-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathAccessEnforcementOpts.cpp
1175 lines (1045 loc) · 47 KB
/
AccessEnforcementOpts.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===------ AccessEnforcementOpts.cpp - Optimize access enforcement -------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
///
/// Pass order dependencies:
///
/// - Will benefit from running after AccessEnforcementSelection.
///
/// - Should run immediately before the AccessEnforcementWMO to share
/// AccessStorageAnalysis results.
///
/// - Benefits from running after AccessEnforcementReleaseSinking.
///
/// This pass optimizes access enforcement as follows:
///
/// **Access marker folding**
///
/// Find begin/end access scopes that are uninterrupted by a potential
/// conflicting access. Flag those as [nontracking] access.
///
/// Folding must prove that no dynamic conflicts occur inside of an access
/// scope. That is, a scope has no "nested inner conflicts". The access itself
/// may still conflict with an outer scope. If successful, folding simply sets
/// the [no_nested_conflict] attribute on the begin_[unpaired_]access
/// instruction and removes all corresponding end_[unpaired_]access
/// instructions.
///
/// This analysis is conceptually similar to DiagnoseStaticExclusivity. The
/// difference is that it conservatively considers any dynamic access that may
/// alias, as opposed to only the obviously aliasing accesses (it is the
/// complement of the static diagnostic pass in that respect). This makes a
/// considerable difference in the implementation. For example,
/// DiagnoseStaticExclusivity must be able to fully analyze all @inout_aliasable
/// parameters because they aren't dynamically enforced. This optimization
/// completely ignores @inout_aliasable parameters because it only cares about
/// dynamic enforcement. This optimization also does not attempt to
/// differentiate accesses on disjoint subaccess paths, because it should not
/// weaken enforcement in any way--a program that traps at -Onone should also
/// trap at -O.
///
/// Access folding is a forward data flow analysis that tracks open accesses. If
/// any path to an access' end of scope has a potentially conflicting access,
/// then that access is marked as a nested conflict.
///
/// **Local access marker removal**
///
/// When none of the local accesses on local storage (box/stack) have nested
/// conflicts, then all the local accesses may be disabled by setting their
/// enforcement to `static`. This is somewhat rare because static diagnostics
/// already promote the obvious cases to static checks. However, there are two
/// reasons that dynamic local markers may be disabled: (1) inlining may cause
/// closure access to become local access (2) local storage may truly escape,
/// but none of the local access scopes cross a call site.
///
/// TODO: Perform another run of AccessEnforcementSelection immediately before
/// this pass. Currently, that pass only works well when run before
/// AllocBox2Stack. Ideally all such closure analysis passes are combined into a
/// shared analysis with a set of associated optimizations that can be rerun at
/// any point in the pipeline. Until then, we could settle for a partially
/// working AccessEnforcementSelection, or expand it somewhat to handle
/// alloc_stack.
///
/// **Access marker merger**
///
/// When a pair of non-overlapping accesses, where the first access dominates
/// the second and there are no conflicts on the same storage in the paths
/// between them, and they are part of the same sub-region
/// be it the same block or the sample loop, merge those accesses to create
/// a new, larger, scope with a single begin_access for the accesses.
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "access-enforcement-opts"
#include "swift/Basic/Assertions.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/MemAccessUtils.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SILOptimizer/Analysis/AccessStorageAnalysis.h"
#include "swift/SILOptimizer/Analysis/DeadEndBlocksAnalysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/LoopRegionAnalysis.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "swift/SILOptimizer/Utils/InstructionDeleter.h"
#include "swift/SILOptimizer/Utils/OwnershipOptUtils.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SCCIterator.h"
using namespace swift;
namespace swift {
/// Information about each dynamic access with valid storage.
///
/// This is a pass-specific subclass of AccessStorage with identical layout.
/// An instance is created for each BeginAccess in the current function. In
/// additional to identifying the access' storage location, it associates that
/// access with pass-specific data in reserved bits. The reserved bits do not
/// participate in equality or hash lookup.
