get(name);
auto nestedDecls = clangDecl->lookup(nestedDeclName);
// If this is a templated typedef, Clang might have instantiated several
// equivalent typedef decls. If they aren't equivalent, Clang has already
// complained about this. Let's assume that they are equivalent. (see
// filterNonConflictingPreviousTypedefDecls in clang/Sema/SemaDecl.cpp)
if (nestedDecls.empty())
return nullptr;
auto nestedDecl = nestedDecls.front();
return dyn_cast_or_null<clang::TypeDecl>(nestedDecl);
}
static clang::TypeDecl *
getIteratorCategoryDecl(const clang::CXXRecordDecl *clangDecl) {
return lookupNestedClangTypeDecl(clangDecl, "iterator_category");
}
static clang::TypeDecl *
getIteratorConceptDecl(const clang::CXXRecordDecl *clangDecl) {
return lookupNestedClangTypeDecl(clangDecl, "iterator_concept");
}
static ValueDecl *lookupOperator(NominalTypeDecl *decl, Identifier id,
function_ref<bool(ValueDecl *)> isValid) {
// First look for operator declared as a member.
auto memberResults = lookupDirectWithoutExtensions(decl, id);
for (const auto &member : memberResults) {
if (isValid(member))
return member;
}
// If no member operator was found, look for out-of-class definitions in the
// same module.
auto module = decl->getModuleContext();
SmallVector<ValueDecl *> nonMemberResults;
module->lookupValue(id, NLKind::UnqualifiedLookup, nonMemberResults);
for (const auto &nonMember : nonMemberResults) {
if (isValid(nonMember))
return nonMember;
}
return nullptr;
}
static ValueDecl *getEqualEqualOperator(NominalTypeDecl *decl) {
auto isValid = [&](ValueDecl *equalEqualOp) -> bool {
auto equalEqual = dyn_cast<FuncDecl>(equalEqualOp);
if (!equalEqual || !equalEqual->hasParameterList())
return false;
auto params = equalEqual->getParameters();
if (params->size() != 2)
return false;
auto lhs = params->get(0);
auto rhs = params->get(1);
if (lhs->isInOut() || rhs->isInOut())
return false;
auto lhsTy = lhs->getTypeInContext();
auto rhsTy = rhs->getTypeInContext();
if (!lhsTy || !rhsTy)
return false;
auto lhsNominal = lhsTy->getAnyNominal();
auto rhsNominal = rhsTy->getAnyNominal();
if (lhsNominal != rhsNominal || lhsNominal != decl)
return false;
return true;
};
return lookupOperator(decl, decl->getASTContext().Id_EqualsOperator, isValid);
}
static FuncDecl *getMinusOperator(NominalTypeDecl *decl) {
auto binaryIntegerProto =
decl->getASTContext().getProtocol(KnownProtocolKind::BinaryInteger);
auto isValid = [&](ValueDecl *minusOp) -> bool {
auto minus = dyn_cast<FuncDecl>(minusOp);
if (!minus || !minus->hasParameterList())
return false;
auto params = minus->getParameters();
if (params->size() != 2)
return false;
auto lhs = params->get(0);
auto rhs = params->get(1);
if (lhs->isInOut() || rhs->isInOut())
return false;
auto lhsTy = lhs->getTypeInContext();
auto rhsTy = rhs->getTypeInContext();
if (!lhsTy || !rhsTy)
return false;
auto lhsNominal = lhsTy->getAnyNominal();
auto rhsNominal = rhsTy->getAnyNominal();
if (lhsNominal != rhsNominal || lhsNominal != decl)
return false;
auto returnTy = minus->getResultInterfaceType();
if (!checkConformance(returnTy, binaryIntegerProto))
return false;
return true;
};
ValueDecl *result =
lookupOperator(decl, decl->getASTContext().getIdentifier("-"), isValid);
return dyn_cast_or_null<FuncDecl>(result);
}
static FuncDecl *getPlusEqualOperator(NominalTypeDecl *decl, Type distanceTy) {
auto isValid = [&](ValueDecl *plusEqualOp) -> bool {
auto plusEqual = dyn_cast<FuncDecl>(plusEqualOp);
if (!plusEqual || !plusEqual->hasParameterList())
return false;
auto params = plusEqual->getParameters();
if (params->size() != 2)
return false;
auto lhs = params->get(0);
auto rhs = params->get(1);
if (rhs->isInOut())
return false;
auto lhsTy = lhs->getTypeInContext();
auto rhsTy = rhs->getTypeInContext();
if (!lhsTy || !rhsTy)
return false;
