-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathLifetimeDependence.cpp
1228 lines (1136 loc) · 43.1 KB
/
LifetimeDependence.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- LifetimeDependence.cpp -----------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/AST/LifetimeDependence.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Builtins.h"
#include "swift/AST/ConformanceLookup.h"
#include "swift/AST/Decl.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/Module.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/Type.h"
#include "swift/AST/TypeRepr.h"
#include "swift/Basic/Assertions.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/SourceManager.h"
namespace swift {
LifetimeEntry *
LifetimeEntry::create(const ASTContext &ctx, SourceLoc startLoc,
SourceLoc endLoc, ArrayRef<LifetimeDescriptor> sources,
std::optional<LifetimeDescriptor> targetDescriptor) {
unsigned size = totalSizeToAlloc<LifetimeDescriptor>(sources.size());
void *mem = ctx.Allocate(size, alignof(LifetimeEntry));
return new (mem) LifetimeEntry(startLoc, endLoc, sources, targetDescriptor);
}
std::optional<LifetimeDependenceInfo>
getLifetimeDependenceFor(ArrayRef<LifetimeDependenceInfo> lifetimeDependencies,
unsigned index) {
for (auto dep : lifetimeDependencies) {
if (dep.getTargetIndex() == index) {
return dep;
}
}
return std::nullopt;
}
std::string LifetimeDependenceInfo::getString() const {
std::string lifetimeDependenceString = "@lifetime(";
auto addressable = getAddressableIndices();
auto condAddressable = getConditionallyAddressableIndices();
auto getSourceString = [&](IndexSubset *bitvector, StringRef kind) {
std::string result;
bool isFirstSetBit = true;
for (unsigned i = 0; i < bitvector->getCapacity(); i++) {
if (bitvector->contains(i)) {
if (!isFirstSetBit) {
result += ", ";
}
result += kind;
if (addressable && addressable->contains(i)) {
result += "address ";
} else if (condAddressable && condAddressable->contains(i)) {
result += "address_for_deps ";
}
result += std::to_string(i);
isFirstSetBit = false;
}
}
return result;
};
if (inheritLifetimeParamIndices) {
assert(!inheritLifetimeParamIndices->isEmpty());
lifetimeDependenceString +=
getSourceString(inheritLifetimeParamIndices, "copy ");
}
if (scopeLifetimeParamIndices) {
assert(!scopeLifetimeParamIndices->isEmpty());
if (inheritLifetimeParamIndices) {
lifetimeDependenceString += ", ";
}
lifetimeDependenceString +=
getSourceString(scopeLifetimeParamIndices, "borrow ");
}
if (isImmortal()) {
lifetimeDependenceString += "immortal";
}
lifetimeDependenceString += ") ";
return lifetimeDependenceString;
}
void LifetimeDependenceInfo::Profile(llvm::FoldingSetNodeID &ID) const {
ID.AddBoolean(addressableParamIndicesAndImmortal.getInt());
ID.AddInteger(targetIndex);
if (inheritLifetimeParamIndices) {
ID.AddInteger((uint8_t)LifetimeDependenceKind::Inherit);
inheritLifetimeParamIndices->Profile(ID);
}
if (scopeLifetimeParamIndices) {
ID.AddInteger((uint8_t)LifetimeDependenceKind::Scope);
scopeLifetimeParamIndices->Profile(ID);
}
if (addressableParamIndicesAndImmortal.getPointer()) {
ID.AddBoolean(true);
addressableParamIndicesAndImmortal.getPointer()->Profile(ID);
} else {
ID.AddBoolean(false);
}
}
// Infer the kind of dependence that would be implied by assigning into a stored
// property of 'sourceType'.
static LifetimeDependenceKind
inferLifetimeDependenceKindFromType(Type sourceType) {
if (sourceType->isEscapable()) {
return LifetimeDependenceKind::Scope;
}
return LifetimeDependenceKind::Inherit;
}
// Warning: this is incorrect for Setter 'newValue' parameters. It should only
// be called for a Setter's 'self'.
static ValueOwnership getLoweredOwnership(AbstractFunctionDecl *afd) {
if (isa<ConstructorDecl>(afd)) {
return ValueOwnership::Owned;
}
if (auto *ad = dyn_cast<AccessorDecl>(afd)) {
if (ad->getAccessorKind() == AccessorKind::Set ||
isYieldingMutableAccessor(ad->getAccessorKind())) {
return ValueOwnership::InOut;
}
}
return ValueOwnership::Shared;
}
static bool isBitwiseCopyable(Type type, ASTContext &ctx) {
auto *bitwiseCopyableProtocol =
ctx.getProtocol(KnownProtocolKind::BitwiseCopyable);
if (!bitwiseCopyableProtocol) {
return false;
}
return (bool)checkConformance(type, bitwiseCopyableProtocol);
}
static bool isDiagnosedNonEscapable(Type type) {
if (type->hasError()) {
return false;
}
// FIXME: This check is temporary until rdar://139976667 is fixed.