///
/// Aliased to AccessInfo in this file; the fully descriptive class name allows
/// forward declaration in order to define bitfields in AccessStorage.
class AccessEnforcementOptsInfo : public AccessStorage {
public:
AccessEnforcementOptsInfo(const AccessStorage &storage)
: AccessStorage(storage) {
Bits.AccessEnforcementOptsInfo.beginAccessIndex = 0;
Bits.AccessEnforcementOptsInfo.seenNestedConflict = false;
}
/// Get a unique index for this access within its function.
unsigned getAccessIndex() const {
return Bits.AccessEnforcementOptsInfo.beginAccessIndex;
}
void setAccessIndex(unsigned index) {
Bits.AccessEnforcementOptsInfo.beginAccessIndex = index;
assert(unsigned(Bits.AccessEnforcementOptsInfo.beginAccessIndex) == index);
}
/// Has the analysis seen a conflicting nested access on any path within this
/// access' scope.
bool seenNestedConflict() const {
return Bits.AccessEnforcementOptsInfo.seenNestedConflict;
}
void setSeenNestedConflict() {
Bits.AccessEnforcementOptsInfo.seenNestedConflict = 1;
}
/// Did a PostOrder walk previously find another access to the same
/// storage. If so, then this access could be merged with a subsequent access
/// after checking for conflicts.
bool seenIdenticalStorage() const {
return Bits.AccessEnforcementOptsInfo.seenIdenticalStorage;
}
void setSeenIdenticalStorage() {
Bits.AccessEnforcementOptsInfo.seenIdenticalStorage = 1;
}
void dump() const {
AccessStorage::dump();
llvm::dbgs() << " access index: " << getAccessIndex() << " <"
<< (seenNestedConflict() ? "" : "no ") << "conflict> <"
<< (seenIdenticalStorage() ? "" : "not ") << "seen identical>"
<< "\n";
}
};
using AccessInfo = AccessEnforcementOptsInfo;
} // namespace swift
namespace {
/// A dense map of (index, begin_access instructions) as a compact vector.
/// Reachability results are stored here because very few accesses are
/// typically in-progress at a particular program point,
/// particularly at block boundaries.
using DenseAccessSet = llvm::SmallSetVector<BeginAccessInst *, 4>;
// Tracks the local data flow result for a basic block
struct RegionState {
DenseAccessSet inScopeConflictFreeAccesses;
DenseAccessSet outOfScopeConflictFreeAccesses;
public:
RegionState(unsigned size) {
// FIXME: llvm::SetVector should have a reserve API.
// inScopeConflictFreeAccesses.reserve(size);
// outOfScopeConflictFreeAccesses.reserve(size);
}
void reset() {
inScopeConflictFreeAccesses.clear();
outOfScopeConflictFreeAccesses.clear();
}
const DenseAccessSet &getInScopeAccesses() {
return inScopeConflictFreeAccesses;
}
const DenseAccessSet &getOutOfScopeAccesses() {
return outOfScopeConflictFreeAccesses;
}
};
/// Analyze a function's formal accesses.
/// determines nested conflicts and mergeable accesses.
///
/// Maps each begin access instruction to its AccessInfo, which:
/// - identifies the accessed memory for conflict detection
/// - contains a pass-specific reachability set index
/// - contains a pass-specific flag that indicates the presence of a conflict
/// on any path.
///
/// If, after computing reachability, an access' conflict flag is still not set,
/// then all paths in its scope are conflict free. Reachability begins at a
/// begin_access instruction and ends either at a potential conflict
/// or at the end_access instruction that is associated with the
/// begin_access.
///
/// Forward data flow computes `BlockRegionState` for each region's blocks.
/// Loops are processed bottom-up.
/// Control flow within a loop or function top level is processed in RPO order.
/// At a block's control flow merge, this analysis forms an intersection of
/// reachable accesses on each path inside the region.
/// Before a block is visited, it has no `BlockRegionState` entry.
/// Blocks are processed in RPO order, and a single begin_access dominates
/// all associated end_access instructions. Consequently,
/// when a block is first visited, its storage accesses contains the maximal
/// reachability set. Further iteration would only reduce this set.