if (rhsTy->getCanonicalType() != distanceTy->getCanonicalType())
return false;
auto lhsNominal = lhsTy->getAnyNominal();
if (lhsNominal != decl)
return false;
auto returnTy = plusEqual->getResultInterfaceType();
if (!returnTy->isVoid())
return false;
return true;
};
ValueDecl *result =
lookupOperator(decl, decl->getASTContext().getIdentifier("+="), isValid);
return dyn_cast_or_null<FuncDecl>(result);
}
static clang::FunctionDecl *
instantiateTemplatedOperator(ClangImporter::Implementation &impl,
const clang::CXXRecordDecl *classDecl,
clang::BinaryOperatorKind operatorKind) {
clang::ASTContext &clangCtx = impl.getClangASTContext();
clang::Sema &clangSema = impl.getClangSema();
clang::UnresolvedSet<1> ops;
auto qualType = clang::QualType(classDecl->getTypeForDecl(), 0);
auto arg = clang::CXXThisExpr::Create(clangCtx, clang::SourceLocation(),
qualType, false);
arg->setType(clang::QualType(classDecl->getTypeForDecl(), 0));
clang::OverloadedOperatorKind opKind =
clang::BinaryOperator::getOverloadedOperator(operatorKind);
clang::OverloadCandidateSet candidateSet(
classDecl->getLocation(), clang::OverloadCandidateSet::CSK_Operator,
clang::OverloadCandidateSet::OperatorRewriteInfo(opKind,
clang::SourceLocation(), false));
clangSema.LookupOverloadedBinOp(candidateSet, opKind, ops, {arg, arg}, true);
clang::OverloadCandidateSet::iterator best;
switch (candidateSet.BestViableFunction(clangSema, clang::SourceLocation(),
best)) {
case clang::OR_Success: {
if (auto clangCallee = best->Function) {
auto lookupTable = impl.findLookupTable(classDecl);
addEntryToLookupTable(*lookupTable, clangCallee, impl.getNameImporter());
return clangCallee;
}
break;
}
case clang::OR_No_Viable_Function:
case clang::OR_Ambiguous:
case clang::OR_Deleted:
break;
}
return nullptr;
}
/// Warning: This function emits an error and stops compilation if the
/// underlying operator function is unavailable in Swift for the current target
/// (see `clang::Sema::DiagnoseAvailabilityOfDecl`).
static bool synthesizeCXXOperator(ClangImporter::Implementation &impl,
const clang::CXXRecordDecl *classDecl,
clang::BinaryOperatorKind operatorKind,
clang::QualType lhsTy, clang::QualType rhsTy,
clang::QualType returnTy) {
auto &clangCtx = impl.getClangASTContext();
auto &clangSema = impl.getClangSema();
clang::OverloadedOperatorKind opKind =
clang::BinaryOperator::getOverloadedOperator(operatorKind);
const char *opSpelling = clang::getOperatorSpelling(opKind);
auto declName = clang::DeclarationName(&clangCtx.Idents.get(opSpelling));
// Determine the Clang decl context where the new operator function will be
// created. We use the translation unit as the decl context of the new
// operator, otherwise, the operator might get imported as a static member
// function of a different type (e.g. an operator declared inside of a C++
// namespace would get imported as a member function of a Swift enum), which
// would make the operator un-discoverable to Swift name lookup.
auto declContext =
const_cast<clang::CXXRecordDecl *>(classDecl)->getDeclContext();
while (!declContext->isTranslationUnit()) {
declContext = declContext->getParent();
}
auto equalEqualTy = clangCtx.getFunctionType(
returnTy, {lhsTy, rhsTy}, clang::FunctionProtoType::ExtProtoInfo());
// Create a `bool operator==(T, T)` function.
auto equalEqualDecl = clang::FunctionDecl::Create(
clangCtx, declContext, clang::SourceLocation(), clang::SourceLocation(),
declName, equalEqualTy, clangCtx.getTrivialTypeSourceInfo(returnTy),
clang::StorageClass::SC_Static);
equalEqualDecl->setImplicit();
equalEqualDecl->setImplicitlyInline();
// If this is a static member function of a class, it needs to be public.
equalEqualDecl->setAccess(clang::AccessSpecifier::AS_public);
// Create the parameters of the function. They are not referenced from source
// code, so they don't need to have a name.