// ModuleType created with ModuleType::get methods are ~Copyable and
// ~Escapable because the Copyable and Escapable conformance is not added to
// them by default.
if (type->is<ModuleType>()) {
return false;
}
return !type->isEscapable();
}
void LifetimeDependenceInfo::getConcatenatedData(
SmallVectorImpl<bool> &concatenatedData) const {
auto pushData = [&](IndexSubset *paramIndices) {
if (paramIndices == nullptr) {
return;
}
assert(!paramIndices->isEmpty());
for (unsigned i = 0; i < paramIndices->getCapacity(); i++) {
if (paramIndices->contains(i)) {
concatenatedData.push_back(true);
continue;
}
concatenatedData.push_back(false);
}
};
if (hasInheritLifetimeParamIndices()) {
pushData(inheritLifetimeParamIndices);
}
if (hasScopeLifetimeParamIndices()) {
pushData(scopeLifetimeParamIndices);
}
if (hasAddressableParamIndices()) {
pushData(addressableParamIndicesAndImmortal.getPointer());
}
}
class LifetimeDependenceChecker {
AbstractFunctionDecl *afd;
DeclContext *dc;
ASTContext &ctx;
SourceLoc returnLoc;
// Only initialized when hasImplicitSelfDecl() is true.
unsigned selfIndex = ~0;
// 'resultIndex' is a pseudo-parameter-index used by LifetimeDependenceInfo to
// represent the function result.
unsigned resultIndex = ~0;
SmallVector<LifetimeDependenceInfo, 1> lifetimeDependencies;
// True if lifetime diganostics have already been performed. Avoids redundant
// diagnostics, and allows bypassing diagnostics for special cases.
bool performedDiagnostics = false;
public:
LifetimeDependenceChecker(AbstractFunctionDecl *afd):
afd(afd), dc(afd->getDeclContext()), ctx(dc->getASTContext())
{
auto resultTypeRepr = afd->getResultTypeRepr();
returnLoc = resultTypeRepr ? resultTypeRepr->getLoc() : afd->getLoc();
if (afd->hasImplicitSelfDecl()) {
selfIndex = afd->getParameters()->size();
resultIndex = selfIndex + 1;
} else {
resultIndex = afd->getParameters()->size();
}
}
std::optional<llvm::ArrayRef<LifetimeDependenceInfo>>
currentDependencies() const {
if (lifetimeDependencies.empty()) {
return std::nullopt;
}
return afd->getASTContext().AllocateCopy(lifetimeDependencies);
}
std::optional<llvm::ArrayRef<LifetimeDependenceInfo>> checkFuncDecl() {
assert(isa<FuncDecl>(afd) || isa<ConstructorDecl>(afd));
assert(lifetimeDependencies.empty());
// Handle Builtins first because, even though Builtins require
// LifetimeDependence, we don't force Feature::LifetimeDependence
// to be enabled when importing the Builtin module.
if (afd->isImplicit() && afd->getModuleContext()->isBuiltinModule()) {
inferBuiltin();
return currentDependencies();
}
if (!ctx.LangOpts.hasFeature(Feature::LifetimeDependence)
&& !ctx.SourceMgr.isImportMacroGeneratedLoc(returnLoc)) {
diagnoseMissingResultDependencies(
diag::lifetime_dependence_feature_required_return.ID);
diagnoseMissingSelfDependencies(
diag::lifetime_dependence_feature_required_mutating.ID);
diagnoseMissingInoutDependencies(
diag::lifetime_dependence_feature_required_inout.ID);
return std::nullopt;
}
if (afd->getAttrs().hasAttribute<LifetimeAttr>()) {
return checkAttribute();
}
// Methods or functions with @_unsafeNonescapableResult do not require
// lifetime annotation and do not infer any lifetime dependency.