///
/// The only results of this analysis are:
//// 1) The seenNestedConflict flags in AccessInfo. For Each begin_access
/// Since reducing a reachability set cannot further detect
/// conflicts, there is no need to iterate to a reachability fix point.
/// This is derived from a block's in-scope accesses
/// 2) A deterministic order map of out-of-scope instructions that we can
/// merge. The way we construct this map guarantees the accesses within
/// it are mergeable.
///
// Example:
// %1 = begin_access X
// %1 is in-scope
// ...
// %2 = begin_access Y // conflict with %1 if X (may-)aliases Y
// If it conflicts - seenNestedConflict
// ...
// end_access %1
// %1 is out-of-scope
// ...
// %3 = begin_access X // %1 reaches %3 -> we can merge
class AccessConflictAndMergeAnalysis {
public:
using AccessMap = llvm::SmallDenseMap<BeginAccessInst *, AccessInfo, 32>;
using AccessStorageSet = llvm::SmallDenseSet<AccessStorage, 8>;
using LoopRegionToAccessStorage =
llvm::SmallDenseMap<unsigned, AccessStorageResult>;
using RegionIDToLocalStateMap = llvm::DenseMap<unsigned, RegionState>;
// Instruction pairs we can merge from dominating instruction to dominated
using MergeablePairs =
llvm::SmallVector<std::pair<BeginAccessInst *, BeginAccessInst *>, 64>;
// This result of this analysis is a map from all BeginAccessInst in this
// function to AccessInfo.
struct Result {
/// Map each begin access to its AccessInfo with index, data, and flags.
/// Iterating over this map is nondeterministic. If it is necessary to order
/// the accesses, then AccessInfo::getAccessIndex() can be used.
/// This maps contains every dynamic begin_access instruction,
/// even those with invalid storage:
/// We would like to keep track of unrecognized or invalid storage locations
/// Because they affect our decisions for recognized locations,
/// be it nested conflict or merging out of scope accesses.
/// The access map is just a “cache” of accesses.
/// Keeping those invalid ones just makes the lookup faster
AccessMap accessMap;
/// Instruction pairs we can merge the scope of
MergeablePairs mergePairs;
/// Convenience.
///
/// Note: If AccessInfo has already been retrieved, get the index directly
/// from it instead of calling this to avoid additional hash lookup.
unsigned getAccessIndex(BeginAccessInst *beginAccess) const {
return getAccessInfo(beginAccess).getAccessIndex();
}
/// Get the AccessInfo for a BeginAccessInst within this function. All
/// accesses are mapped by identifyBeginAccesses().
AccessInfo &getAccessInfo(BeginAccessInst *beginAccess) {
auto iter = accessMap.find(beginAccess);
assert(iter != accessMap.end());
return iter->second;
}
const AccessInfo &getAccessInfo(BeginAccessInst *beginAccess) const {
return const_cast<Result &>(*this).getAccessInfo(beginAccess);
}
};
private:
LoopRegionFunctionInfo *LRFI;
PostOrderFunctionInfo *PO;
AccessStorageAnalysis *ASA;
// Unique storage locations seen in this function.