auto lhsParamId = nullptr;
auto lhsTyInfo = clangCtx.getTrivialTypeSourceInfo(lhsTy);
auto lhsParamDecl = clang::ParmVarDecl::Create(
clangCtx, equalEqualDecl, clang::SourceLocation(),
clang::SourceLocation(), lhsParamId, lhsTy, lhsTyInfo,
clang::StorageClass::SC_None, /*DefArg*/ nullptr);
auto lhsParamRefExpr = new (clangCtx) clang::DeclRefExpr(
clangCtx, lhsParamDecl, false, lhsTy, clang::ExprValueKind::VK_LValue,
clang::SourceLocation());
auto rhsParamId = nullptr;
auto rhsTyInfo = clangCtx.getTrivialTypeSourceInfo(rhsTy);
auto rhsParamDecl = clang::ParmVarDecl::Create(
clangCtx, equalEqualDecl, clang::SourceLocation(),
clang::SourceLocation(), rhsParamId, rhsTy, rhsTyInfo,
clang::StorageClass::SC_None, nullptr);
auto rhsParamRefExpr = new (clangCtx) clang::DeclRefExpr(
clangCtx, rhsParamDecl, false, rhsTy, clang::ExprValueKind::VK_LValue,
clang::SourceLocation());
equalEqualDecl->setParams({lhsParamDecl, rhsParamDecl});
// Lookup the `operator==` function that will be called under the hood.
clang::UnresolvedSet<16> operators;
clang::sema::DelayedDiagnosticPool diagPool{
impl.getClangSema().DelayedDiagnostics.getCurrentPool()};
auto diagState = impl.getClangSema().DelayedDiagnostics.push(diagPool);
// Note: calling `CreateOverloadedBinOp` emits an error if the looked up
// function is unavailable for the current target.
auto underlyingCallResult = clangSema.CreateOverloadedBinOp(
clang::SourceLocation(), operatorKind, operators, lhsParamRefExpr,
rhsParamRefExpr);
impl.getClangSema().DelayedDiagnostics.popWithoutEmitting(diagState);
if (!diagPool.empty())
return false;
if (!underlyingCallResult.isUsable())
return false;
auto underlyingCall = underlyingCallResult.get();
auto equalEqualBody = clang::ReturnStmt::Create(
clangCtx, clang::SourceLocation(), underlyingCall, nullptr);
equalEqualDecl->setBody(equalEqualBody);
impl.synthesizedAndAlwaysVisibleDecls.insert(equalEqualDecl);
auto lookupTable = impl.findLookupTable(classDecl);
addEntryToLookupTable(*lookupTable, equalEqualDecl, impl.getNameImporter());
return true;
}
bool swift::isIterator(const clang::CXXRecordDecl *clangDecl) {
return getIteratorCategoryDecl(clangDecl);
}
ValueDecl *
swift::importer::getImportedMemberOperator(const DeclBaseName &name,
NominalTypeDecl *selfType,
std::optional<Type> parameterType) {
assert(name.isOperator());
// Handle ==, -, and += operators, that are required operators for C++
// iterator types to conform to the corresponding Cxx iterator protocols.
// These operators can be instantiated and synthesized by clang importer below,
// and thus require additional lookup logic when they're being deserialized.
if (name.getIdentifier() == selfType->getASTContext().Id_EqualsOperator) {
return getEqualEqualOperator(selfType);
}
if (name.getIdentifier() == selfType->getASTContext().getIdentifier("-")) {
return getMinusOperator(selfType);
}
if (name.getIdentifier() == selfType->getASTContext().getIdentifier("+=") &&
parameterType) {
return getPlusEqualOperator(selfType, *parameterType);
}
return nullptr;
}
void swift::conformToCxxIteratorIfNeeded(
ClangImporter::Implementation &impl, NominalTypeDecl *decl,
const clang::CXXRecordDecl *clangDecl) {
PrettyStackTraceDecl trace("conforming to UnsafeCxxInputIterator", decl);
assert(decl);
assert(clangDecl);
ASTContext &ctx = decl->getASTContext();
clang::ASTContext &clangCtx = clangDecl->getASTContext();
if (!ctx.getProtocol(KnownProtocolKind::UnsafeCxxInputIterator))
return;
// We consider a type to be an input iterator if it defines an
// `iterator_category` that inherits from `std::input_iterator_tag`, e.g.
// `using iterator_category = std::input_iterator_tag`.
auto iteratorCategory = getIteratorCategoryDecl(clangDecl);
if (!iteratorCategory)
return;
auto unwrapUnderlyingTypeDecl =
[](clang::TypeDecl *typeDecl) -> clang::CXXRecordDecl * {
clang::CXXRecordDecl *underlyingDecl = nullptr;
if (auto typedefDecl = dyn_cast<clang::TypedefNameDecl>(typeDecl)) {
auto type = typedefDecl->getUnderlyingType();
underlyingDecl = type->getAsCXXRecordDecl();
} else {
underlyingDecl = dyn_cast<clang::CXXRecordDecl>(typeDecl);
}
if (underlyingDecl) {
underlyingDecl = underlyingDecl->getDefinition();
}
return underlyingDecl;
};
// If `iterator_category` is a typedef or a using-decl, retrieve the
// underlying struct decl.