if (afd->getAttrs().hasAttribute<UnsafeNonEscapableResultAttr>()) {
return std::nullopt;
}
inferOrDiagnose();
// If precise diagnostics were already issued, bypass
// diagnoseMissingDependencies to avoid redundant diagnostics.
if (!performedDiagnostics) {
diagnoseMissingResultDependencies(
diag::lifetime_dependence_cannot_infer_return.ID);
diagnoseMissingSelfDependencies(
diag::lifetime_dependence_cannot_infer_mutating.ID);
diagnoseMissingInoutDependencies(
diag::lifetime_dependence_cannot_infer_inout.ID);
}
return currentDependencies();
}
protected:
template<typename ...ArgTypes>
InFlightDiagnostic diagnose(
SourceLoc Loc, Diag<ArgTypes...> ID,
typename detail::PassArgument<ArgTypes>::type... Args) {
performedDiagnostics = true;
return ctx.Diags.diagnose(Loc, ID, std::move(Args)...);
}
template<typename ...ArgTypes>
InFlightDiagnostic
diagnose(const Decl *decl, Diag<ArgTypes...> id,
typename detail::PassArgument<ArgTypes>::type... args) {
return ctx.Diags.diagnose(decl, Diagnostic(id, std::move(args)...));
}
bool isInit() const {
return isa<ConstructorDecl>(afd);
}
// For initializers, the implicit self parameter is ignored and instead shows
// up as the result type.
//
// Note: Do not use this to reserve the self parameter index.
// LifetimeDependenceInfo always reserves an extra formal parameter
// index for hasImplicitSelfDecl(), even for initializers. During function
// type lowering, it is mapped to the metatype parameter. Without reserving
// the extra formal self parameter, a dependency targeting the formal result
// index would incorrectly target the SIL metatype parameter.
bool hasImplicitSelfParam() const {
return !isInit() && afd->hasImplicitSelfDecl();
}
// In SIL, implicit initializers and accessors become explicit.
bool isImplicitOrSIL() const {
if (afd->isImplicit()) {
return true;
}
// TODO: remove this check once SIL prints @lifetime.
if (auto *sf = afd->getParentSourceFile()) {
// The AST printer makes implicit initializers explicit, but does not
// print the @lifetime annotations. Until that is fixed, avoid
// diagnosing this as an error.
if (sf->Kind == SourceFileKind::SIL) {
return true;
}
}
return false;
}
bool isInterfaceFile() const {
// TODO: remove this check once all compilers that are rev-locked to the
// stdlib print the 'copy' dependence kind in the interface (Aug '25)
if (auto *sf = afd->getParentSourceFile()) {
if (sf->Kind == SourceFileKind::Interface) {
return true;
}
}
return false;
}
bool useLazyInference() const {
return isInterfaceFile()
|| ctx.LangOpts.EnableExperimentalLifetimeDependenceInference;
}
std::string diagnosticQualifier() const {
if (afd->isImplicit()) {
if (isInit()) {
return "an implicit initializer";
}
if (auto *ad = dyn_cast<AccessorDecl>(afd)) {
std::string qualifier = "the '";
qualifier += accessorKindName(ad->getAccessorKind());
qualifier += "' accessor";
return qualifier;
}
}
if (afd->hasImplicitSelfDecl()) {
if (isInit()) {
return "an initializer";
}
if (afd->getImplicitSelfDecl()->isInOut()) {
return "a mutating method";
}
return "a method";
}
return "a function";
}
// Ensure that dependencies exist for any return value or inout parameter that
// needs one. Always runs before the checker completes if no other diagnostics
// were issued.
void diagnoseMissingResultDependencies(DiagID diagID) {
if (!isDiagnosedNonEscapable(getResultOrYield())) {
return;
}
if (llvm::none_of(lifetimeDependencies,
[&](LifetimeDependenceInfo dep) {
return dep.getTargetIndex() == resultIndex;
})) {
ctx.Diags.diagnose(returnLoc, diagID,
{StringRef(diagnosticQualifier())});
}
}
// Ensure that dependencies exist for any mutating self value. Always runs
// before the checker completes if no other diagnostics were issued. For
// initializers, the inout self parameter is actually considered the result
// type so is not handled here.
