-
Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathDeadCodeElimination.cpp
900 lines (780 loc) · 31.5 KB
/
DeadCodeElimination.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
//===--- DeadCodeElimination.cpp - Delete dead code ----------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-dce"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/OwnershipUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/BasicBlockBits.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILUndef.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/BasicBlockOptUtils.h"
#include "swift/SILOptimizer/Utils/CFGOptUtils.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
STATISTIC(NumBranchesPromoted, "Number of dead branches promoted to jumps");
STATISTIC(NumDeletedInsts, "Number of instructions deleted");
namespace {
// Without any complex analysis, does this instruction seem like
// something that we need to keep?
//
// FIXME: Reconcile the similarities between this and
// isInstructionTriviallyDead.
static bool seemsUseful(SILInstruction *I) {
// Even though begin_access/destroy_value/copy_value have side-effects, they
// can be DCE'ed if they do not have useful dependencies/reverse dependencies
if (isa<BeginAccessInst>(I) || isa<CopyValueInst>(I) ||
isa<DestroyValueInst>(I))
return false;
// A load [copy] is okay to be DCE'ed if there are no useful dependencies
if (auto *load = dyn_cast<LoadInst>(I)) {
if (load->getOwnershipQualifier() == LoadOwnershipQualifier::Copy)
return false;
}
if (I->mayHaveSideEffects())
return true;
if (auto *BI = dyn_cast<BuiltinInst>(I)) {
// Although the onFastPath builtin has no side-effects we don't want to
// remove it.
return BI->getBuiltinInfo().ID == BuiltinValueKind::OnFastPath;
}
if (isa<UnreachableInst>(I))
return true;
if (auto TI = dyn_cast<TermInst>(I)) {
if (TI->isFunctionExiting())
return true;
}
return false;
}
// We map from post-dominator tree node to a ControllingInfo struct
// which contains the post-dominator tree level of this node, along
// with the direct predecessors that this node is control-dependent
// on, and the minimum level number of any predecessor in the subtree
// below this node in the post-dominator tree.
struct ControllingInfo {
typedef std::pair<SILBasicBlock *, unsigned> PredInfo;
SILBasicBlock *Block;
// The post-dominator tree level for this node.
unsigned Level;
llvm::SmallVector<PredInfo, 2> ControllingPreds;
unsigned MinTreePredLevel;
};
class DCE {
typedef llvm::DomTreeNodeBase<SILBasicBlock> PostDomTreeNode;
SILFunction *F;
llvm::SmallPtrSet<SILArgument *, 16> LiveArguments;
llvm::SmallPtrSet<SILInstruction *, 16> LiveInstructions;
BasicBlockSet LiveBlocks;
llvm::SmallVector<SILInstruction *, 64> Worklist;
PostDominanceInfo *PDT;
llvm::DenseMap<SILBasicBlock *, ControllingInfo> ControllingInfoMap;
// Maps instructions which produce a failing condition (like overflow
// builtins) to the actual cond_fail instructions which handle the failure.
// Dependencies which go in the reverse direction. Usually for a pair
// %1 = inst_a
// inst_b(%1)
// the dependency goes from inst_b to inst_a: if inst_b is alive then
// inst_a is also alive.
// For some instructions the dependency is exactly the other way round, e.g.
// %1 = inst_which_can_fail
// cond_fail(%1)
// In this case cond_fail is alive only if inst_which_can_fail is alive.
// The key of this map is the source of the dependency (inst_a), the
// value is the set of instructions dependent on it (inst_b).
llvm::DenseMap<SILValue, SmallPtrSet<SILInstruction *, 4>>
ReverseDependencies;
// reborrowDependencies tracks the dependency of a reborrowed phiArg with its
// renamed base value.
