-
Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathProtocolConformance.cpp
1127 lines (990 loc) · 41.5 KB
/
ProtocolConformance.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- ProtocolConformance.cpp - Swift protocol conformance checking ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Checking and caching of Swift protocol conformances.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringExtras.h"
#include "swift/ABI/TypeIdentity.h"
#include "swift/Basic/Lazy.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Demangling/Demangle.h"
#include "swift/Runtime/Bincompat.h"
#include "swift/Runtime/Casting.h"
#include "swift/Runtime/Concurrent.h"
#include "swift/Runtime/EnvironmentVariables.h"
#include "swift/Runtime/HeapObject.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Basic/Unreachable.h"
#include "llvm/ADT/DenseMap.h"
#include "../CompatibilityOverride/CompatibilityOverride.h"
#include "ImageInspection.h"
#include "Private.h"
#include <vector>
#if __has_include(<mach-o/dyld_priv.h>)
#include <mach-o/dyld_priv.h>
#define DYLD_EXPECTED_SWIFT_OPTIMIZATIONS_VERSION 1u
#endif
// Set this to 1 to enable logging of calls to the dyld shared cache conformance
// table
#if 0
#define SHARED_CACHE_LOG(fmt, ...) \
fprintf(stderr, "PROTOCOL CONFORMANCE: " fmt "\n", __VA_ARGS__)
#define SHARED_CACHE_LOG_ENABLED 1
#else
#define SHARED_CACHE_LOG(fmt, ...) (void)0
#endif
// Enable dyld shared cache acceleration only when it's available and we have
// ObjC interop.
#if DYLD_FIND_PROTOCOL_CONFORMANCE_DEFINED && SWIFT_OBJC_INTEROP
#define USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES 1
#endif
using namespace swift;
#ifndef NDEBUG
template <> SWIFT_USED void ProtocolDescriptor::dump() const {
printf("TargetProtocolDescriptor.\n"
"Name: \"%s\".\n",
Name.get());
}
void ProtocolDescriptorFlags::dump() const {
printf("ProtocolDescriptorFlags.\n");
printf("Is Swift: %s.\n", (isSwift() ? "true" : "false"));
printf("Needs Witness Table: %s.\n",
(needsWitnessTable() ? "true" : "false"));
printf("Is Resilient: %s.\n", (isResilient() ? "true" : "false"));
printf("Special Protocol: %s.\n",
(bool(getSpecialProtocol()) ? "Error" : "None"));
printf("Class Constraint: %s.\n",
(bool(getClassConstraint()) ? "Class" : "Any"));
printf("Dispatch Strategy: %s.\n",
(bool(getDispatchStrategy()) ? "Swift" : "ObjC"));
}
#endif
#if !defined(NDEBUG) && SWIFT_OBJC_INTEROP
#include <objc/runtime.h>
static const char *class_getName(const ClassMetadata* type) {
return class_getName(
reinterpret_cast<Class>(const_cast<ClassMetadata*>(type)));
}
template<> void ProtocolConformanceDescriptor::dump() const {
auto symbolName = [&](const void *addr) -> const char * {
SymbolInfo info;
int ok = lookupSymbol(addr, &info);
if (!ok)
return "<unknown addr>";
return info.symbolName.get();
};
switch (auto kind = getTypeKind()) {
case TypeReferenceKind::DirectObjCClassName:
printf("direct Objective-C class name %s", getDirectObjCClassName());
break;
case TypeReferenceKind::IndirectObjCClass:
printf("indirect Objective-C class %s",
class_getName(*getIndirectObjCClass()));
break;
case TypeReferenceKind::DirectTypeDescriptor:
case TypeReferenceKind::IndirectTypeDescriptor:
printf("unique nominal type descriptor %s", symbolName(getTypeDescriptor()));
break;
}
printf(" => ");
printf("witness table %pattern s\n", symbolName(getWitnessTablePattern()));
}
#endif
#ifndef NDEBUG
template <> SWIFT_USED void ProtocolConformanceDescriptor::verify() const {
auto typeKind = unsigned(getTypeKind());
assert(((unsigned(TypeReferenceKind::First_Kind) <= typeKind) &&
(unsigned(TypeReferenceKind::Last_Kind) >= typeKind)) &&
"Corrupted type metadata record kind");
}
#endif
#if SWIFT_OBJC_INTEROP
template <>
const ClassMetadata *TypeReference::getObjCClass(TypeReferenceKind kind) const {
switch (kind) {
case TypeReferenceKind::IndirectObjCClass:
return *getIndirectObjCClass(kind);
case TypeReferenceKind::DirectObjCClassName:
return reinterpret_cast<const ClassMetadata *>(
objc_lookUpClass(getDirectObjCClassName(kind)));
case TypeReferenceKind::DirectTypeDescriptor:
case TypeReferenceKind::IndirectTypeDescriptor:
return nullptr;
}
swift_unreachable("Unhandled TypeReferenceKind in switch.");
}
#endif
/// Take the type reference inside a protocol conformance record and fetch the
/// canonical metadata pointer for the type it refers to.
