-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathGenPoly.cpp
468 lines (425 loc) · 18.3 KB
/
GenPoly.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
//===--- GenPoly.cpp - Swift IR Generation for Polymorphism ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for polymorphic operations in Swift.
//
//===----------------------------------------------------------------------===//
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/Types.h"
#include "swift/AST/Decl.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILType.h"
#include "llvm/IR/DerivedTypes.h"
#include "Explosion.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "LoadableTypeInfo.h"
#include "TypeVisitor.h"
#include "GenTuple.h"
#include "GenPoly.h"
#include "GenType.h"
using namespace swift;
using namespace irgen;
/// Ways in which we can test two types differ by abstraction.
enum class AbstractionDifference : bool {
Memory,
Explosion
};
/// Function abstraction changes should have been handled in SILGen.
/// This function checks that SIL function types are call-compatible.
void checkFunctionsAreCompatible(IRGenModule &IGM,
CanSILFunctionType origTy,
CanSILFunctionType substTy) {
#ifndef NDEBUG
assert(origTy->getGenericSignature() == substTy->getGenericSignature()
&& "types have different generic signatures");
GenericContextScope scope(IGM, origTy->getGenericSignature());
auto getContextType = [&](CanType t) -> CanType {
if (t->isDependentType())
return IGM.getContextArchetypes().substDependentType(t)
->getCanonicalType();
return t;
};
// The result types must either both be reference types with the same
// convention, or must be equivalent value types.
auto origResultTy = getContextType(origTy->getResult().getType());
auto substResultTy = getContextType(substTy->getResult().getType());
if (origResultTy->hasReferenceSemantics()) {
assert(substResultTy->hasReferenceSemantics()
&& "result abstraction difference survived to IRGen");
assert(origTy->getResult().getConvention()
== substTy->getResult().getConvention()
&& "result abstraction difference survived to IRGen");
} else {
// FIXME: Assert that the substTy is a valid substitution of origTy.
//assert(origTy->getResult() == substTy->getResult()
// && "result abstraction difference survived to IRGen");
}
assert(origTy->getParameters().size()
== substTy->getParameters().size()
&& "parameter abstraction difference survived to IRGen");
for (unsigned i = 0, e = origTy->
getParameters().size(); i < e; ++i) {
auto &origParam = origTy->getParameters()[i];
auto &substParam = substTy->getParameters()[i];
auto origParamTy = getContextType(origParam.getType());
auto substParamTy = getContextType(substParam.getType());
// Direct parameters must be both reference types or matching value types.
if (!origParam.isIndirect()) {
if (origParamTy->hasReferenceSemantics()) {
assert(substParamTy->hasReferenceSemantics()
&& "parameter abstraction difference survived to IRGen");
assert(origParam.getConvention() == substParam.getConvention()
&& "parameter abstraction difference survived to IRGen");
} else {
// FIXME: Assert that the substTy is a valid substitution of origTy.
//assert(origParam == substParam
// && "parameter abstraction difference survived to IRGen");
}
}
// Indirect parameters can differ in type; they're just pointers.
// The convention must still match.
else {
assert(origParam.getConvention() == substParam.getConvention()
&& "parameter abstraction difference survived to IRGen");
}
}
#endif
}
/// Does the representation of the first type "differ by abstraction"
/// from the second type, which is the result of applying a
/// substitution to it?
///
/// Because we support rich value types, and because we don't want to
/// always coerce value types into a universal representation (as a
/// dynamically-typed language would have to), the representation of a
/// type with an abstract component may differ from the representation
/// of a type that's fully concrete.
///
/// The fundamental cause of this complication is function types. For
/// example, a function that returns an Int will return it directly in
/// a register, but a function that returns an abstracted type T will
/// return it indirectly (via a hidden out-parameter); a similar rule
/// applies to parameters.
///
/// This difference then propagates through other structural types,
/// creating a set of general rules for translating values.
///
/// The following is a complete list of the canonical type forms
/// which can contain generic parameters:
/// - generic parameters, e.g. T
/// - tuples, e.g. (T, Int)
/// - functions, e.g. T -> Int
/// - l-values, e.g. [inout] T
/// - generic bindings, e.g. Vector<T>
/// - metatypes ?