void diagnoseMissingSelfDependencies(DiagID diagID) {
if (!hasImplicitSelfParam()) {
return;
}
auto *selfDecl = afd->getImplicitSelfDecl();
if (!selfDecl->isInOut()) {
return;
}
if (!isDiagnosedNonEscapable(dc->getSelfTypeInContext())) {
return;
}
if (llvm::none_of(lifetimeDependencies,
[&](LifetimeDependenceInfo dep) {
return dep.getTargetIndex() == selfIndex;
})) {
ctx.Diags.diagnose(selfDecl->getLoc(), diagID,
{StringRef(diagnosticQualifier())});
}
}
void diagnoseMissingInoutDependencies(DiagID diagID) {
unsigned paramIndex = 0;
for (auto *param : *afd->getParameters()) {
SWIFT_DEFER { paramIndex++; };
if (!param->isInOut()) {
continue;
}
if (!isDiagnosedNonEscapable(
afd->mapTypeIntoContext(param->getInterfaceType()))) {
continue;
}
if (llvm::none_of(lifetimeDependencies,
[&](LifetimeDependenceInfo dep) {
return dep.getTargetIndex() == paramIndex;
})) {
ctx.Diags.diagnose(param->getLoc(), diagID,
{StringRef(diagnosticQualifier()),
param->getName()});
}
}
}
bool isCompatibleWithOwnership(LifetimeDependenceKind kind, Type type,
ValueOwnership ownership) const {
if (kind == LifetimeDependenceKind::Inherit) {
return true;
}
// Lifetime dependence always propagates through temporary BitwiseCopyable
// values, even if the dependence is scoped.
if (isBitwiseCopyable(type, ctx)) {
return true;
}
assert(kind == LifetimeDependenceKind::Scope);
auto loweredOwnership = ownership != ValueOwnership::Default
? ownership : getLoweredOwnership(afd);
if (loweredOwnership == ValueOwnership::InOut ||
loweredOwnership == ValueOwnership::Shared) {
return true;
}
assert(loweredOwnership == ValueOwnership::Owned);
return false;
}
struct TargetDeps {
unsigned targetIndex;
SmallBitVector inheritIndices;
SmallBitVector scopeIndices;
TargetDeps(unsigned targetIndex, unsigned capacity)
: targetIndex(targetIndex), inheritIndices(capacity),
scopeIndices(capacity) {}
TargetDeps &&add(unsigned sourceIndex, LifetimeDependenceKind kind) && {
switch (kind) {
case LifetimeDependenceKind::Inherit:
inheritIndices.set(sourceIndex);
break;
case LifetimeDependenceKind::Scope:
scopeIndices.set(sourceIndex);
break;
}
return std::move(*this);
}
};
TargetDeps createDeps(unsigned targetIndex) {
unsigned capacity = afd->hasImplicitSelfDecl()
? (afd->getParameters()->size() + 1)
: afd->getParameters()->size();
return TargetDeps(targetIndex, capacity);
}
// Allocate LifetimeDependenceInfo in the ASTContext and push it onto
// lifetimeDependencies.
void pushDeps(const TargetDeps &&deps) {
assert(llvm::none_of(lifetimeDependencies,
[&](LifetimeDependenceInfo dep) {
return dep.getTargetIndex() == deps.targetIndex;
}));
IndexSubset *inheritIndices = nullptr;
if (deps.inheritIndices.any()) {
inheritIndices = IndexSubset::get(ctx, deps.inheritIndices);
}
IndexSubset *scopeIndices = nullptr;
if (deps.scopeIndices.any()) {
scopeIndices = IndexSubset::get(ctx, deps.scopeIndices);
}
lifetimeDependencies.push_back(
LifetimeDependenceInfo{
/*inheritLifetimeParamIndices*/ inheritIndices,
/*scopeLifetimeParamIndices*/ scopeIndices,
deps.targetIndex,
/*isImmortal*/ false});
}
Type getResultOrYield() const {
if (auto *accessor = dyn_cast<AccessorDecl>(afd)) {
if (accessor->isCoroutine()) {
auto yieldTyInContext = accessor->mapTypeIntoContext(
accessor->getStorage()->getValueInterfaceType());
return yieldTyInContext;
}
}
Type resultType;
if (auto fn = dyn_cast<FuncDecl>(afd)) {
resultType = fn->getResultInterfaceType();
} else {
auto ctor = cast<ConstructorDecl>(afd);
resultType = ctor->getResultInterfaceType();
}
return afd->mapTypeIntoContext(resultType);
}
std::optional<LifetimeDependenceKind>
getDependenceKindFromDescriptor(LifetimeDescriptor descriptor,
ParamDecl *decl) {
auto loc = descriptor.getLoc();
auto ownership = decl->getValueOwnership();
auto type = decl->getTypeInContext();
LifetimeDependenceKind kind;
switch (descriptor.getParsedLifetimeDependenceKind()) {
case ParsedLifetimeDependenceKind::Default:
if (type->isEscapable()) {
kind = LifetimeDependenceKind::Scope;
} else if (useLazyInference()) {
kind = LifetimeDependenceKind::Inherit;
} else {
diagnose(loc, diag::lifetime_dependence_cannot_infer_kind,
diagnosticQualifier(), descriptor.getString());
return std::nullopt;
}
break;
case ParsedLifetimeDependenceKind::Scope:
kind = LifetimeDependenceKind::Scope;
break;
case ParsedLifetimeDependenceKind::Inherit:
kind = LifetimeDependenceKind::Inherit;
break;
}
// @lifetime(borrow x) is invalid for consuming parameters.