/// Returns nil for universal or generic type references.
template <>
const Metadata *
ProtocolConformanceDescriptor::getCanonicalTypeMetadata() const {
switch (getTypeKind()) {
case TypeReferenceKind::IndirectObjCClass:
case TypeReferenceKind::DirectObjCClassName:
#if SWIFT_OBJC_INTEROP
// The class may be ObjC, in which case we need to instantiate its Swift
// metadata. The class additionally may be weak-linked, so we have to check
// for null.
if (auto cls = TypeRef.getObjCClass(getTypeKind()))
return getMetadataForClass(cls);
#endif
return nullptr;
case TypeReferenceKind::DirectTypeDescriptor:
case TypeReferenceKind::IndirectTypeDescriptor: {
if (auto anyType = getTypeDescriptor()) {
if (auto type = dyn_cast<TypeContextDescriptor>(anyType)) {
if (!type->isGeneric()) {
if (auto accessFn = type->getAccessFunction())
return accessFn(MetadataState::Abstract).Value;
}
} else if (auto protocol = dyn_cast<ProtocolDescriptor>(anyType)) {
return _getSimpleProtocolTypeMetadata(protocol);
}
}
return nullptr;
}
}
swift_unreachable("Unhandled TypeReferenceKind in switch.");
}
template<>
const WitnessTable *
ProtocolConformanceDescriptor::getWitnessTable(const Metadata *type) const {
// If needed, check the conditional requirements.
llvm::SmallVector<const void *, 8> conditionalArgs;
if (hasConditionalRequirements()) {
SubstGenericParametersFromMetadata substitutions(type);
auto error = _checkGenericRequirements(
getConditionalRequirements(), conditionalArgs,
[&substitutions](unsigned depth, unsigned index) {
return substitutions.getMetadata(depth, index);
},
[&substitutions](const Metadata *type, unsigned index) {
return substitutions.getWitnessTable(type, index);
});
if (error)
return nullptr;
}
return swift_getWitnessTable(this, type, conditionalArgs.data());
}
namespace {
struct ConformanceSection {
const ProtocolConformanceRecord *Begin, *End;
ConformanceSection(const ProtocolConformanceRecord *begin,
const ProtocolConformanceRecord *end)
: Begin(begin), End(end) {}
ConformanceSection(const void *ptr, uintptr_t size) {
auto bytes = reinterpret_cast<const char *>(ptr);
Begin = reinterpret_cast<const ProtocolConformanceRecord *>(ptr);
End = reinterpret_cast<const ProtocolConformanceRecord *>(bytes + size);
}
const ProtocolConformanceRecord *begin() const {
return Begin;
}
const ProtocolConformanceRecord *end() const {
return End;
}
};
struct ConformanceCacheKey {
const Metadata *Type;
const ProtocolDescriptor *Proto;
ConformanceCacheKey(const Metadata *type, const ProtocolDescriptor *proto)
: Type(type), Proto(proto) {
assert(type);
}
friend llvm::hash_code hash_value(const ConformanceCacheKey &key) {
return llvm::hash_combine(key.Type, key.Proto);
}
};
struct ConformanceCacheEntry {
private:
ConformanceCacheKey Key;
const WitnessTable *Witness;
public:
ConformanceCacheEntry(ConformanceCacheKey key, const WitnessTable *witness)
: Key(key), Witness(witness) {}
bool matchesKey(const ConformanceCacheKey &key) const {
return Key.Type == key.Type && Key.Proto == key.Proto;
}
friend llvm::hash_code hash_value(const ConformanceCacheEntry &entry) {
return hash_value(entry.Key);
}
template <class... Args>
static size_t getExtraAllocationSize(Args &&... ignored) {
return 0;
}
/// Get the cached witness table, or null if we cached failure.