AccessStorageSet storageSet;
Result result;
public:
AccessConflictAndMergeAnalysis(LoopRegionFunctionInfo *LRFI,
PostOrderFunctionInfo *PO,
AccessStorageAnalysis *ASA)
: LRFI(LRFI), PO(PO), ASA(ASA) {}
bool analyze();
const Result &getResult() { return result; }
protected:
bool identifyBeginAccesses();
void
propagateAccessSetsBottomUp(LoopRegionToAccessStorage ®ionToStorageMap,
const llvm::SmallVector<unsigned, 16> &worklist);
void calcBottomUpOrder(llvm::SmallVectorImpl<unsigned> &worklist);
void visitBeginAccess(BeginAccessInst *beginAccess, RegionState &state);
void visitEndAccess(EndAccessInst *endAccess, RegionState &state);
void visitFullApply(FullApplySite fullApply, RegionState &state);
void visitMayRelease(SILInstruction *instr, RegionState &state);
RegionState &mergePredAccesses(unsigned regionID,
RegionIDToLocalStateMap &localRegionStates);
void localDataFlowInBlock(RegionState &state, SILBasicBlock *bb);
private:
void recordInScopeConflicts(RegionState &state,
const AccessStorage &currStorage,
SILAccessKind currKind);
bool removeConflicts(DenseAccessSet &accessSet,
const AccessStorage &currStorage);
void recordUnknownConflict(RegionState &state);
void recordConflicts(RegionState &state,
const AccessStorageResult &accessedStorage);
BeginAccessInst *findMergeableOutOfScopeAccess(RegionState &state,
BeginAccessInst *beginAccess);
void insertOutOfScopeAccess(RegionState &state, BeginAccessInst *beginAccess,
AccessInfo &currStorageInfo);
void mergeAccessSet(DenseAccessSet &accessSet, const DenseAccessSet &otherSet,
bool isInitialized);
void mergeState(RegionState &state, const RegionState &otherState,
bool isInitialized);
};
} // namespace
// Mark any in-scope access that conflicts with an access to 'currStorage' for
// the given 'beginAccess' as having a nested conflict.
void AccessConflictAndMergeAnalysis::recordInScopeConflicts(
RegionState &state, const AccessStorage &currStorage,
SILAccessKind currKind) {
// It is tempting to combine this loop with the loop in removeConflicts, which
// also checks isDistinctFrom for each element. However, since SetVector does
// not support 'llvm::erase_if', it is actually more efficient to do the
// removal in a separate 'remove_if' loop.
llvm::for_each(state.inScopeConflictFreeAccesses, [&](BeginAccessInst *bai) {
auto &accessInfo = result.getAccessInfo(bai);
if (accessKindMayConflict(currKind, bai->getAccessKind())
&& !accessInfo.isDistinctFrom(currStorage)) {
accessInfo.setSeenNestedConflict();
LLVM_DEBUG(llvm::dbgs() << " may conflict with:\n"; accessInfo.dump());
}
});
}
// Remove any accesses in accessSet that may conflict with the given storage
// location, currStorageInfo.
//
// Return true if any set elements were removed.
bool AccessConflictAndMergeAnalysis::removeConflicts(
DenseAccessSet &accessSet, const AccessStorage &currStorage) {
return accessSet.remove_if([&](BeginAccessInst *bai) {
auto &storage = result.getAccessInfo(bai);
return !storage.isDistinctFrom(currStorage);
});
}
void AccessConflictAndMergeAnalysis::recordUnknownConflict(RegionState &state) {
// Mark all open scopes as having a nested conflict.
llvm::for_each(state.inScopeConflictFreeAccesses, [&](BeginAccessInst *bai) {
auto &accessInfo = result.getAccessInfo(bai);
accessInfo.setSeenNestedConflict();
LLVM_DEBUG(llvm::dbgs() << " may conflict with:\n"; accessInfo.dump());
});
// Clear data flow.
state.reset();
}
// Update data flow `state` by removing accesses that conflict with the
// currently accessed `storage`. For in-scope accesses, also mark conflicting
// scopes with SeenNestedConflict.
//
// Removing access from the out-of-scope set is important for two reasons:
//
// 1. Let A & B be conflicting out-of-scope, where A's scope ends before B. If
// data flow then encounters scope C with the same storage as B, it should be
// able to merge them. This is safe regardless of whether A & B overlap because
// it doesn't introduce any conflict that wasn't already present. However,
// leaving A in the out-of-scope set means that we won't be able to merge B & C
// based on this dataflow.