// A reborrowed phiArg may have a new base value, if it's original base value
// was also passed as a branch operand. The renamed base value should then be
// live if the reborrow phiArg was also live.
using BaseValueSet = SmallPtrSet<SILValue, 8>;
llvm::DenseMap<SILPhiArgument *, BaseValueSet> reborrowDependencies;
/// Tracks if the pass changed branches.
bool BranchesChanged = false;
/// Tracks if the pass changed ApplyInsts.
bool CallsChanged = false;
bool precomputeControlInfo();
void markLive();
/// Record a reverse dependency from \p from to \p to meaning \p to is live
/// if \p from is also live.
void addReverseDependency(SILValue from, SILInstruction *to);
/// Starting from \p borrowInst find all reborrow dependency of its reborrows
/// with their renamed base values.
void findReborrowDependencies(BeginBorrowInst *borrowInst);
bool removeDead();
void computeLevelNumbers(PostDomTreeNode *root);
bool hasInfiniteLoops();
void computePredecessorDependence();
void computeMinPredecessorLevels(PostDomTreeNode *root);
void insertControllingInfo(SILBasicBlock *Block, unsigned Level);
void markValueLive(SILValue V);
void markInstructionLive(SILInstruction *Inst);
void markTerminatorArgsLive(SILBasicBlock *Pred, SILBasicBlock *Succ,
size_t ArgIndex);
void markControllingTerminatorsLive(SILBasicBlock *Block);
void propagateLiveBlockArgument(SILArgument *Arg);
void propagateLiveness(SILInstruction *I);
void collectControllingBlocksInTree(ControllingInfo &QueryInfo,
PostDomTreeNode *root,
llvm::SmallPtrSetImpl<SILBasicBlock *> &Controlling);
void collectControllingBlocks(SILBasicBlock *Block,
llvm::SmallPtrSetImpl<SILBasicBlock *> &);
SILBasicBlock *nearestUsefulPostDominator(SILBasicBlock *Block);
void replaceBranchWithJump(SILInstruction *Inst, SILBasicBlock *Block);
/// If \p value is live, insert a lifetime ending operation in ossa.
/// destroy_value for @owned value and end_borrow for a @guaranteed value.
void endLifetimeOfLiveValue(SILValue value, SILInstruction *insertPt);
public:
DCE(SILFunction *F, PostDominanceInfo *PDT) : F(F), LiveBlocks(F), PDT(PDT) {}
/// The entry point to the transformation.
bool run() {
if (!precomputeControlInfo())
return false;
markLive();
return removeDead();
}
bool mustInvalidateCalls() const { return CallsChanged; }
bool mustInvalidateBranches() const { return BranchesChanged; }
};
// Keep track of the fact that V is live and add it to our worklist
// so that we can process the values it depends on.
void DCE::markValueLive(SILValue V) {
if (SILInstruction *inst = V->getDefiningInstruction())
return markInstructionLive(inst);
if (isa<SILUndef>(V))
return;
LLVM_DEBUG(llvm::dbgs() << "Marking as live: " << *V);
auto *Arg = cast<SILArgument>(V);
if (!LiveArguments.insert(Arg).second)
return;
markControllingTerminatorsLive(Arg->getParent());
propagateLiveBlockArgument(Arg);
}
void DCE::markInstructionLive(SILInstruction *Inst) {
if (!LiveInstructions.insert(Inst).second)
return;
LLVM_DEBUG(llvm::dbgs() << "Marking as live: " << *Inst);
markControllingTerminatorsLive(Inst->getParent());
Worklist.push_back(Inst);
}
/// Gets the producing instruction of a cond_fail condition. Currently these
/// are overflow builtins but may be extended to other instructions in the
/// future.
static BuiltinInst *getProducer(CondFailInst *CFI) {
// Check for the pattern:
// %1 = builtin "some_operation_with_overflow"
// %2 = tuple_extract %1
// %3 = cond_fail %2
SILValue FailCond = CFI->getOperand();
if (auto *TEI = dyn_cast<TupleExtractInst>(FailCond)) {
if (auto *BI = dyn_cast<BuiltinInst>(TEI->getOperand())) {
return BI;
}
}
return nullptr;
}
// Determine which instructions from this function we need to keep.