const WitnessTable *getWitnessTable() const {
return Witness;
}
};
} // end anonymous namespace
// Conformance Cache.
struct ConformanceState {
ConcurrentReadableHashMap<ConformanceCacheEntry> Cache;
ConcurrentReadableArray<ConformanceSection> SectionsToScan;
bool scanSectionsBackwards;
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
uintptr_t dyldSharedCacheStart;
uintptr_t dyldSharedCacheEnd;
bool hasOverriddenImage;
bool validateSharedCacheResults;
// Only populated when validateSharedCacheResults is enabled.
ConcurrentReadableArray<ConformanceSection> SharedCacheSections;
bool inSharedCache(const void *ptr) {
auto uintPtr = reinterpret_cast<uintptr_t>(ptr);
return dyldSharedCacheStart <= uintPtr && uintPtr < dyldSharedCacheEnd;
}
bool sharedCacheOptimizationsActive() { return dyldSharedCacheStart != 0; }
#else
bool sharedCacheOptimizationsActive() { return false; }
#endif
ConformanceState() {
scanSectionsBackwards =
runtime::bincompat::workaroundProtocolConformanceReverseIteration();
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
if (__builtin_available(macOS 9999, iOS 9999, tvOS 9999, watchOS 9999, *)) {
if (runtime::environment::SWIFT_DEBUG_ENABLE_SHARED_CACHE_PROTOCOL_CONFORMANCES()) {
if (&_dyld_swift_optimizations_version) {
if (_dyld_swift_optimizations_version() ==
DYLD_EXPECTED_SWIFT_OPTIMIZATIONS_VERSION) {
size_t length;
dyldSharedCacheStart =
(uintptr_t)_dyld_get_shared_cache_range(&length);
dyldSharedCacheEnd =
dyldSharedCacheStart ? dyldSharedCacheStart + length : 0;
validateSharedCacheResults = runtime::environment::
SWIFT_DEBUG_VALIDATE_SHARED_CACHE_PROTOCOL_CONFORMANCES();
SHARED_CACHE_LOG("Shared cache range is %#lx-%#lx",
dyldSharedCacheStart, dyldSharedCacheEnd);
} else {
SHARED_CACHE_LOG(
"Disabling shared cache optimizations due to unknown "
"optimizations version %u",
_dyld_swift_optimizations_version());
dyldSharedCacheStart = 0;
dyldSharedCacheEnd = 0;
}
}
}
}
#endif
// This must run last, as it triggers callbacks that require
// ConformanceState to be set up.
initializeProtocolConformanceLookup();
}
void cacheResult(const Metadata *type, const ProtocolDescriptor *proto,
const WitnessTable *witness, size_t sectionsCount) {
Cache.getOrInsert(ConformanceCacheKey(type, proto),
[&](ConformanceCacheEntry *entry, bool created) {
// Create the entry if needed. If it already exists,
// we're done.
if (!created)
return false;
// Check the current sections count against what was
// passed in. If a section count was passed in and they
// don't match, then this is not an authoritative entry
// and it may have been obsoleted, because the new
// sections could contain a conformance in a more
// specific type.
//
// If they DO match, then we can safely add. Another
// thread might be adding new sections at this point,
// but we will not race with them. That other thread
// will add the new sections, then clear the cache. When
// it clears the cache, it will block waiting for this
// code to complete and relinquish Cache's writer lock.
// If we cache a stale entry, it will be immediately
// cleared.
if (sectionsCount > 0 &&
SectionsToScan.snapshot().count() != sectionsCount)
return false; // abandon the new entry
new (entry) ConformanceCacheEntry(
ConformanceCacheKey(type, proto), witness);
return true; // keep the new entry
});
}
#ifndef NDEBUG
void verify() const SWIFT_USED;
#endif
};
#ifndef NDEBUG
void ConformanceState::verify() const {
// Iterate over all of the sections and verify all of the protocol
// descriptors.
auto &Self = const_cast<ConformanceState &>(*this);
for (const auto &Section : Self.SectionsToScan.snapshot()) {
for (const auto &Record : Section) {
Record.get()->verify();
}
}
}
#endif
static Lazy<ConformanceState> Conformances;
const void * const swift::_swift_debug_protocolConformanceStatePointer =
&Conformances;
static void _registerProtocolConformances(ConformanceState &C,
ConformanceSection section) {
C.SectionsToScan.push_back(section);
// Blow away the conformances cache to get rid of any negative entries that
// may now be obsolete.