if (!isCompatibleWithOwnership(kind, type, ownership)) {
diagnose(loc,
diag::lifetime_dependence_cannot_use_parsed_borrow_consuming);
return std::nullopt;
}
// @lifetime(copy x) is only invalid for Escapable types.
if (kind == LifetimeDependenceKind::Inherit && type->isEscapable()) {
diagnose(loc, diag::lifetime_dependence_invalid_inherit_escapable_type,
descriptor.getString());
return std::nullopt;
}
return kind;
}
// Finds the ParamDecl* and its index from a LifetimeDescriptor
std::optional<std::pair<ParamDecl *, unsigned>>
getParamDeclFromDescriptor(LifetimeDescriptor descriptor) {
switch (descriptor.getDescriptorKind()) {
case LifetimeDescriptor::DescriptorKind::Named: {
unsigned paramIndex = 0;
ParamDecl *candidateParam = nullptr;
for (auto *param : *afd->getParameters()) {
if (param->getParameterName() == descriptor.getName()) {
candidateParam = param;
break;
}
paramIndex++;
}
if (!candidateParam) {
diagnose(descriptor.getLoc(),
diag::lifetime_dependence_invalid_param_name,
descriptor.getName());
return std::nullopt;
}
return std::make_pair(candidateParam, paramIndex);
}
case LifetimeDescriptor::DescriptorKind::Ordered: {
auto paramIndex = descriptor.getIndex();
if (paramIndex >= afd->getParameters()->size()) {
diagnose(descriptor.getLoc(),
diag::lifetime_dependence_invalid_param_index,
paramIndex);
return std::nullopt;
}
auto candidateParam = afd->getParameters()->get(paramIndex);
return std::make_pair(candidateParam, paramIndex);
}
case LifetimeDescriptor::DescriptorKind::Self: {
if (!hasImplicitSelfParam()) {
diagnose(descriptor.getLoc(),
diag::lifetime_dependence_invalid_self_in_static);
return std::nullopt;
}
if (isa<ConstructorDecl>(afd)) {
diagnose(descriptor.getLoc(),
diag::lifetime_dependence_invalid_self_in_init);
return std::nullopt;
}
auto *selfDecl = afd->getImplicitSelfDecl();
return std::make_pair(selfDecl, afd->getParameters()->size());
}
}
}
std::optional<ArrayRef<LifetimeDependenceInfo>> checkAttribute() {
SmallVector<LifetimeDependenceInfo, 1> lifetimeDependencies;
llvm::SmallSet<unsigned, 1> lifetimeDependentTargets;
auto lifetimeAttrs = afd->getAttrs().getAttributes<LifetimeAttr>();
for (auto attr : lifetimeAttrs) {
auto lifetimeDependenceInfo =
checkAttributeEntry(attr->getLifetimeEntry());
if (!lifetimeDependenceInfo.has_value()) {
return std::nullopt;
}
auto targetIndex = lifetimeDependenceInfo->getTargetIndex();
if (lifetimeDependentTargets.contains(targetIndex)) {
// TODO: Diagnose at the source location of the @lifetime attribute with
// duplicate target.