//
// 2. Without removing conflicting scopes, the access set is unbounded and this
// data flow could scale quadratically with the function size.
void AccessConflictAndMergeAnalysis::recordConflicts(
RegionState &state, const AccessStorageResult &accessedStorage) {
if (accessedStorage.hasUnidentifiedAccess()) {
recordUnknownConflict(state);
return;
}
for (const StorageAccessInfo &currStorage : accessedStorage.getStorageSet()) {
recordInScopeConflicts(state, currStorage, currStorage.getAccessKind());
removeConflicts(state.inScopeConflictFreeAccesses, currStorage);
removeConflicts(state.outOfScopeConflictFreeAccesses, currStorage);
}
}
// Check if the current BeginAccessInst has identical storage with an
// out-of-scope access. If so, remove the access from the set and return it.
BeginAccessInst *AccessConflictAndMergeAnalysis::findMergeableOutOfScopeAccess(
RegionState &state, BeginAccessInst *beginAccess) {
auto currStorageInfo = result.getAccessInfo(beginAccess);
// Before removing any conflicting accesses, find one with identical storage.
auto identicalStorageIter = llvm::find_if(
state.outOfScopeConflictFreeAccesses, [&](BeginAccessInst *bai) {
auto storageInfo = result.getAccessInfo(bai);
return storageInfo.hasIdenticalStorage(currStorageInfo);
});
if (identicalStorageIter == state.outOfScopeConflictFreeAccesses.end())
return nullptr;
// Remove the matching access before checking for other conflicts. Since we
// only check for a single identical storage access above, leaving multiple
// accesses of the same storage in the set would appear as a conflict in the
// check below when processing subsequent mergeable accesses.
BeginAccessInst *mergeableAccess = *identicalStorageIter;
state.outOfScopeConflictFreeAccesses.erase(identicalStorageIter);
// Given a mergeableAccess, 'A', another out-of-scope access, 'B', and the
// current access, 'C' which has identical storage as 'A', the only situation
// in which it is illegal to merge 'A' with 'C' is when 'B' has non-distinct
// storage from 'A'/'C', 'B' begins after 'A', and 'B' ends before
// 'C'. Merging 'A' with 'C' would then introduce a false conflict. Since it
// is impossible to determine here whether 'A' and 'B' overlap, we assume they
// do not and simply avoid merging whenever 'B' and 'C' overlap. It is not
// important to optimize the case in which 'A' and 'B' overlap because
// potential conflicts like that are unlikely.
if (llvm::any_of(state.outOfScopeConflictFreeAccesses,
[&](BeginAccessInst *bai) {
auto storageInfo = result.getAccessInfo(bai);
return !storageInfo.isDistinctFrom(currStorageInfo);
})) {
return nullptr;
}
return mergeableAccess;
}
// Add the given access to the out-of-scope set, replacing any existing
// out-of-scope access on the same storage. An access to the same storage may
// already be out-of-scope, for example, if there are nested reads:
//
// %4 = begin_access [read] [dynamic] %0 : $*X
// %5 = load %4 : $*X
// %7 = begin_access [read] [dynamic] %0 : $*X
// %8 = load %7 : $*X
// end_access %7 : $*X
// end_access %4 : $*X
//
// The inner scope needs to be replaced with the outer scope so that scope
// nesting is preserved when merging scopes.
void AccessConflictAndMergeAnalysis::insertOutOfScopeAccess(
RegionState &state, BeginAccessInst *beginAccess,
AccessInfo &currStorageInfo) {
if (!currStorageInfo.seenIdenticalStorage()) {
LLVM_DEBUG(llvm::dbgs() << "Ignoring unmergeable access: " << *beginAccess);
return;
}
auto identicalStorageIter = llvm::find_if(
state.outOfScopeConflictFreeAccesses, [&](BeginAccessInst *bai) {
auto storageInfo = result.getAccessInfo(bai);
return storageInfo.hasIdenticalStorage(currStorageInfo);
});
if (identicalStorageIter == state.outOfScopeConflictFreeAccesses.end())
state.outOfScopeConflictFreeAccesses.insert(beginAccess);
else {
state.outOfScopeConflictFreeAccesses.erase(identicalStorageIter);
state.outOfScopeConflictFreeAccesses.insert(beginAccess);
}
}
// Top-level driver for AccessConflictAndMergeAnalysis
//
// Returns true if the analysis succeeded.