C.Cache.clear();
}
void swift::addImageProtocolConformanceBlockCallbackUnsafe(
const void *conformances, uintptr_t conformancesSize) {
assert(conformancesSize % sizeof(ProtocolConformanceRecord) == 0 &&
"conformances section not a multiple of ProtocolConformanceRecord");
// Conformance cache should always be sufficiently initialized by this point.
auto &C = Conformances.unsafeGetAlreadyInitialized();
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
// If any image in the shared cache is overridden, we need to scan all
// conformance sections in the shared cache. The pre-built table does NOT work
// if the protocol, type, or descriptor are in overridden images. Example:
//
// libX.dylib: struct S {}
// libY.dylib: protocol P {}
// libZ.dylib: extension S: P {}
//
// If libX or libY are overridden, then dyld will not return the S: P
// conformance from libZ. But that conformance still exists and we must still
// return it! Therefore we must scan libZ (and all other dylibs) even though
// it is not overridden.
if (!dyld_shared_cache_some_image_overridden()) {
// Sections in the shared cache are ignored in favor of the shared cache's
// pre-built tables.
if (C.inSharedCache(conformances)) {
SHARED_CACHE_LOG("Skipping conformances section %p in the shared cache",
conformances);
if (C.validateSharedCacheResults)
C.SharedCacheSections.push_back(
ConformanceSection{conformances, conformancesSize});
return;
} else {
SHARED_CACHE_LOG(
"Adding conformances section %p outside the shared cache",
conformances);
}
}
#endif
// If we have a section, enqueue the conformances for lookup.
_registerProtocolConformances(
C, ConformanceSection{conformances, conformancesSize});
}
void swift::addImageProtocolConformanceBlockCallback(
const void *conformances, uintptr_t conformancesSize) {
Conformances.get();
addImageProtocolConformanceBlockCallbackUnsafe(conformances,
conformancesSize);
}
void
swift::swift_registerProtocolConformances(const ProtocolConformanceRecord *begin,
const ProtocolConformanceRecord *end){
auto &C = Conformances.get();
_registerProtocolConformances(C, ConformanceSection{begin, end});
}
/// Search for a conformance descriptor in the ConformanceCache.
/// First element of the return value is `true` if the result is authoritative
/// i.e. the result is for the type itself and not a superclass. If `false`
/// then we cached a conformance on a superclass, but that may be overridden.
/// A return value of `{ false, nullptr }` indicates nothing was cached.
static std::pair<bool, const WitnessTable *>
searchInConformanceCache(const Metadata *type,
const ProtocolDescriptor *protocol) {
auto &C = Conformances.get();
auto origType = type;
auto snapshot = C.Cache.snapshot();
while (type) {
if (auto *Value = snapshot.find(ConformanceCacheKey(type, protocol))) {
return {type == origType, Value->getWitnessTable()};
}
// If there is a superclass, look there.
type = _swift_class_getSuperclass(type);
}
// We did not find a cache entry.
return {false, nullptr};
}
/// Get the appropriate context descriptor for a type. If the descriptor is a
/// foreign type descriptor, also return its identity string.
static std::pair<const ContextDescriptor *, llvm::StringRef>
getContextDescriptor(const Metadata *conformingType) {
const auto *description = conformingType->getTypeContextDescriptor();
if (description) {
if (description->hasForeignMetadataInitialization()) {
auto identity = ParsedTypeIdentity::parse(description).FullIdentity;
return {description, identity};
}
return {description, {}};
}
// Handle single-protocol existential types for self-conformance.
auto *existentialType = dyn_cast<ExistentialTypeMetadata>(conformingType);
if (existentialType == nullptr ||
existentialType->getProtocols().size() != 1 ||
existentialType->getSuperclassConstraint() != nullptr)
return {nullptr, {}};
auto proto = existentialType->getProtocols()[0];
#if SWIFT_OBJC_INTEROP
if (proto.isObjC())
return {nullptr, {}};
#endif
return {proto.getSwiftProtocol(), {}};
}
namespace {
/// Describes a protocol conformance "candidate" that can be checked
/// against a type metadata.