void DCE::markLive() {
// Find the initial set of instructions in this function that appear
// to be live in the sense that they are not trivially something we
// can delete by examining only that instruction.
for (auto &BB : *F) {
for (auto &I : BB) {
switch (I.getKind()) {
case SILInstructionKind::CondFailInst: {
if (auto *Prod = getProducer(cast<CondFailInst>(&I))) {
addReverseDependency(Prod, &I);
} else {
markInstructionLive(&I);
}
break;
}
// The side-effects of fix_lifetime effect all references to the same
// object. It must be preserved to keep alive any potentially aliasing
// references. fix_lifetime can only be removed by proving that its
// operand is both a unique and a dead reference, but this makes more
// sense in DeadObjectElimination.
case SILInstructionKind::FixLifetimeInst: {
// If the operand is a trivial scalar value, then it has no aliases or
// side-effects. Consider handling this as an instruction
// canonicalization instead.
SILValue Op = I.getOperand(0);
if (!Op->getType().isAddress() && Op->getType().isTrivial(*F)) {
addReverseDependency(Op, &I);
} else {
markInstructionLive(&I);
}
break;
}
case SILInstructionKind::EndAccessInst: {
// An end_access is live only if it's begin_access is also live.
auto *beginAccess = cast<EndAccessInst>(&I)->getBeginAccess();
addReverseDependency(beginAccess, &I);
break;
}
case SILInstructionKind::DestroyValueInst:
case SILInstructionKind::EndBorrowInst: {
// The instruction is live only if it's operand value is also live
addReverseDependency(I.getOperand(0), &I);
break;
}
case SILInstructionKind::BeginBorrowInst: {
// Currently we only support borrows of owned values.
// Nested borrow handling can be complex in the presence of reborrows.
// So it is not handled currently.
auto *borrowInst = cast<BeginBorrowInst>(&I);
if (borrowInst->getOperand().getOwnershipKind() !=
OwnershipKind::Owned) {
markInstructionLive(borrowInst);
// Visit all end_borrows and mark them live
auto visitEndBorrow = [&](EndBorrowInst *endBorrow) {
markInstructionLive(endBorrow);
};
visitTransitiveEndBorrows(borrowInst, visitEndBorrow);
continue;
}
// If not populate reborrowDependencies for this borrow
findReborrowDependencies(cast<BeginBorrowInst>(&I));
break;
}
default:
if (seemsUseful(&I))
markInstructionLive(&I);
}
}
}
// Now propagate liveness backwards from each instruction in our
// worklist, adding new instructions to the worklist as we discover
// more that we need to keep.
while (!Worklist.empty()) {
auto *I = Worklist.pop_back_val();
propagateLiveness(I);
}
}
// Records a reverse dependency if needed. See DCE::ReverseDependencies.
void DCE::addReverseDependency(SILValue from, SILInstruction *to) {
LLVM_DEBUG(llvm::dbgs() << "Adding reverse dependency from " << from << " to "
<< to);
ReverseDependencies[from].insert(to);
}
void DCE::findReborrowDependencies(BeginBorrowInst *borrowInst) {
LLVM_DEBUG(llvm::dbgs() << "Finding reborrow dependencies of " << borrowInst
<< "\n");
BorrowingOperand initialScopedOperand(&borrowInst->getOperandRef());
auto visitReborrowBaseValuePair = [&](SILPhiArgument *phiArg,
SILValue baseValue) {
reborrowDependencies[phiArg].insert(baseValue);
};
// Find all reborrow dependencies starting from \p borrowInst and populate
// them in reborrowDependencies
findTransitiveReborrowBaseValuePairs(initialScopedOperand,
borrowInst->getOperand(),
visitReborrowBaseValuePair);
}
// Mark as live the terminator argument at index ArgIndex in Pred that
// targets Succ.
void DCE::markTerminatorArgsLive(SILBasicBlock *Pred,
SILBasicBlock *Succ,
size_t ArgIndex) {
auto *Term = Pred->getTerminator();
// If the arguments are live, we need to keep the terminator that
// delivers those arguments.