auto underlyingCategoryDecl = unwrapUnderlyingTypeDecl(iteratorCategory);
if (!underlyingCategoryDecl)
return;
auto isIteratorTagDecl = [&](const clang::CXXRecordDecl *base,
StringRef tag) {
return base->isInStdNamespace() && base->getIdentifier() &&
base->getName() == tag;
};
auto isInputIteratorDecl = [&](const clang::CXXRecordDecl *base) {
return isIteratorTagDecl(base, "input_iterator_tag");
};
auto isRandomAccessIteratorDecl = [&](const clang::CXXRecordDecl *base) {
return isIteratorTagDecl(base, "random_access_iterator_tag");
};
auto isContiguousIteratorDecl = [&](const clang::CXXRecordDecl *base) {
return isIteratorTagDecl(base, "contiguous_iterator_tag"); // C++20
};
// Traverse all transitive bases of `underlyingDecl` to check if
// it inherits from `std::input_iterator_tag`.
bool isInputIterator = isInputIteratorDecl(underlyingCategoryDecl);
bool isRandomAccessIterator =
isRandomAccessIteratorDecl(underlyingCategoryDecl);
underlyingCategoryDecl->forallBases([&](const clang::CXXRecordDecl *base) {
if (isInputIteratorDecl(base)) {
isInputIterator = true;
}
if (isRandomAccessIteratorDecl(base)) {
isRandomAccessIterator = true;
isInputIterator = true;
return false;
}
return true;
});
if (!isInputIterator)
return;
bool isContiguousIterator = false;
// In C++20, `std::contiguous_iterator_tag` is specified as a type called
// `iterator_concept`. It is not possible to detect a contiguous iterator
// based on its `iterator_category`. The type might not have an
// `iterator_concept` defined.
if (auto iteratorConcept = getIteratorConceptDecl(clangDecl)) {
if (auto underlyingConceptDecl =
unwrapUnderlyingTypeDecl(iteratorConcept)) {
isContiguousIterator = isContiguousIteratorDecl(underlyingConceptDecl);
if (!isContiguousIterator)
underlyingConceptDecl->forallBases(
[&](const clang::CXXRecordDecl *base) {
if (isContiguousIteratorDecl(base)) {
isContiguousIterator = true;
return false;
}
return true;
});
}
}
// Check if present: `var pointee: Pointee { get }`
auto pointeeId = ctx.getIdentifier("pointee");
auto pointee = lookupDirectSingleWithoutExtensions<VarDecl>(decl, pointeeId);
if (!pointee || pointee->isGetterMutating() || pointee->getTypeInContext()->hasError())
return;
// Check if `var pointee: Pointee` is settable. This is required for the
// conformance to UnsafeCxxMutableInputIterator but is not necessary for
// UnsafeCxxInputIterator.
bool pointeeSettable = pointee->isSettable(nullptr);
// Check if present: `func successor() -> Self`
auto successorId = ctx.getIdentifier("successor");
auto successor =
lookupDirectSingleWithoutExtensions<FuncDecl>(decl, successorId);
if (!successor || successor->isMutating())
return;
auto successorTy = successor->getResultInterfaceType();
if (!successorTy || successorTy->getAnyNominal() != decl)
return;
// Check if present: `func ==`
auto equalEqual = getEqualEqualOperator(decl);
if (!equalEqual) {
// If this class is inherited, `operator==` might be defined for a base
// class. If this is a templated class, `operator==` might be templated as
// well. Try to instantiate it.
clang::FunctionDecl *instantiated = instantiateTemplatedOperator(
impl, clangDecl, clang::BinaryOperatorKind::BO_EQ);
if (instantiated && !impl.isUnavailableInSwift(instantiated)) {
// If `operator==` was instantiated successfully, try to find `func ==`
// again.
equalEqual = getEqualEqualOperator(decl);
if (!equalEqual) {
// If `func ==` still can't be found, it might be defined for a base
// class of the current class.
auto paramTy = clangCtx.getRecordType(clangDecl);
synthesizeCXXOperator(impl, clangDecl, clang::BinaryOperatorKind::BO_EQ,
paramTy, paramTy, clangCtx.BoolTy);
equalEqual = getEqualEqualOperator(decl);
}
}
}
if (!equalEqual)
return;
impl.addSynthesizedTypealias(decl, ctx.getIdentifier("Pointee"),
pointee->getTypeInContext());
if (pointeeSettable)
impl.addSynthesizedProtocolAttrs(
decl, {KnownProtocolKind::UnsafeCxxMutableInputIterator});
else
impl.addSynthesizedProtocolAttrs(
decl, {KnownProtocolKind::UnsafeCxxInputIterator});
if (!isRandomAccessIterator ||
!ctx.getProtocol(KnownProtocolKind::UnsafeCxxRandomAccessIterator))
return;
// Try to conform to UnsafeCxxRandomAccessIterator if possible.