class ConformanceCandidate {
const void *candidate;
bool candidateIsMetadata;
public:
ConformanceCandidate() : candidate(0), candidateIsMetadata(false) { }
ConformanceCandidate(const ProtocolConformanceDescriptor &conformance)
: ConformanceCandidate()
{
if (auto description = conformance.getTypeDescriptor()) {
candidate = description;
candidateIsMetadata = false;
return;
}
if (auto metadata = conformance.getCanonicalTypeMetadata()) {
candidate = metadata;
candidateIsMetadata = true;
return;
}
}
/// Whether the conforming type exactly matches the conformance candidate.
bool matches(const Metadata *conformingType) const {
// Check whether the types match.
if (candidateIsMetadata && conformingType == candidate)
return true;
// Check whether the nominal type descriptors match.
if (!candidateIsMetadata) {
const auto *description = std::get<const ContextDescriptor *>(
getContextDescriptor(conformingType));
auto candidateDescription =
static_cast<const ContextDescriptor *>(candidate);
if (description && equalContexts(description, candidateDescription))
return true;
}
return false;
}
/// Retrieve the type that matches the conformance candidate, which may
/// be a superclass of the given type. Returns null if this type does not
/// match this conformance.
const Metadata *getMatchingType(const Metadata *conformingType) const {
while (conformingType) {
// Check for a match.
if (matches(conformingType))
return conformingType;
// Look for a superclass.
conformingType = _swift_class_getSuperclass(conformingType);
}
return nullptr;
}
};
}
static void validateSharedCacheResults(
ConformanceState &C, const Metadata *type,
const ProtocolDescriptor *protocol,
const WitnessTable *dyldCachedWitnessTable,
const ProtocolConformanceDescriptor *dyldCachedConformanceDescriptor) {
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
if (!C.sharedCacheOptimizationsActive() || !C.validateSharedCacheResults)
return;
llvm::SmallVector<const ProtocolConformanceDescriptor *, 8> conformances;
for (auto §ion : C.SharedCacheSections.snapshot()) {
for (const auto &record : section) {
auto &descriptor = *record.get();
if (descriptor.getProtocol() != protocol)
continue;
ConformanceCandidate candidate(descriptor);
if (candidate.getMatchingType(type))
conformances.push_back(&descriptor);
}
}
auto conformancesString = [&]() -> std::string {
std::string result = "";
for (auto *conformance : conformances) {
if (!result.empty())
result += ", ";
result += "0x";
result += llvm::utohexstr(reinterpret_cast<uint64_t>(conformance));
}
return result;
};
if (dyldCachedConformanceDescriptor) {
if (std::find(conformances.begin(), conformances.end(),
dyldCachedConformanceDescriptor) == conformances.end()) {
auto typeName = swift_getTypeName(type, true);
swift::fatalError(
0,
"Checking conformance of %.*s %p to %s %p - dyld cached conformance "
"descriptor %p not found in conformance records: (%s)\n",
(int)typeName.length, typeName.data, type, protocol->Name.get(),
protocol, dyldCachedConformanceDescriptor,
conformancesString().c_str());
}
} else {
if (!conformances.empty()) {
auto typeName = swift_getTypeName(type, true);
swift::fatalError(
0,
"Checking conformance of %.*s %p to %s %p - dyld found no "
"conformance descriptor, but matching descriptors exist: (%s)\n",
(int)typeName.length, typeName.data, type, protocol->Name.get(),
protocol, conformancesString().c_str());
}
}
#endif
}
/// Query the shared cache for a protocol conformance, if supported. The return
/// value is a tuple consisting of the found witness table (if any), the found
/// conformance descriptor (if any), and a bool that's true if a failure is
/// definitive.
static std::tuple<const WitnessTable *, const ProtocolConformanceDescriptor *,
bool>
findSharedCacheConformance(ConformanceState &C, const Metadata *type,
const ProtocolDescriptor *protocol) {
#if USE_DYLD_SHARED_CACHE_CONFORMANCE_TABLES
const ContextDescriptor *description;
llvm::StringRef foreignTypeIdentity;
std::tie(description, foreignTypeIdentity) = getContextDescriptor(type);
// dyld expects the ObjC class, if any, as the second parameter.