markInstructionLive(Term);
switch (Term->getTermKind()) {
case TermKind::ReturnInst:
case TermKind::ThrowInst:
case TermKind::UnwindInst:
case TermKind::YieldInst:
case TermKind::UnreachableInst:
case TermKind::SwitchValueInst:
case TermKind::SwitchEnumAddrInst:
case TermKind::CheckedCastAddrBranchInst:
llvm_unreachable("Unexpected argument for terminator kind!");
break;
case TermKind::DynamicMethodBranchInst:
case TermKind::SwitchEnumInst:
case TermKind::CheckedCastBranchInst:
case TermKind::CheckedCastValueBranchInst:
assert(ArgIndex == 0 && "Expected a single argument!");
// We do not need to do anything with these. If the resulting
// argument is used at the destination these terminators will end
// up live, and then our normal liveness propagation will mark the
// single operand of these instructions as live.
break;
case TermKind::BranchInst:
markValueLive(cast<BranchInst>(Term)->getArg(ArgIndex));
break;
case TermKind::CondBranchInst: {
auto *CondBr = cast<CondBranchInst>(Term);
if (CondBr->getTrueBB() == Succ) {
auto TrueArgs = CondBr->getTrueArgs();
markValueLive(TrueArgs[ArgIndex]);
}
if (CondBr->getFalseBB() == Succ) {
auto FalseArgs = CondBr->getFalseArgs();
markValueLive(FalseArgs[ArgIndex]);
}
break;
}
case TermKind::AwaitAsyncContinuationInst:
case TermKind::TryApplyInst: {
assert(ArgIndex == 0 && "Expect a single argument!");
break;
}
}
}
// Propagate liveness back from Arg to the terminator arguments that
// supply its value.
void DCE::propagateLiveBlockArgument(SILArgument *Arg) {
// Conceptually, the dependency from a debug instruction to its definition
// is in reverse direction: Only if its definition (the Arg) is alive, also
// the debug_value instruction is alive.
for (Operand *DU : getDebugUses(Arg))
markInstructionLive(DU->getUser());
// Mark all reverse dependencies on the Arg live
for (auto *depInst : ReverseDependencies.lookup(Arg)) {
markInstructionLive(depInst);
}
if (auto *phi = dyn_cast<SILPhiArgument>(Arg)) {
for (auto depVal : reborrowDependencies.lookup(phi)) {
markValueLive(depVal);
}
}
auto *Block = Arg->getParent();
auto ArgIndex = Arg->getIndex();
for (auto Pred : Block->getPredecessorBlocks())
markTerminatorArgsLive(Pred, Block, ArgIndex);
}
// Given an instruction which is considered live, propagate that liveness
// back to the instructions that produce values it consumes.
void DCE::propagateLiveness(SILInstruction *I) {
if (!isa<TermInst>(I)) {
for (auto &O : I->getAllOperands())
markValueLive(O.get());
// Conceptually, the dependency from a debug instruction to its definition
// is in reverse direction: Only if its definition is alive, also the
// debug_value instruction is alive.
for (auto result : I->getResults())
for (Operand *DU : getDebugUses(result))
markInstructionLive(DU->getUser());
// Handle all other reverse-dependency instructions, like cond_fail,
// fix_lifetime, destroy_value, etc. Only if the definition is alive, the
// user itself is alive.