bool AccessConflictAndMergeAnalysis::analyze() {
if (!identifyBeginAccesses()) {
LLVM_DEBUG(llvm::dbgs() << "Skipping AccessConflictAndMergeAnalysis...\n");
return false;
}
LoopRegionToAccessStorage accessSetsOfRegions;
// Populate a worklist of regions such that the top of the worklist is the
// innermost loop and the bottom of the worklist is the entry block.
llvm::SmallVector<unsigned, 16> worklist;
calcBottomUpOrder(worklist);
propagateAccessSetsBottomUp(accessSetsOfRegions, worklist);
LLVM_DEBUG(llvm::dbgs() << "Processing Function: "
<< LRFI->getFunction()->getName() << "\n");
while (!worklist.empty()) {
auto regionID = worklist.pop_back_val();
LLVM_DEBUG(llvm::dbgs() << "Processing Sub-Region: " << regionID << "\n");
auto *region = LRFI->getRegion(regionID);
RegionIDToLocalStateMap localRegionStates;
// This is RPO order of the sub-regions
for (auto subID : region->getSubregions()) {
RegionState &state = mergePredAccesses(subID, localRegionStates);
auto *subRegion = LRFI->getRegion(subID);
if (subRegion->isBlock()) {
localDataFlowInBlock(state, subRegion->getBlock());
} else {
assert(subRegion->isLoop() && "Expected a loop sub-region");
const AccessStorageResult &loopStorage = accessSetsOfRegions[subID];
recordConflicts(state, loopStorage);
}
}
}
return true;
}
// Find all begin access operations in this function. Map each access to
// AccessInfo, which includes its identified memory location, identifying
// index, and analysis result flags.
//
// Also, add the storage location to the function's RegionStorage
//
// Returns true if it is worthwhile to continue the analysis.
//
// TODO: begin_unpaired_access is not tracked. Even though begin_unpaired_access
// isn't explicitly paired, it may be possible after devirtualization and
// inlining to find all uses of the scratch buffer. However, this doesn't
// currently happen in practice (rdar://40033735).
bool AccessConflictAndMergeAnalysis::identifyBeginAccesses() {
bool seenPossibleNestedConflict = false;
bool seenIdenticalStorage = false;
// Scan blocks in PostOrder (bottom-up) to mark any accesses with identical
// storage to another reachable access. The earlier access must be marked
// because this analysis does forward data flow to find conflicts.
for (auto *BB : PO->getPostOrder()) {
for (auto &I : llvm::reverse(*BB)) {
auto *beginAccess = dyn_cast<BeginAccessInst>(&I);
if (!beginAccess)
continue;
if (beginAccess->getEnforcement() != SILAccessEnforcement::Dynamic)
continue;
if (!beginAccess->hasNoNestedConflict())
seenPossibleNestedConflict = true;
// The accessed base is expected to be valid for begin_access, but for
// now, since this optimization runs at the end of the pipeline, we
// gracefully ignore unrecognized source address patterns, which show up
// here as an invalid `storage` value.
auto storage = AccessStorage::compute(beginAccess->getSource());
auto iterAndInserted = storageSet.insert(storage);
// After inserting it in storageSet, this storage object can be downcast
// to AccessInfo to use the pass-specific bits.
auto &accessInfo = static_cast<AccessInfo &>(storage);
// If the same location was seen later in the CFG, mark this access as one
// to check for merging.
if (!iterAndInserted.second) {
seenIdenticalStorage = true;
accessInfo.setSeenIdenticalStorage();
}
auto iterAndSuccess =
result.accessMap.try_emplace(beginAccess, accessInfo);
(void)iterAndSuccess;
assert(iterAndSuccess.second);
// Add a pass-specific access index to the mapped storage object.