// Check if present: `func -`
auto minus = getMinusOperator(decl);
if (!minus) {
clang::FunctionDecl *instantiated = instantiateTemplatedOperator(
impl, clangDecl, clang::BinaryOperatorKind::BO_Sub);
if (instantiated && !impl.isUnavailableInSwift(instantiated)) {
minus = getMinusOperator(decl);
if (!minus) {
clang::QualType returnTy = instantiated->getReturnType();
auto paramTy = clangCtx.getRecordType(clangDecl);
synthesizeCXXOperator(impl, clangDecl,
clang::BinaryOperatorKind::BO_Sub, paramTy,
paramTy, returnTy);
minus = getMinusOperator(decl);
}
}
}
if (!minus)
return;
auto distanceTy = minus->getResultInterfaceType();
// distanceTy conforms to BinaryInteger, this is ensured by getMinusOperator.
auto plusEqual = getPlusEqualOperator(decl, distanceTy);
if (!plusEqual) {
clang::FunctionDecl *instantiated = instantiateTemplatedOperator(
impl, clangDecl, clang::BinaryOperatorKind::BO_AddAssign);
if (instantiated && !impl.isUnavailableInSwift(instantiated)) {
plusEqual = getPlusEqualOperator(decl, distanceTy);
if (!plusEqual) {
clang::QualType returnTy = instantiated->getReturnType();
auto clangMinus = cast<clang::FunctionDecl>(minus->getClangDecl());
auto lhsTy = clangCtx.getRecordType(clangDecl);
auto rhsTy = clangMinus->getReturnType();
synthesizeCXXOperator(impl, clangDecl,
clang::BinaryOperatorKind::BO_AddAssign, lhsTy,
rhsTy, returnTy);
plusEqual = getPlusEqualOperator(decl, distanceTy);
}
}
}
if (!plusEqual)
return;
impl.addSynthesizedTypealias(decl, ctx.getIdentifier("Distance"), distanceTy);
if (pointeeSettable)
impl.addSynthesizedProtocolAttrs(
decl, {KnownProtocolKind::UnsafeCxxMutableRandomAccessIterator});
else
impl.addSynthesizedProtocolAttrs(
decl, {KnownProtocolKind::UnsafeCxxRandomAccessIterator});
if (isContiguousIterator) {
if (pointeeSettable)
impl.addSynthesizedProtocolAttrs(
decl, {KnownProtocolKind::UnsafeCxxMutableContiguousIterator});
else
impl.addSynthesizedProtocolAttrs(
decl, {KnownProtocolKind::UnsafeCxxContiguousIterator});
}
}
void swift::conformToCxxConvertibleToBoolIfNeeded(
ClangImporter::Implementation &impl, swift::NominalTypeDecl *decl,
const clang::CXXRecordDecl *clangDecl) {
PrettyStackTraceDecl trace("conforming to CxxConvertibleToBool", decl);
assert(decl);
assert(clangDecl);
ASTContext &ctx = decl->getASTContext();
auto conversionId = ctx.getIdentifier("__convertToBool");
auto conversions = lookupDirectWithoutExtensions(decl, conversionId);
// Find a non-mutating overload of `__convertToBool`.
FuncDecl *conversion = nullptr;
for (auto c : conversions) {
auto candidate = dyn_cast<FuncDecl>(c);
if (!candidate || candidate->isMutating())
continue;
if (conversion)
// Overload ambiguity?
return;
conversion = candidate;
}
if (!conversion)
return;
auto conversionTy = conversion->getResultInterfaceType();
if (!conversionTy->isBool())
return;
impl.addSynthesizedProtocolAttrs(decl,
{KnownProtocolKind::CxxConvertibleToBool});
}
void swift::conformToCxxOptionalIfNeeded(
ClangImporter::Implementation &impl, NominalTypeDecl *decl,
const clang::CXXRecordDecl *clangDecl) {
PrettyStackTraceDecl trace("conforming to CxxOptional", decl);
assert(decl);
assert(clangDecl);
ASTContext &ctx = decl->getASTContext();
if (!isStdDecl(clangDecl, {"optional"}))
return;
ProtocolDecl *cxxOptionalProto =
ctx.getProtocol(KnownProtocolKind::CxxOptional);
// If the Cxx module is missing, or does not include one of the necessary
// protocol, bail.