for (auto res : I->getResults()) {
for (auto *depInst : ReverseDependencies.lookup(res)) {
markInstructionLive(depInst);
}
}
return;
}
switch (cast<TermInst>(I)->getTermKind()) {
case TermKind::BranchInst:
case TermKind::UnreachableInst:
case TermKind::UnwindInst:
return;
case TermKind::ReturnInst:
case TermKind::ThrowInst:
case TermKind::CondBranchInst:
case TermKind::SwitchEnumInst:
case TermKind::SwitchEnumAddrInst:
case TermKind::DynamicMethodBranchInst:
markValueLive(I->getOperand(0));
return;
case TermKind::AwaitAsyncContinuationInst:
case TermKind::CheckedCastBranchInst:
case TermKind::CheckedCastValueBranchInst:
case TermKind::CheckedCastAddrBranchInst:
case TermKind::TryApplyInst:
case TermKind::SwitchValueInst:
case TermKind::YieldInst:
for (auto &O : I->getAllOperands())
markValueLive(O.get());
return;
}
llvm_unreachable("corrupt instruction!");
}
SILBasicBlock *DCE::nearestUsefulPostDominator(SILBasicBlock *Block) {
// Find the nearest post-dominator that has useful instructions.
auto *PostDomNode = PDT->getNode(Block)->getIDom();
while (PostDomNode &&
// In case the PostDomNode's block is null, it means it's not contained
// in LiveBlocks.
(!PostDomNode->getBlock() ||
!LiveBlocks.contains(PostDomNode->getBlock())))
PostDomNode = PostDomNode->getIDom();
if (PostDomNode)
return PostDomNode->getBlock();
return nullptr;
}
// Replace the given conditional branching instruction with a plain
// jump (aka unconditional branch) to the destination block.
void DCE::replaceBranchWithJump(SILInstruction *Inst, SILBasicBlock *Block) {
++NumBranchesPromoted;
assert(Block && "Expected a destination block!");
assert((isa<CondBranchInst>(Inst) ||
isa<SwitchValueInst>(Inst) ||
isa<SwitchEnumInst>(Inst) ||
isa<SwitchEnumAddrInst>(Inst) ||
isa<DynamicMethodBranchInst>(Inst) ||
isa<CheckedCastBranchInst>(Inst)) &&
"Unexpected dead terminator kind!");
SILInstruction *Branch;
if (!Block->args_empty()) {
std::vector<SILValue> Args;
auto E = Block->args_end();
for (auto A = Block->args_begin(); A != E; ++A) {
assert(!LiveArguments.count(*A) && "Unexpected live block argument!");
Args.push_back(SILUndef::get((*A)->getType(), *(*A)->getFunction()));
}
Branch =
SILBuilderWithScope(Inst).createBranch(Inst->getLoc(), Block, Args);
} else {
Branch = SILBuilderWithScope(Inst).createBranch(Inst->getLoc(), Block);
}
LLVM_DEBUG(llvm::dbgs() << "Inserted unconditional branch:\n");
LLVM_DEBUG(Branch->dump());
(void)Branch;
}
void DCE::endLifetimeOfLiveValue(SILValue value, SILInstruction *insertPt) {
if (SILInstruction *inst = value->getDefiningInstruction()) {
if (!LiveInstructions.count(inst))
return;
} else if (auto *arg = dyn_cast<SILArgument>(value)) {
if (!LiveArguments.count(arg))
return;
}
SILBuilderWithScope builder(insertPt);
if (value.getOwnershipKind() == OwnershipKind::Owned) {
builder.emitDestroyOperation(RegularLocation::getAutoGeneratedLocation(),
value);
}
if (value.getOwnershipKind() == OwnershipKind::Guaranteed) {
builder.emitEndBorrowOperation(RegularLocation::getAutoGeneratedLocation(),
value);
}
}
// Remove the instructions that are not potentially useful.
bool DCE::removeDead() {
bool Changed = false;
for (auto &BB : *F) {
for (unsigned i = 0; i < BB.getArguments().size();) {
auto *arg = BB.getArgument(i);
if (LiveArguments.count(arg)) {
i++;
continue;
}
LLVM_DEBUG(llvm::dbgs() << "Removing dead argument:\n");
LLVM_DEBUG(arg->dump());
arg->replaceAllUsesWithUndef();
if (!F->hasOwnership() || arg->getOwnershipKind() == OwnershipKind::None) {
i++;
Changed = true;
BranchesChanged = true;
continue;
}
if (!arg->isPhiArgument()) {
// We cannot delete a non phi arg. If it was @owned, insert a
// destroy_value, because its consuming user has already been marked
// dead and will be deleted.