///
/// Given a type T and a substitution S, T "differs by
/// abstraction" under S if, informally, its representation
/// is different from that of S(T).
///
/// Note S(T) == T if T is not dependent. Note also that some
/// substitutions don't cause a change in representation: e.g.
/// if T := U -> Int and S := (T=>Printable), the substitution
/// doesn't change representation because an existential type
/// like Printable is always passed indirectly.
///
/// More formally, T differs by abstraction under S if:
/// - T == (T_1, ..., T_k) and T_i differs by abstraction under S
/// for some i;
/// - T == [inout] U and U differs by abstraction under S;
/// - T == U -> V and either
/// - U differs by abstraction as an argument under S or
/// - V differs by abstraction as a result under S; or
/// - T == U.class and U is dependent but S(U) is not.
/// T differs by abstraction as an argument under S if:
/// - T differs by abstraction under S; or
/// - T is a generic parameter and S(T) is not passed indirectly; or
/// - T == (T_1, ..., T_k) and T_i differs by abstraction as
/// an argument under S for some i.
/// T differs by abstraction as a result under S if:
/// - T differs by abstraction under S or
/// - T is returned indirectly but S(T) is not.
///
/// ** Variables **
///
/// All accessors to a variable must agree on its representation.
/// This is generally okay, because most accesses to a variable
/// are direct accesses, i.e. occur in code where its declaration
/// is known, and that declaration determines its abstraction.
///
/// For example, suppose we have a generic type:
/// class Producer<T> {
/// var f : () -> T
/// }
/// Code that accesses Producer<Int>.f directly will know how the
/// functions stored there are meant to be abstracted because the
/// declaration of 'f' spells it out. They will know that they
/// cannot store a () -> Int function in that variable; it must
/// first be "thunked" so that it returns indirectly.
///
/// The same rule applies to local variables, which are contained
/// and declared in the context of a possibly-generic function.
///
/// There is (currently) one way in which a variable can be accessed
/// indirectly, without knowledge of how it was originally declared,
/// and that is when it is passed 'inout'. A variable cannot be
/// passed directly by reference when the target l-value type
/// differs by abstraction from the variable's type. However, the
/// mechanics and relatively weak guarantees of 'inout' make it
/// legal to instead pass a properly-abstracted temporary variable,
/// thunking the current value as it's passed in and "un-thunking"
/// it on the way out. Of course, that ain't free.
///
/// In the functions below, parameters named \c orig refer to the type T in the
/// definition -- substitution has been performed on this type. Parameters named
/// \c subst refer to a type after substitution, i.e. S(T).
namespace {
class DiffersByAbstraction
: public SubstTypeVisitor<DiffersByAbstraction, bool> {
IRGenModule &IGM;
AbstractionDifference DiffKind;
public:
DiffersByAbstraction(IRGenModule &IGM, AbstractionDifference kind)
: IGM(IGM), DiffKind(kind) {}
bool visit(CanType origTy, CanType substTy) {
if (origTy == substTy) return false;
// Contextualize dependent types.
if (origTy->isDependentType())
origTy = IGM.getContextArchetypes().substDependentType(origTy)
->getCanonicalType();
if (substTy->isDependentType())
substTy = IGM.getContextArchetypes().substDependentType(substTy)
->getCanonicalType();
return super::visit(origTy, substTy);
}
bool visitLeafType(CanType origTy, CanType substTy) {
if (origTy == substTy) return false;
// The check in visit should make this impossible.
llvm_unreachable("difference with leaf types");
}
// We assume that all reference storage types have equivalent
// representation. This may not be true.
bool visitReferenceStorageType(CanReferenceStorageType origTy,
CanReferenceStorageType substTy) {
return false;
}
CanType getArchetypeReprType(CanArchetypeType a) {
if (Type super = a->getSuperclass())
return CanType(super);
return CanType(IGM.Context.TheUnknownObjectType);
}
bool visitArchetypeType(CanArchetypeType origTy, CanType substTy) {
// Archetypes vary by what we're considering this for.
if (origTy->requiresClass()) {
// Class archetypes are represented as some refcounted
// pointer type that needs to be bitcast.
return origTy != substTy;
}
// Archetypes are laid out in memory in the same way as a
// concrete type would be.
if (DiffKind == AbstractionDifference::Memory) return false;
auto substType = SILType::getPrimitiveObjectType(substTy);
// For function arguments, consider whether the substituted type
// is passed indirectly under the abstract-call convention.