if (!cxxOptionalProto)
return;
auto pointeeId = ctx.getIdentifier("pointee");
auto pointees = lookupDirectWithoutExtensions(decl, pointeeId);
if (pointees.size() != 1)
return;
auto pointee = dyn_cast<VarDecl>(pointees.front());
if (!pointee)
return;
auto pointeeTy = pointee->getInterfaceType();
impl.addSynthesizedTypealias(decl, ctx.getIdentifier("Wrapped"), pointeeTy);
impl.addSynthesizedProtocolAttrs(decl, {KnownProtocolKind::CxxOptional});
}
void swift::conformToCxxSequenceIfNeeded(
ClangImporter::Implementation &impl, NominalTypeDecl *decl,
const clang::CXXRecordDecl *clangDecl) {
PrettyStackTraceDecl trace("conforming to CxxSequence", decl);
assert(decl);
assert(clangDecl);
ASTContext &ctx = decl->getASTContext();
ProtocolDecl *cxxIteratorProto =
ctx.getProtocol(KnownProtocolKind::UnsafeCxxInputIterator);
ProtocolDecl *cxxSequenceProto =
ctx.getProtocol(KnownProtocolKind::CxxSequence);
ProtocolDecl *cxxConvertibleProto =
ctx.getProtocol(KnownProtocolKind::CxxConvertibleToCollection);
// If the Cxx module is missing, or does not include one of the necessary
// protocols, bail.
if (!cxxIteratorProto || !cxxSequenceProto)
return;
// Check if present: `func __beginUnsafe() -> RawIterator`
auto beginId = ctx.getIdentifier("__beginUnsafe");
auto begin = lookupDirectSingleWithoutExtensions<FuncDecl>(decl, beginId);
if (!begin)
return;
auto rawIteratorTy = begin->getResultInterfaceType();
// Check if present: `func __endUnsafe() -> RawIterator`
auto endId = ctx.getIdentifier("__endUnsafe");
auto end = lookupDirectSingleWithoutExtensions<FuncDecl>(decl, endId);
if (!end)
return;
// Check if `begin()` and `end()` are non-mutating.
if (begin->isMutating() || end->isMutating())
return;
// Check if `__beginUnsafe` and `__endUnsafe` have the same return type.
auto endTy = end->getResultInterfaceType();
if (!endTy || endTy->getCanonicalType() != rawIteratorTy->getCanonicalType())
return;
// Check if RawIterator conforms to UnsafeCxxInputIterator.
auto rawIteratorConformanceRef =
checkConformance(rawIteratorTy, cxxIteratorProto);
if (!rawIteratorConformanceRef)
return;
auto rawIteratorConformance = rawIteratorConformanceRef.getConcrete();
auto pointeeDecl =
cxxIteratorProto->getAssociatedType(ctx.getIdentifier("Pointee"));
assert(pointeeDecl &&
"UnsafeCxxInputIterator must have a Pointee associated type");
auto pointeeTy = rawIteratorConformance->getTypeWitness(pointeeDecl);
assert(pointeeTy && "valid conformance must have a Pointee witness");
// Take the default definition of `Iterator` from CxxSequence protocol. This
// type is currently `CxxIterator<Self>`.
auto iteratorDecl = cxxSequenceProto->getAssociatedType(ctx.Id_Iterator);
auto iteratorTy = iteratorDecl->getDefaultDefinitionType();
// Substitute generic `Self` parameter.
auto cxxSequenceSelfTy = cxxSequenceProto->getSelfInterfaceType();
auto declSelfTy = decl->getDeclaredInterfaceType();
iteratorTy = iteratorTy.subst(
[&](SubstitutableType *dependentType) {
if (dependentType->isEqual(cxxSequenceSelfTy))
return declSelfTy;
return Type(dependentType);
},
LookUpConformanceInModule());
impl.addSynthesizedTypealias(decl, ctx.Id_Element, pointeeTy);
impl.addSynthesizedTypealias(decl, ctx.Id_Iterator, iteratorTy);
impl.addSynthesizedTypealias(decl, ctx.getIdentifier("RawIterator"),
rawIteratorTy);
// Not conforming the type to CxxSequence protocol here:
// The current implementation of CxxSequence triggers extra copies of the C++
// collection when creating a CxxIterator instance. It needs a more efficient
// implementation, which is not possible with the existing Swift features.