// We do not have to end lifetime of a @guaranteed non phi arg.
if (arg->getOwnershipKind() == OwnershipKind::Owned) {
auto insertPt = getInsertAfterPoint(arg).getValue();
SILBuilderWithScope builder(insertPt);
auto *destroy = builder.createDestroyValue(insertPt->getLoc(), arg);
LiveInstructions.insert(destroy);
}
i++;
Changed = true;
BranchesChanged = true;
continue;
}
auto *phiArg = cast<SILPhiArgument>(arg);
// In OSSA, we have to delete a dead phi argument and insert destroy or
// end_borrow at its predecessors if the incoming values are live.
// This is not necessary in non-OSSA, and will infact be incorrect.
// Because, passing a value as a phi argument does not imply end of
// lifetime in non-OSSA.
for (auto *pred : BB.getPredecessorBlocks()) {
auto *predTerm = pred->getTerminator();
SILInstruction *insertPt = predTerm;
if (phiArg->getOwnershipKind() == OwnershipKind::Guaranteed) {
// If the phiArg is dead and had reborrow dependencies, its baseValue
// may also have been dead and a destroy_value of its baseValue may
// have been inserted before the pred's terminator. Make sure to
// adjust the insertPt before any destroy_value.
for (SILInstruction &predInst : llvm::reverse(*pred)) {
if (&predInst == predTerm)
continue;
if (!isa<DestroyValueInst>(&predInst)) {
insertPt = &*std::next(predInst.getIterator());
break;
}
}
}
endLifetimeOfLiveValue(phiArg->getIncomingPhiValue(pred), insertPt);
}
erasePhiArgument(&BB, i);
Changed = true;
BranchesChanged = true;
}
for (auto I = BB.begin(), E = BB.end(); I != E; ) {
auto *Inst = &*I;
++I;
if (LiveInstructions.count(Inst) || isa<BranchInst>(Inst))
continue;
// We want to replace dead terminators with unconditional branches to
// the nearest post-dominator that has useful instructions.
if (auto *termInst = dyn_cast<TermInst>(Inst)) {
SILBasicBlock *postDom = nearestUsefulPostDominator(Inst->getParent());
if (!postDom)
continue;
for (auto &op : termInst->getAllOperands()) {
if (op.isLifetimeEnding()) {
endLifetimeOfLiveValue(op.get(), termInst);
}
}
LLVM_DEBUG(llvm::dbgs() << "Replacing branch: ");
LLVM_DEBUG(Inst->dump());
LLVM_DEBUG(llvm::dbgs() << "with jump to: BB" << postDom->getDebugID());
replaceBranchWithJump(Inst, postDom);
Inst->eraseFromParent();
BranchesChanged = true;
Changed = true;
continue;
}
++NumDeletedInsts;
LLVM_DEBUG(llvm::dbgs() << "Removing dead instruction:\n");
LLVM_DEBUG(Inst->dump());
if (F->hasOwnership()) {
for (auto &Op : Inst->getAllOperands()) {
if (Op.isLifetimeEnding()) {
endLifetimeOfLiveValue(Op.get(), Inst);
}
}
}
Inst->replaceAllUsesOfAllResultsWithUndef();
if (isa<ApplyInst>(Inst))
CallsChanged = true;
Inst->eraseFromParent();
Changed = true;
}
}
return Changed;
}
// Precompute some information from the post-dominator tree to aid us
// in determining control dependence without generating a complete
// control dependence graph. Inspired by:
// Optimal control dependence and the Roman chariots problem
// TOPLAS, v19, issue 3, 1997
// http://dx.doi.org/10.1145/256167.256217
//
// For each node in the post-dominator tree we will compute:
// -- A level number.
//
// -- The list of immediate predecessors that this block is
// control-dependent on along with the level number in the
// post-dominator tree of each of those predecessors.