// We only ever care about the abstract-call convention.
return !IGM.isSingleIndirectValue(substType);
}
bool visitBoundGenericType(CanBoundGenericType origTy,
CanBoundGenericType substTy) {
assert(origTy->getDecl() == substTy->getDecl());
// Bound generic types with reference semantics will never
// differ by abstraction. Bound generic types with value
// semantics might someday, if we want things like Optional<T>
// to have an efficient representation. For now, though, they
// don't.
return false;
}
bool visitAnyFunctionType(CanAnyFunctionType origTy,
CanAnyFunctionType substTy) {
llvm_unreachable("should have been lowered by SILGen");
}
bool visitSILFunctionType(CanSILFunctionType origTy,
CanSILFunctionType substTy) {
// Function abstraction changes should have been handled in SILGen.
checkFunctionsAreCompatible(IGM, origTy, substTy);
return false;
}
// L-values go by the object type; note that we ask the ordinary
// question, not the argument question.
bool visitLValueType(CanLValueType origTy, CanLValueType substTy) {
llvm_unreachable("should have been lowered by SILGen");
}
// inout go by the object type; note that we ask the ordinary
// question, not the argument question.
bool visitInOutType(CanInOutType origTy, CanInOutType substTy) {
return differsByAbstractionInMemory(IGM,
origTy.getObjectType(),
substTy.getObjectType());
}
bool visitMetatypeType(CanMetatypeType origTy, CanMetatypeType substTy) {
// Metatypes can differ by abstraction if the substitution
// reveals that the type is actually not a class type.
return (IGM.isTrivialMetatype(substTy) &&
!IGM.isTrivialMetatype(origTy));
}
/// Whether we're checking for memory or for an explosion, tuples
/// are considered element-wise.
///
/// TODO: unless the original tuple contains a variadic explosion,
/// in which case that portion of the tuple is passed indirectly
/// in an explosion!
bool visitTupleType(CanTupleType origTy, CanTupleType substTy) {
assert(origTy->getNumElements() == substTy->getNumElements());
for (unsigned i = 0, e = origTy->getNumElements(); i != e; ++i)
if (visit(origTy.getElementType(i), substTy.getElementType(i)))
return true;
return false;
}
/// We shouldn't use block storage pointers in a way that requires
/// abstraction difference.
bool visitSILBlockStorageType(CanSILBlockStorageType origTy,
CanSILBlockStorageType substTy) {
assert(!visit(origTy->getCaptureType(), substTy->getCaptureType())
&& "block storage should not differ by abstraction");
return false;
}
};
}
bool irgen::differsByAbstractionInMemory(IRGenModule &IGM,
CanType origTy, CanType substTy) {
return DiffersByAbstraction(IGM, AbstractionDifference::Memory)
.visit(origTy, substTy);
}
bool irgen::differsByAbstractionInExplosion(IRGenModule &IGM,
CanType origTy, CanType substTy) {
return DiffersByAbstraction(IGM, AbstractionDifference::Explosion)
.visit(origTy, substTy);
}
/// A class for testing whether a type directly stores an archetype.