auto objcClassMetadata = swift_getObjCClassFromMetadataConditional(type);
#if SHARED_CACHE_LOG_ENABLED
auto typeName = swift_getTypeName(type, true);
SHARED_CACHE_LOG("Looking up conformance of %.*s to %s", (int)typeName.length,
typeName.data, protocol->Name.get());
#endif
_dyld_protocol_conformance_result dyldResult;
if (!foreignTypeIdentity.empty()) {
SHARED_CACHE_LOG(
"_dyld_find_foreign_type_protocol_conformance(%p, %.*s, %zu)", protocol,
(int)foreignTypeIdentity.size(), foreignTypeIdentity.data(),
foreignTypeIdentity.size());
dyldResult = _dyld_find_foreign_type_protocol_conformance(
protocol, foreignTypeIdentity.data(), foreignTypeIdentity.size());
} else {
SHARED_CACHE_LOG("_dyld_find_protocol_conformance(%p, %p, %p)", protocol,
objcClassMetadata, description);
dyldResult = _dyld_find_protocol_conformance(protocol, objcClassMetadata,
description);
}
switch (dyldResult.kind) {
case _dyld_protocol_conformance_result_kind_found_descriptor: {
auto *conformanceDescriptor =
reinterpret_cast<const ProtocolConformanceDescriptor *>(
dyldResult.value);
assert(conformanceDescriptor->getProtocol() == protocol);
assert(ConformanceCandidate{*conformanceDescriptor}.getMatchingType(type));
if (conformanceDescriptor->getGenericWitnessTable()) {
SHARED_CACHE_LOG(
"Found generic conformance descriptor %p for %s in shared "
"cache, continuing",
conformanceDescriptor, protocol->Name.get());
return std::make_tuple(nullptr, conformanceDescriptor, false);
} else {
// When there are no generics, we can retrieve the witness table cheaply,
// so do it up front.
SHARED_CACHE_LOG("Found conformance descriptor %p for %s in shared cache",
conformanceDescriptor, protocol->Name.get());
auto *witnessTable = conformanceDescriptor->getWitnessTable(type);
return std::make_tuple(witnessTable, conformanceDescriptor, false);
}
break;
}
case _dyld_protocol_conformance_result_kind_found_witness_table:
// If we found a witness table then we're done.
SHARED_CACHE_LOG(
"Found witness table %p for conformance to %s in shared cache",
dyldResult.value, protocol->Name.get());
return std::make_tuple(reinterpret_cast<const WitnessTable *>(dyldResult.value), nullptr,
false);
case _dyld_protocol_conformance_result_kind_not_found:
// If nothing is found, then we'll proceed with checking the runtime's
// caches and scanning conformance records.
SHARED_CACHE_LOG("Conformance to %s not found in shared cache",
protocol->Name.get());
return std::make_tuple(nullptr, nullptr, false);
break;
case _dyld_protocol_conformance_result_kind_definitive_failure:
// This type is known not to conform to this protocol. Return failure
// without any further checks.
SHARED_CACHE_LOG("Found definitive failure for %s in shared cache",
protocol->Name.get());
return std::make_tuple(nullptr, nullptr, true);
default:
// Other values may be added. Consider them equivalent to not_found until
// we implement code to handle them.
SHARED_CACHE_LOG(
"Unknown result kind %lu from _dyld_find_protocol_conformance()",
(unsigned long)dyldResult.kind);
return std::make_tuple(nullptr, nullptr, false);
}
#else
return std::make_tuple(nullptr, nullptr, false);
#endif
}
static const WitnessTable *
swift_conformsToProtocolImpl(const Metadata *const type,
const ProtocolDescriptor *protocol) {
auto &C = Conformances.get();
const WitnessTable *dyldCachedWitnessTable = nullptr;
const ProtocolConformanceDescriptor *dyldCachedConformanceDescriptor =
nullptr;
// Search the shared cache tables for a conformance for this type, and for
// superclasses (if it's a class).
if (C.sharedCacheOptimizationsActive()) {
const Metadata *dyldSearchType = type;
do {
bool definitiveFailure;
std::tie(dyldCachedWitnessTable, dyldCachedConformanceDescriptor,
definitiveFailure) =
findSharedCacheConformance(C, dyldSearchType, protocol);
if (definitiveFailure)
return nullptr;
dyldSearchType = _swift_class_getSuperclass(dyldSearchType);
} while (dyldSearchType && !dyldCachedWitnessTable &&
!dyldCachedConformanceDescriptor);
validateSharedCacheResults(C, type, protocol, dyldCachedWitnessTable,
dyldCachedConformanceDescriptor);
// Return a cached result if we got a witness table. We can't do this if
// scanSectionsBackwards is set, since a scanned conformance can override a
// cached result in that case.