// impl.addSynthesizedProtocolAttrs(decl, {KnownProtocolKind::CxxSequence});
// Try to conform to CxxRandomAccessCollection if possible.
auto tryToConformToRandomAccessCollection = [&]() -> bool {
auto cxxRAIteratorProto =
ctx.getProtocol(KnownProtocolKind::UnsafeCxxRandomAccessIterator);
if (!cxxRAIteratorProto ||
!ctx.getProtocol(KnownProtocolKind::CxxRandomAccessCollection))
return false;
// Check if RawIterator conforms to UnsafeCxxRandomAccessIterator.
if (!checkConformance(rawIteratorTy, cxxRAIteratorProto))
return false;
// CxxRandomAccessCollection always uses Int as an Index.
auto indexTy = ctx.getIntType();
auto sliceTy = ctx.getSliceType();
sliceTy = sliceTy.subst(
[&](SubstitutableType *dependentType) {
if (dependentType->isEqual(cxxSequenceSelfTy))
return declSelfTy;
return Type(dependentType);
},
LookUpConformanceInModule());
auto indicesTy = ctx.getRangeType();
indicesTy = indicesTy.subst(
[&](SubstitutableType *dependentType) {
if (dependentType->isEqual(cxxSequenceSelfTy))
return indexTy;
return Type(dependentType);
},
LookUpConformanceInModule());
impl.addSynthesizedTypealias(decl, ctx.getIdentifier("Element"), pointeeTy);
impl.addSynthesizedTypealias(decl, ctx.getIdentifier("Index"), indexTy);
impl.addSynthesizedTypealias(decl, ctx.getIdentifier("Indices"), indicesTy);
impl.addSynthesizedTypealias(decl, ctx.getIdentifier("SubSequence"),
sliceTy);
auto tryToConformToMutatingRACollection = [&]() -> bool {
auto rawMutableIteratorProto = ctx.getProtocol(
KnownProtocolKind::UnsafeCxxMutableRandomAccessIterator);
if (!rawMutableIteratorProto)
return false;
// Check if present: `func __beginMutatingUnsafe() -> RawMutableIterator`
auto beginMutatingId = ctx.getIdentifier("__beginMutatingUnsafe");
auto beginMutating =
lookupDirectSingleWithoutExtensions<FuncDecl>(decl, beginMutatingId);
if (!beginMutating)
return false;
auto rawMutableIteratorTy = beginMutating->getResultInterfaceType();
// Check if present: `func __endMutatingUnsafe() -> RawMutableIterator`
auto endMutatingId = ctx.getIdentifier("__endMutatingUnsafe");
auto endMutating =
lookupDirectSingleWithoutExtensions<FuncDecl>(decl, endMutatingId);
if (!endMutating)
return false;
if (!checkConformance(rawMutableIteratorTy, rawMutableIteratorProto))
return false;
impl.addSynthesizedTypealias(
decl, ctx.getIdentifier("RawMutableIterator"), rawMutableIteratorTy);
impl.addSynthesizedProtocolAttrs(
decl, {KnownProtocolKind::CxxMutableRandomAccessCollection});
return true;
};
bool conformedToMutableRAC = tryToConformToMutatingRACollection();
if (!conformedToMutableRAC)
impl.addSynthesizedProtocolAttrs(
decl, {KnownProtocolKind::CxxRandomAccessCollection});
return true;
};
bool conformedToRAC = tryToConformToRandomAccessCollection();
// If the collection does not support random access, let's still allow the
// developer to explicitly convert a C++ sequence to a Swift Array (making a
// copy of the sequence's elements) by conforming the type to
// CxxCollectionConvertible. This enables an overload of Array.init declared
// in the Cxx module.
if (!conformedToRAC && cxxConvertibleProto) {
impl.addSynthesizedTypealias(decl, ctx.getIdentifier("Element"), pointeeTy);
impl.addSynthesizedProtocolAttrs(
decl, {KnownProtocolKind::CxxConvertibleToCollection});
}
}
static bool isStdSetType(const clang::CXXRecordDecl *clangDecl) {
return isStdDecl(clangDecl, {"set", "unordered_set", "multiset"});
}
static bool isStdMapType(const clang::CXXRecordDecl *clangDecl) {
return isStdDecl(clangDecl, {"map", "unordered_map", "multimap"});
}
bool swift::isUnsafeStdMethod(const clang::CXXMethodDecl *methodDecl) {
auto parentDecl =
dyn_cast<clang::CXXRecordDecl>(methodDecl->getDeclContext());
if (!parentDecl)
return false;
if (!isStdSetType(parentDecl) && !isStdMapType(parentDecl))
return false;
if (methodDecl->getDeclName().isIdentifier() &&
methodDecl->getName() == "insert")
return true;
return false;
}
void swift::conformToCxxSetIfNeeded(ClangImporter::Implementation &impl,
NominalTypeDecl *decl,
const clang::CXXRecordDecl *clangDecl) {
PrettyStackTraceDecl trace("conforming to CxxSet", decl);
assert(decl);
assert(clangDecl);
ASTContext &ctx = decl->getASTContext();
// Only auto-conform types from the C++ standard library. Custom user types
// might have a similar interface but different semantics.