struct EmbedsArchetype : DeclVisitor<EmbedsArchetype, bool>,
CanTypeVisitor<EmbedsArchetype, bool> {
IRGenModule &IGM;
EmbedsArchetype(IRGenModule &IGM) : IGM(IGM) {}
using DeclVisitor<EmbedsArchetype, bool>::visit;
using CanTypeVisitor<EmbedsArchetype, bool>::visit;
bool visitTupleType(CanTupleType type) {
for (auto eltType : type.getElementTypes())
if (visit(eltType))
return true;
return false;
}
bool visitArchetypeType(CanArchetypeType type) {
return true;
}
bool visitBoundGenericType(CanBoundGenericType type) {
return visit(type->getDecl());
}
#define FOR_NOMINAL_TYPE(Kind) \
bool visit##Kind##Type(Can##Kind##Type type) { \
return visit##Kind##Decl(type->getDecl()); \
}
FOR_NOMINAL_TYPE(Protocol)
FOR_NOMINAL_TYPE(Struct)
FOR_NOMINAL_TYPE(Class)
FOR_NOMINAL_TYPE(Enum)
#undef FOR_NOMINAL_TYPE
// All these types are leaves, in the sense that they don't directly
// store any other types.
bool visitBuiltinType(CanBuiltinType type) { return false; }
bool visitAnyMetatypeType(CanAnyMetatypeType type) { return false; }
bool visitModuleType(CanModuleType type) { return false; }
bool visitDynamicSelfType(CanDynamicSelfType type) { return false; }
bool visitAnyFunctionType(CanAnyFunctionType type) { return false; }
bool visitSILFunctionType(CanSILFunctionType type) { return false; }
bool visitLValueType(CanLValueType type) { return false; }
bool visitInOutType(CanInOutType type) { return false; }
bool visitProtocolCompositionType(CanProtocolCompositionType type) {
return false;
}
bool visitReferenceStorageType(CanReferenceStorageType type) {
return visit(type.getReferentType());
}
bool visitGenericTypeParamType(CanGenericTypeParamType type) {
// FIXME: These might map down to an archetype.
return false;
}
bool visitDependentMemberType(CanDependentMemberType type) {
// FIXME: These might map down to an archetype.
return false;
}
bool visitSILBlockStorageType(CanSILBlockStorageType type) {
return visit(type->getCaptureType());
}
bool visitProtocolDecl(ProtocolDecl *decl) { return false; }
bool visitClassDecl(ClassDecl *decl) { return false; }
bool visitStructDecl(StructDecl *decl) {
if (IGM.isResilient(decl, ResilienceScope::Local)) return true;
return visitMembers(decl->getMembers());
}
bool visitEnumDecl(EnumDecl *decl) {
if (IGM.isResilient(decl, ResilienceScope::Local)) return true;
return visitMembers(decl->getMembers());
}
bool visitVarDecl(VarDecl *var) {
if (!var->hasStorage()) return false;
return visit(var->getType()->getCanonicalType());
}
bool visitEnumElementDecl(EnumElementDecl *decl) {
return visit(decl->getType()->getCanonicalType());
}
bool visitDecl(Decl *decl) { return false; }
bool visitMembers(DeclRange members) {
for (auto member : members)
if (visit(member))
return true;
return false;
}
};
static SILType applyContextArchetypes(IRGenFunction &IGF,
SILType type) {
if (!type.isDependentType()) {
return type;
}
auto substType =
IGF.IGM.getContextArchetypes().substDependentType(type.getSwiftRValueType())
->getCanonicalType();
return SILType::getPrimitiveType(substType, type.getCategory());
}
/// Given a substituted explosion, re-emit it as an unsubstituted one.
///
/// For example, given an explosion which begins with the
/// representation of an (Int, Float), consume that and produce the
/// representation of an (Int, T).
///
/// The substitutions must carry origTy to substTy.
void irgen::reemitAsUnsubstituted(IRGenFunction &IGF,
SILType expectedTy, SILType substTy,
Explosion &in, Explosion &out) {
expectedTy = applyContextArchetypes(IGF, expectedTy);
ExplosionSchema expectedSchema = IGF.IGM.getSchema(expectedTy);
assert(expectedSchema.size() ==
IGF.IGM.getExplosionSize(applyContextArchetypes(IGF, substTy)));
for (ExplosionSchema::Element &elt : expectedSchema) {
llvm::Value *value = in.claimNext();
assert(elt.isScalar());
// The only type differences we expect here should be due to
// substitution of class archetypes.
if (value->getType() != elt.getScalarType()) {
value = IGF.Builder.CreateBitCast(value, elt.getScalarType(),
value->getName() + ".asUnsubstituted");
}
out.add(value);
}
}