//
// -- The lowest level number of any predecessor below the given node
// in the post-dominator tree. This will be used to exit early in
// later control-dependence queries.
//
// Returns true upon success, false if nodes that are not present in the
// post-dominator tree are detected.
bool DCE::precomputeControlInfo() {
computeLevelNumbers(PDT->getRootNode());
if (hasInfiniteLoops())
return false;
computePredecessorDependence();
computeMinPredecessorLevels(PDT->getRootNode());
return true;
}
void DCE::insertControllingInfo(SILBasicBlock *Block, unsigned Level) {
assert(ControllingInfoMap.find(Block) == ControllingInfoMap.end() &&
"Unexpected map entry for node!");
ControllingInfo Info;
Info.Block = Block;
Info.Level = Level;
Info.MinTreePredLevel = -1;
ControllingInfoMap[Block] = Info;
}
// Assign a level number to each node in the post-dominator tree.
void DCE::computeLevelNumbers(PostDomTreeNode *root) {
llvm::SmallVector<std::pair<PostDomTreeNode *, unsigned>, 32> workList;
workList.push_back({root, 0});
while (!workList.empty()) {
auto entry = workList.pop_back_val();
PostDomTreeNode *node = entry.first;
unsigned level = entry.second;
insertControllingInfo(node->getBlock(), level);
for (PostDomTreeNode *child : *node) {
workList.push_back({child, level + 1});
}
}
}
// Structurally infinite loops like:
// bb1:
// br bb1
// are not present in the post-dominator tree. Their presence
// requires significant modifications to the way the rest of the
// algorithm works. They should be rare, so for now we'll do the most
// conservative thing and completely bail out, doing no dead code
// elimination. Note this will also hit for unreachable code, but
// presumably we'll run DCE at some point after removing unreachable
// code.
bool DCE::hasInfiniteLoops() {
for (auto &BB : *F)
if (ControllingInfoMap.find(&BB) == ControllingInfoMap.end())
return true;
return false;
}
// For each block, create a list of the direct predecessors that the
// block is control-dependent on. With each predecessor, also keep the
// level number of the predecessor in the post-dominator tree.
void DCE::computePredecessorDependence() {
for (auto &BB : *F) {
assert(ControllingInfoMap.find(&BB) != ControllingInfoMap.end()
&& "Expected to already have a map entry for block!");
for (auto Pred : BB.getPredecessorBlocks())
if (!PDT->properlyDominates(&BB, Pred)) {
assert(ControllingInfoMap.find(Pred) != ControllingInfoMap.end() &&
"Expected to already have a map entry for block!");
auto PredLevel = ControllingInfoMap[Pred].Level;
auto PredInfo = std::make_pair(Pred, PredLevel);
auto &MapElement = ControllingInfoMap[&BB];
MapElement.ControllingPreds.push_back(PredInfo);
}
}
}
// Assign the minimum post-dominator tree level to each node in the tree.