diagnose(afd->getLoc(), diag::lifetime_dependence_duplicate_target);
}
lifetimeDependentTargets.insert(targetIndex);
lifetimeDependencies.push_back(*lifetimeDependenceInfo);
}
return afd->getASTContext().AllocateCopy(lifetimeDependencies);
}
std::optional<LifetimeDependenceInfo>
checkAttributeEntry(LifetimeEntry *entry) {
auto capacity = afd->hasImplicitSelfDecl()
? (afd->getParameters()->size() + 1)
: afd->getParameters()->size();
SmallBitVector inheritIndices(capacity);
SmallBitVector scopeIndices(capacity);
auto updateLifetimeIndices = [&](LifetimeDescriptor descriptor,
unsigned paramIndexToSet,
LifetimeDependenceKind lifetimeKind) {
if (inheritIndices.test(paramIndexToSet) ||
scopeIndices.test(paramIndexToSet)) {
diagnose(descriptor.getLoc(),
diag::lifetime_dependence_duplicate_param_id);
return true;
}
if (lifetimeKind == LifetimeDependenceKind::Inherit) {
inheritIndices.set(paramIndexToSet);
} else {
assert(lifetimeKind == LifetimeDependenceKind::Scope);
scopeIndices.set(paramIndexToSet);
}
return false;
};
auto targetDescriptor = entry->getTargetDescriptor();
unsigned targetIndex;
if (targetDescriptor.has_value()) {
auto targetDeclAndIndex = getParamDeclFromDescriptor(*targetDescriptor);
if (!targetDeclAndIndex.has_value()) {
return std::nullopt;
}
// TODO: support dependencies on non-inout parameters.
if (!targetDeclAndIndex->first->isInOut()) {
diagnose(targetDeclAndIndex->first,
diag::lifetime_parameter_requires_inout,
targetDescriptor->getName());
}
targetIndex = targetDeclAndIndex->second;
} else {
targetIndex = afd->hasImplicitSelfDecl()
? afd->getParameters()->size() + 1
: afd->getParameters()->size();
}
for (auto source : entry->getSources()) {
if (source.isImmortal()) {
auto immortalParam =
std::find_if(afd->getParameters()->begin(),
afd->getParameters()->end(), [](ParamDecl *param) {
return strcmp(param->getName().get(), "immortal") == 0;
});
if (immortalParam != afd->getParameters()->end()) {
diagnose(*immortalParam,
diag::lifetime_dependence_immortal_conflict_name);
return std::nullopt;
}
return LifetimeDependenceInfo(nullptr, nullptr, targetIndex,
/*isImmortal*/ true);
}
auto paramDeclAndIndex = getParamDeclFromDescriptor(source);
if (!paramDeclAndIndex.has_value()) {
return std::nullopt;
}
auto lifetimeKind =
getDependenceKindFromDescriptor(source, paramDeclAndIndex->first);
if (!lifetimeKind.has_value()) {
return std::nullopt;
}
unsigned sourceIndex = paramDeclAndIndex->second;
if (lifetimeKind == LifetimeDependenceKind::Scope
&& sourceIndex == targetIndex) {
diagnose(source.getLoc(),
diag::lifetime_dependence_cannot_use_parsed_borrow_inout);
return std::nullopt;
}
bool hasError =
updateLifetimeIndices(source, sourceIndex, *lifetimeKind);
if (hasError) {
return std::nullopt;
}
}
return LifetimeDependenceInfo(
inheritIndices.any() ? IndexSubset::get(ctx, inheritIndices) : nullptr,
scopeIndices.any() ? IndexSubset::get(ctx, scopeIndices) : nullptr,
targetIndex, /*isImmortal*/ false);
}
// On returning, 'lifetimeDependencies' contains any inferred dependencies and
// 'performedDiagnostics' indicates whether any specific diagnostics were
// issued.
void inferOrDiagnose() {
// Infer non-Escapable results.
if (isDiagnosedNonEscapable(getResultOrYield())) {
if (hasImplicitSelfParam()) {
// Methods and accessors that return or yield a non-Escapable value.
inferNonEscapableResultOnSelf();
return;
}
if (isInit() && isImplicitOrSIL()) {
inferImplicitInit();
return;
}
// Regular functions and initializers that return a non-Escapable value.
inferNonEscapableResultOnParam();
return;
}
// Infer mutating methods.
if (hasImplicitSelfParam()) {
if (isDiagnosedNonEscapable(dc->getSelfTypeInContext())) {
assert(!isInit() && "class initializers have Escapable self");
auto *selfDecl = afd->getImplicitSelfDecl();
if (selfDecl->isInOut()) {
// Mutating methods (excluding initializers)
inferMutatingSelf(selfDecl);
return;
}
}
}
// Infer inout parameters.