if (!C.scanSectionsBackwards)
if (dyldCachedWitnessTable)
return dyldCachedWitnessTable;
}
// See if we have an authoritative cached conformance. The
// ConcurrentReadableHashMap data structure allows us to search the map
// concurrently without locking.
auto found = searchInConformanceCache(type, protocol);
if (found.first) {
// An authoritative negative result can be overridden by a result from dyld.
if (!found.second) {
if (dyldCachedWitnessTable)
return dyldCachedWitnessTable;
}
return found.second;
}
if (dyldCachedConformanceDescriptor) {
ConformanceCandidate candidate(*dyldCachedConformanceDescriptor);
auto *matchingType = candidate.getMatchingType(type);
assert(matchingType);
auto witness = dyldCachedConformanceDescriptor->getWitnessTable(matchingType);
C.cacheResult(type, protocol, witness, /*always cache*/ 0);
SHARED_CACHE_LOG("Caching generic conformance to %s found in shared cache",
protocol->Name.get());
return witness;
}
// Scan conformance records.
llvm::SmallDenseMap<const Metadata *, const WitnessTable *> foundWitnesses;
auto processSection = [&](const ConformanceSection §ion) {
// Eagerly pull records for nondependent witnesses into our cache.
auto processDescriptor = [&](const ProtocolConformanceDescriptor &descriptor) {
// We only care about conformances for this protocol.
if (descriptor.getProtocol() != protocol)
return;
// If there's a matching type, record the positive result and return it.
// The matching type is exact, so they can't go stale, and we should
// always cache them.
ConformanceCandidate candidate(descriptor);
if (auto *matchingType = candidate.getMatchingType(type)) {
auto witness = descriptor.getWitnessTable(matchingType);
C.cacheResult(matchingType, protocol, witness, /*always cache*/ 0);
foundWitnesses.insert({matchingType, witness});
}
};
if (C.scanSectionsBackwards) {
for (const auto &record : llvm::reverse(section))
processDescriptor(*record.get());
} else {
for (const auto &record : section)
processDescriptor(*record.get());
}
};
auto snapshot = C.SectionsToScan.snapshot();
if (C.scanSectionsBackwards) {
for (auto §ion : llvm::reverse(snapshot))
processSection(section);
} else {
for (auto §ion : snapshot)
processSection(section);
}
// Find the most specific conformance that was scanned.
const WitnessTable *foundWitness = nullptr;
const Metadata *searchType = type;
while (!foundWitness && searchType) {
foundWitness = foundWitnesses.lookup(searchType);
// If there's no entry here, move up to the superclass (if any).
if (!foundWitness)
searchType = _swift_class_getSuperclass(searchType);
}
// If it's for a superclass or if we didn't find anything, then add an
// authoritative entry for this type.
if (searchType != type)
C.cacheResult(type, protocol, foundWitness, snapshot.count());
// A negative result can be overridden by a result from dyld.
if (foundWitness) {
if (dyldCachedWitnessTable)
return dyldCachedWitnessTable;
}
return foundWitness;
}
const ContextDescriptor *
swift::_searchConformancesByMangledTypeName(Demangle::NodePointer node) {
auto &C = Conformances.get();
for (auto §ion : C.SectionsToScan.snapshot()) {
for (const auto &record : section) {
if (auto ntd = record->getTypeDescriptor()) {
if (_contextDescriptorMatchesMangling(ntd, node))
return ntd;
}
}
}
return nullptr;
}
static MetadataState
tryGetCompleteMetadataNonblocking(const Metadata *metadata) {
return swift_checkMetadataState(
MetadataRequest(MetadataState::Complete, /*isNonBlocking*/ true),
metadata)
.State;
}
template <typename HandleObjc>
bool isSwiftClassMetadataSubclass(const ClassMetadata *subclass,
const ClassMetadata *superclass,
HandleObjc handleObjc) {
assert(subclass);
assert(superclass);
MetadataState subclassState = tryGetCompleteMetadataNonblocking(subclass);
do {
if (subclassState == MetadataState::Complete) {
// The subclass metadata is complete. That means not just that its
// Superclass field is valid, but that the Superclass field of the
// referenced class metadata is valid, and the Superclass field of the
// class metadata referenced there, and so on transitively.