void DCE::computeMinPredecessorLevels(PostDomTreeNode *root) {
llvm::SmallVector<PostDomTreeNode *, 32> postDomOrder;
postDomOrder.reserve(ControllingInfoMap.size());
postDomOrder.push_back(root);
for (unsigned idx = 0; idx < postDomOrder.size(); ++idx) {
PostDomTreeNode *node = postDomOrder[idx];
for (PostDomTreeNode *child : *node) {
postDomOrder.push_back(child);
}
}
for (PostDomTreeNode *node : llvm::reverse(postDomOrder)) {
SILBasicBlock *block = node->getBlock();
assert(ControllingInfoMap.find(block) != ControllingInfoMap.end() &&
"Expected to have map entry for node!");
ControllingInfo &nodeInfo = ControllingInfoMap[block];
for (auto &pred : nodeInfo.ControllingPreds) {
nodeInfo.MinTreePredLevel = std::min(nodeInfo.MinTreePredLevel, pred.second);
}
if (PostDomTreeNode *parentNode = node->getIDom()) {
ControllingInfo &parentInfo = ControllingInfoMap[parentNode->getBlock()];
parentInfo.MinTreePredLevel = std::min(parentInfo.MinTreePredLevel, nodeInfo.MinTreePredLevel);
}
}
}
void DCE::collectControllingBlocksInTree(ControllingInfo &QueryInfo,
PostDomTreeNode *root,
llvm::SmallPtrSetImpl<SILBasicBlock *> &Controlling) {
llvm::SmallVector<PostDomTreeNode *, 32> workList;
workList.push_back(root);
while (!workList.empty()) {
PostDomTreeNode *node = workList.pop_back_val();
SILBasicBlock *block = node->getBlock();
assert(ControllingInfoMap.find(block) != ControllingInfoMap.end() &&
"Expected to have map entry for node!");
auto &nodeInfo = ControllingInfoMap[block];
if (nodeInfo.MinTreePredLevel > QueryInfo.Level)
continue;
for (auto &PredInfo : nodeInfo.ControllingPreds) {
if (PredInfo.second <= QueryInfo.Level) {
assert(PDT->properlyDominates(
PDT->getNode(PredInfo.first)->getIDom()->getBlock(),
QueryInfo.Block) &&
"Expected predecessor's post-dominator to post-dominate node.");
Controlling.insert(PredInfo.first);
}
}
for (PostDomTreeNode *child : *node) {
workList.push_back(child);
}
}
}
// Walk the post-dominator tree from the query block down, building
// the set of blocks that the given block is control-dependent on. To
// determine control dependence we use some precomputed information
// about the direct predecessors that control each block, along with
// the level numbers in the post-dominator tree of those controlling
// predecessors. We can use the latter to terminate the walk down the
// dominator tree early.
void DCE::collectControllingBlocks(SILBasicBlock *Block,
llvm::SmallPtrSetImpl<SILBasicBlock *> &Controlling) {
// First add the blocks that QueryNode is directly control-dependent on.
assert(ControllingInfoMap.find(Block) != ControllingInfoMap.end() &&
"Expected map entry for node!");
auto &MapEntry = ControllingInfoMap[Block];
// Now walk the children looking for nodes that have controlling
// predecessors that have the same or lower level number in the
// post-dominator tree.
collectControllingBlocksInTree(MapEntry, PDT->getNode(Block), Controlling);
}
void DCE::markControllingTerminatorsLive(SILBasicBlock *Block) {
if (LiveBlocks.contains(Block))
return;
LiveBlocks.insert(Block);
llvm::SmallPtrSet<SILBasicBlock *, 4> ControllingBlocks;
collectControllingBlocks(Block, ControllingBlocks);
for (auto BB : ControllingBlocks)
markInstructionLive(BB->getTerminator());
}
class DCEPass : public SILFunctionTransform {
public:
/// The entry point to the transformation.
void run() override {
SILFunction *F = getFunction();
LLVM_DEBUG(llvm::dbgs() << "*** DCE on function: " << F->getName()
<< " ***\n");
auto *DA = PM->getAnalysis<PostDominanceAnalysis>();
PostDominanceInfo *PDT = DA->get(F);
// If we have a function that consists of nothing but a
// structurally infinite loop like:
// while true {}
// we'll have an empty post dominator tree.
if (!PDT->getRootNode())
return;
DCE dce(F, PDT);
if (dce.run()) {
using InvalidationKind = SILAnalysis::InvalidationKind;
unsigned Inv = InvalidationKind::Instructions;
if (dce.mustInvalidateCalls())
Inv |= (unsigned)InvalidationKind::Calls;
if (dce.mustInvalidateBranches()) {
removeUnreachableBlocks(*F);
Inv |= (unsigned)InvalidationKind::Branches;
}
invalidateAnalysis(SILAnalysis::InvalidationKind(Inv));
}
}
};
} // end anonymous namespace
SILTransform *swift::createDCE() {
return new DCEPass();
}