inferInoutParams();
}
// Infer method dependence: result depends on self. This includes _modify.
void inferNonEscapableResultOnSelf() {
Type selfTypeInContext = dc->getSelfTypeInContext();
if (selfTypeInContext->hasError()) {
return;
}
bool nonEscapableSelf = isDiagnosedNonEscapable(selfTypeInContext);
// Avoid diagnosing inference on mutating methods when 'self' is
// non-Escapable. The inout 'self' also needs an inferred dependence on
// itself. This will be diagnosed when checking for missing dependencies.
if (nonEscapableSelf && afd->getImplicitSelfDecl()->isInOut()) {
if (auto accessor = dyn_cast<AccessorDecl>(afd)) {
inferMutatingAccessor(accessor);
}
return;
}
// Methods with parameters only apply to lazy inference.
if (!useLazyInference() && afd->getParameters()->size() > 0) {
return;
}
if (!nonEscapableSelf && isBitwiseCopyable(selfTypeInContext, ctx)) {
diagnose(returnLoc,
diag::lifetime_dependence_cannot_infer_bitwisecopyable,
diagnosticQualifier(), "self");
return;
}
if (!useLazyInference()) {
// Do not infer LifetimeDependenceKind::Inherit unless this is an implicit
// getter, which simply returns a stored property.
if (nonEscapableSelf && !isImplicitOrSIL()) {
diagnose(returnLoc, diag::lifetime_dependence_cannot_infer_kind,
diagnosticQualifier(), "self");
return;
}
}
auto kind = inferLifetimeDependenceKindFromType(selfTypeInContext);
auto selfOwnership = afd->getImplicitSelfDecl()->getValueOwnership();
if (!isCompatibleWithOwnership(kind, selfTypeInContext, selfOwnership)) {
diagnose(returnLoc,
diag::lifetime_dependence_cannot_infer_scope_ownership,
"self", diagnosticQualifier());
return;
}
pushDeps(createDeps(resultIndex).add(selfIndex, kind));
}
// Infer implicit initialization. The dependence kind can be inferred, similar
// to an implicit setter, because the implementation is simply an assignment
// to stored property.
void inferImplicitInit() {
if (afd->getParameters()->size() == 0) {
// Empty ~Escapable types can be implicitly initialized without any
// dependencies. In SIL, implicit initializers become explicit. Set
// performedDiagnostics here to bypass normal dependence checking without
// raising an error.
performedDiagnostics = true;
return;
}
auto targetDeps = createDeps(resultIndex);
unsigned paramIndex = 0;
for (auto *param : *afd->getParameters()) {
SWIFT_DEFER { paramIndex++; };
Type paramTypeInContext =
afd->mapTypeIntoContext(param->getInterfaceType());
if (paramTypeInContext->hasError()) {
continue;
}
auto kind = inferLifetimeDependenceKindFromType(paramTypeInContext);
auto paramOwnership = param->getValueOwnership();
if (!isCompatibleWithOwnership(kind, paramTypeInContext, paramOwnership))
{
diagnose(returnLoc,
diag::lifetime_dependence_cannot_infer_scope_ownership,
param->getParameterName().str(), diagnosticQualifier());
continue;
}
targetDeps = std::move(targetDeps).add(paramIndex, kind);
}
pushDeps(std::move(targetDeps));
}
// Infer result dependence on a function or intitializer parameter.
//
// Note: for implicit initializers with parameters, consider inferring
// Inherit dependency for each non-Escapable parameter. This would be
// consistent with implicit stored property setters. This isn't done yet
// because we also need to consider any Escapable parameters: either skip
// inference if any exist, infer scoped dependency, or infer no
// dependency. Implicit setters for Escapable properties are not inferred.
void inferNonEscapableResultOnParam() {
// This is only called when there is no 'self' argument that can be the
// source of a dependence.
assert(!hasImplicitSelfParam());
if (useLazyInference()) {
return lazillyInferNonEscapableResultOnParam();
}
// Strict inference only handles a single escapable parameter,
// which is an unambiguous borrow dependence.
if (afd->getParameters()->size() == 0) {
diagnose(returnLoc,
diag::lifetime_dependence_cannot_infer_return_no_param,
diagnosticQualifier());
diagnose(returnLoc,
diag::lifetime_dependence_cannot_infer_return_immortal);
return;
}
if (afd->getParameters()->size() > 1) {
// The usual diagnostic check is sufficient.
return;
}
// Do not infer non-escapable dependence kind -- it is ambiguous.