if (!isStdSetType(clangDecl))
return;
auto valueType = lookupDirectSingleWithoutExtensions<TypeAliasDecl>(
decl, ctx.getIdentifier("value_type"));
auto sizeType = lookupDirectSingleWithoutExtensions<TypeAliasDecl>(
decl, ctx.getIdentifier("size_type"));
if (!valueType || !sizeType)
return;
auto insert = getInsertFunc(decl, valueType);
if (!insert)
return;
impl.addSynthesizedTypealias(decl, ctx.Id_Element,
valueType->getUnderlyingType());
impl.addSynthesizedTypealias(decl, ctx.Id_ArrayLiteralElement,
valueType->getUnderlyingType());
impl.addSynthesizedTypealias(decl, ctx.getIdentifier("Size"),
sizeType->getUnderlyingType());
impl.addSynthesizedTypealias(decl, ctx.getIdentifier("InsertionResult"),
insert->getResultInterfaceType());
impl.addSynthesizedProtocolAttrs(decl, {KnownProtocolKind::CxxSet});
// If this isn't a std::multiset, try to also synthesize the conformance to
// CxxUniqueSet.
if (!isStdDecl(clangDecl, {"set", "unordered_set"}))
return;
ProtocolDecl *cxxInputIteratorProto =
ctx.getProtocol(KnownProtocolKind::UnsafeCxxInputIterator);
if (!cxxInputIteratorProto)
return;
auto rawIteratorType = lookupDirectSingleWithoutExtensions<TypeAliasDecl>(
decl, ctx.getIdentifier("const_iterator"));
auto rawMutableIteratorType =
lookupDirectSingleWithoutExtensions<TypeAliasDecl>(
decl, ctx.getIdentifier("iterator"));
if (!rawIteratorType || !rawMutableIteratorType)
return;
auto rawIteratorTy = rawIteratorType->getUnderlyingType();
auto rawMutableIteratorTy = rawMutableIteratorType->getUnderlyingType();
if (!checkConformance(rawIteratorTy, cxxInputIteratorProto) ||
!checkConformance(rawMutableIteratorTy, cxxInputIteratorProto))
return;
impl.addSynthesizedTypealias(decl, ctx.getIdentifier("RawIterator"),
rawIteratorTy);
impl.addSynthesizedTypealias(decl, ctx.getIdentifier("RawMutableIterator"),
rawMutableIteratorTy);
impl.addSynthesizedProtocolAttrs(decl, {KnownProtocolKind::CxxUniqueSet});
}
void swift::conformToCxxPairIfNeeded(ClangImporter::Implementation &impl,
NominalTypeDecl *decl,
const clang::CXXRecordDecl *clangDecl) {
PrettyStackTraceDecl trace("conforming to CxxPair", decl);
assert(decl);
assert(clangDecl);
ASTContext &ctx = decl->getASTContext();
// Only auto-conform types from the C++ standard library. Custom user types
// might have a similar interface but different semantics.
if (!isStdDecl(clangDecl, {"pair"}))
return;
auto firstType = lookupDirectSingleWithoutExtensions<TypeAliasDecl>(
decl, ctx.getIdentifier("first_type"));
auto secondType = lookupDirectSingleWithoutExtensions<TypeAliasDecl>(
decl, ctx.getIdentifier("second_type"));
if (!firstType || !secondType)
return;
impl.addSynthesizedTypealias(decl, ctx.getIdentifier("First"),
firstType->getUnderlyingType());
impl.addSynthesizedTypealias(decl, ctx.getIdentifier("Second"),
secondType->getUnderlyingType());
impl.addSynthesizedProtocolAttrs(decl, {KnownProtocolKind::CxxPair});
}
void swift::conformToCxxDictionaryIfNeeded(
ClangImporter::Implementation &impl, NominalTypeDecl *decl,
const clang::CXXRecordDecl *clangDecl) {
PrettyStackTraceDecl trace("conforming to CxxDictionary", decl);
assert(decl);
assert(clangDecl);
ASTContext &ctx = decl->getASTContext();
// Only auto-conform types from the C++ standard library. Custom user types
// might have a similar interface but different semantics.
if (!isStdMapType(clangDecl))
return;
auto keyType = lookupDirectSingleWithoutExtensions<TypeAliasDecl>(