//
// Scan the superclass chains in the ClassMetadata looking for a match.
while ((subclass = subclass->Superclass)) {
if (subclass == superclass)
return true;
}
return false;
}
if (subclassState == MetadataState::NonTransitiveComplete) {
// The subclass metadata is complete, but, unlike above, not transitively.
// Its Superclass field is valid, so just read that field to get to the
// superclass to proceed to the next step.
subclass = subclass->Superclass;
if (subclass->isPureObjC()) {
return handleObjc(subclass, superclass);
}
subclassState = tryGetCompleteMetadataNonblocking(subclass);
} else {
// The subclass metadata is either LayoutComplete or Abstract, so the
// Superclass field is not valid. To get to the superclass, make the
// expensive call to getSuperclassMetadata which demangles the superclass
// name from the nominal type descriptor to get the metadata for the
// superclass.
MetadataRequest request(MetadataState::Complete,
/*non-blocking*/ true);
auto response = getSuperclassMetadata(request, subclass);
auto newMetadata = response.Value;
if (auto newSubclass = dyn_cast<ClassMetadata>(newMetadata)) {
subclass = newSubclass;
subclassState = response.State;
} else {
return handleObjc(newMetadata, superclass);
}
}
if (subclass == superclass)
return true;
} while (subclass);
return false;
}
// Whether the provided `subclass` is metadata for a subclass* of the superclass
// whose metadata is specified.
//
// The function is robust against incomplete metadata for both subclass and
// superclass. In the worst case, each intervening class between subclass and
// superclass is demangled. Besides that slow path, there are a number of fast
// paths:
// - both classes are ObjC: swift_dynamicCastMetatype
// - Complete subclass metadata: loop over Superclass fields
// - NonTransitiveComplete: read the Superclass field once
//
// * A non-strict subclass; that is, given a class X, isSubclass(X.self, X.self)
// is true.
static bool isSubclass(const Metadata *subclass, const Metadata *superclass) {
assert(subclass);
assert(superclass);
assert(subclass->isAnyClass());
assert(superclass->isAnyClass());
if (subclass == superclass)
return true;
if (!isa<ClassMetadata>(subclass)) {
if (!isa<ClassMetadata>(superclass)) {
// Only ClassMetadata can be incomplete; when the class metadata is not
// ClassMetadata, just use swift_dynamicCastMetatype.
return swift_dynamicCastMetatype(subclass, superclass);
} else {
// subclass is ObjC, but superclass is not; since it is not possible for
// any ObjC class to be a subclass of any Swift class, this subclass is
// not a subclass of this superclass.
return false;
}
}
const ClassMetadata *swiftSubclass = cast<ClassMetadata>(subclass);
if (auto *objcSuperclass = dyn_cast<ObjCClassWrapperMetadata>(superclass)) {
// Walk up swiftSubclass's ancestors until we get to an ObjC class, then
// kick over to swift_dynamicCastMetatype.
return isSwiftClassMetadataSubclass(
swiftSubclass, objcSuperclass->Class,
[](const Metadata *intermediate, const Metadata *superclass) {
// Intermediate is an ObjC class, and superclass is an ObjC class;
// as above, just use swift_dynamicCastMetatype.
return swift_dynamicCastMetatype(intermediate, superclass);
});
return false;
}
if (isa<ForeignClassMetadata>(superclass)) {
// superclass is foreign, but subclass is not (if it were, the above
// !isa<ClassMetadata> condition would have been entered). Since it is not
// possible for any Swift class to be a subclass of any foreign superclass,
// this subclass is not a subclass of this superclass.
return false;
}
auto swiftSuperclass = cast<ClassMetadata>(superclass);
return isSwiftClassMetadataSubclass(swiftSubclass, swiftSuperclass,
[](const Metadata *, const Metadata *) {
// Because (1) no ObjC classes inherit
// from Swift classes and (2)
// `superclass` is not ObjC, if some
// ancestor of `subclass` is ObjC, then
// `subclass` cannot descend from
// `superclass` (otherwise at some point
// some ObjC class would have to inherit
// from a Swift class).
return false;
});
}
llvm::Optional<TypeLookupError> swift::_checkGenericRequirements(
llvm::ArrayRef<GenericRequirementDescriptor> requirements,
llvm::SmallVectorImpl<const void *> &extraArguments,