auto *param = afd->getParameters()->get(0);
Type paramTypeInContext =
afd->mapTypeIntoContext(param->getInterfaceType());
if (paramTypeInContext->hasError()) {
return;
}
if (!paramTypeInContext->isEscapable()) {
diagnose(returnLoc, diag::lifetime_dependence_cannot_infer_kind,
diagnosticQualifier(), param->getParameterName().str());
return;
}
auto kind = LifetimeDependenceKind::Scope;
auto paramOwnership = param->getValueOwnership();
if (!isCompatibleWithOwnership(kind, paramTypeInContext, paramOwnership))
{
diagnose(returnLoc,
diag::lifetime_dependence_cannot_infer_scope_ownership,
param->getParameterName().str(), diagnosticQualifier());
return;
}
pushDeps(createDeps(resultIndex).add(/*paramIndex*/ 0, kind));
}
// Lazy inference for .swiftinterface backward compatibility and
// experimentation. Inference cases can be added but not removed.
void lazillyInferNonEscapableResultOnParam() {
std::optional<unsigned> candidateParamIndex;
std::optional<LifetimeDependenceKind> candidateLifetimeKind;
unsigned paramIndex = 0;
for (auto *param : *afd->getParameters()) {
SWIFT_DEFER { paramIndex++; };
Type paramTypeInContext =
afd->mapTypeIntoContext(param->getInterfaceType());
if (paramTypeInContext->hasError()) {
return;
}
auto paramOwnership = param->getValueOwnership();
if (paramTypeInContext->isEscapable()) {
if (isBitwiseCopyable(paramTypeInContext, ctx)) {
continue;
}
if (paramOwnership == ValueOwnership::Default) {
continue;
}
}
candidateLifetimeKind =
inferLifetimeDependenceKindFromType(paramTypeInContext);
if (!isCompatibleWithOwnership(
*candidateLifetimeKind, paramTypeInContext, paramOwnership)) {
continue;
}
if (candidateParamIndex) {
diagnose(returnLoc,
diag::lifetime_dependence_cannot_infer_ambiguous_candidate,
diagnosticQualifier());
return;
}
candidateParamIndex = paramIndex;
}
if (!candidateParamIndex) {
diagnose(returnLoc,
diag::lifetime_dependence_cannot_infer_no_candidates,
diagnosticQualifier());
return;
}
pushDeps(createDeps(resultIndex).add(*candidateParamIndex,
*candidateLifetimeKind));
}
// Infer a mutating 'self' dependency when 'self' is non-Escapable and the
// result is 'void'.
void inferMutatingSelf(ParamDecl *selfDecl) {
// Handle implicit setters before diagnosing mutating methods. This
// does not include global accessors, which have no implicit 'self'.
if (auto accessor = dyn_cast<AccessorDecl>(afd)) {
inferMutatingAccessor(accessor);
return;
}
if (afd->getParameters()->size() > 0) {
return;
}
pushDeps(createDeps(selfIndex).add(selfIndex,
LifetimeDependenceKind::Inherit));
}
// Infer a mutating accessor's non-Escapable 'self' dependencies.
void inferMutatingAccessor(AccessorDecl *accessor) {
if (!isImplicitOrSIL() && !useLazyInference()) {
// Explicit setters require explicit lifetime dependencies.
return;
}
switch (accessor->getAccessorKind()) {
case AccessorKind::Read:
// An implicit _read accessor is generated when a mutating getter is
// declared. Emit the same lifetime dependencies as an implicit _modify.
case AccessorKind::Modify:
case AccessorKind::Modify2:
// A _modify's yielded value depends on self. The _modify dependency in
// the opposite direction (self depends on the modified value) is not
// recorded. The caller of _modify ensures that the modified 'self',
// passed as 'inout', depends on any value stored to the yielded address.
//
// This is required for stored properties because the AST generates a
// _modify for them even though it won't be emitted.
pushDeps(createDeps(selfIndex).add(selfIndex,
LifetimeDependenceKind::Inherit));
pushDeps(createDeps(resultIndex).add(selfIndex,
LifetimeDependenceKind::Scope));
break;
case AccessorKind::Set: {
const unsigned newValIdx = 0;
auto *param = afd->getParameters()->get(newValIdx);
Type paramTypeInContext =
afd->mapTypeIntoContext(param->getInterfaceType());
if (paramTypeInContext->hasError()) {
return;