AccessInfo &info = iterAndSuccess.first->second;
info.setAccessIndex(result.accessMap.size() - 1);
assert(!info.seenNestedConflict());
}
}
return seenPossibleNestedConflict || seenIdenticalStorage;
}
// Returns a mapping from each loop sub-region to all its access storage
// Propagates access sets bottom-up from nested regions
void AccessConflictAndMergeAnalysis::propagateAccessSetsBottomUp(
LoopRegionToAccessStorage ®ionToStorageMap,
const llvm::SmallVector<unsigned, 16> &worklist) {
for (unsigned regionID : reverse(worklist)) {
auto *region = LRFI->getRegion(regionID);
auto iterAndInserted =
regionToStorageMap.try_emplace(regionID, AccessStorageResult());
assert(iterAndInserted.second && "Should not process a region twice");
AccessStorageResult &accessResult = iterAndInserted.first->second;
for (auto subID : region->getSubregions()) {
auto *subRegion = LRFI->getRegion(subID);
if (subRegion->isLoop()) {
// propagate access sets bottom-up from nested loops.
auto subRegionResultIter = regionToStorageMap.find(subID);
assert(subRegionResultIter != regionToStorageMap.end()
&& "Should have processed sub-region");
accessResult.mergeFrom(subRegionResultIter->second);
} else {
assert(subRegion->isBlock() && "Expected a block region");
auto *bb = subRegion->getBlock();
for (auto &instr : *bb) {
if (auto fullApply = FullApplySite::isa(&instr)) {
FunctionAccessStorage calleeAccess;
// Instead of calling getCallSiteEffects, call getCalleeEffects and
// merge ourselves to avoid an extra merge step.
ASA->getCalleeEffects(calleeAccess, fullApply);
accessResult.mergeFrom(calleeAccess.getResult());
continue;
}
// FIXME: Treat may-release conservatively in the analysis itself by
// adding a mayRelease flag, in addition to the unidentified flag.
accessResult.analyzeInstruction(&instr, ASA->getDestructorAnalysis());
}
}
}
}
}
// Helper function for calcBottomUpOrder
static void calcBottomUpOrderRecurse(LoopRegion *region,
llvm::SmallVectorImpl<unsigned> &worklist,
LoopRegionFunctionInfo *LRFI) {
worklist.push_back(region->getID());
for (auto regionIndex : region->getReverseSubregions()) {
auto *region = LRFI->getRegion(regionIndex);
if (region->isBlock())
continue;
calcBottomUpOrderRecurse(region, worklist, LRFI);
}
}
// Returns a worklist of loop IDs is bottom-up order.
void AccessConflictAndMergeAnalysis::calcBottomUpOrder(
llvm::SmallVectorImpl<unsigned> &worklist) {
auto *topRegion = LRFI->getTopLevelRegion();
calcBottomUpOrderRecurse(topRegion, worklist, LRFI);
}
void AccessConflictAndMergeAnalysis::visitBeginAccess(
BeginAccessInst *beginAccess, RegionState &state) {
if (beginAccess->getEnforcement() != SILAccessEnforcement::Dynamic)
return;
// Get the Access info:
auto &beginAccessInfo = result.getAccessInfo(beginAccess);
if (beginAccessInfo.getKind() == AccessStorage::Unidentified) {
recordUnknownConflict(state);
return;
}
// Mark in-scope accesses that now have nested conflicts.
recordInScopeConflicts(state, beginAccessInfo, beginAccess->getAccessKind());
// Remove in-scope conflicts to avoid checking them again.
removeConflicts(state.inScopeConflictFreeAccesses, beginAccessInfo);
if (!beginAccess->hasNoNestedConflict()) {
// Record the current access as in-scope. It can potentially be folded to
// [no_nested_conflict] independent of any enclosing access conflicts.
bool inserted = state.inScopeConflictFreeAccesses.insert(beginAccess);
(void)inserted;
assert(inserted && "the begin_access should not have been seen yet.");
}
// Find an out-of-scope access that is mergeable with this access. This is
// done at the BeginAccess because it doesn't matter whether the merged access
// has any nested conflicts. Consider the following mergeable accesses:
//
// begin_access %x
// end_access %x
// begin_access %x
// conflict
// end_access %x
if (BeginAccessInst *mergeableAccess =
findMergeableOutOfScopeAccess(state, beginAccess)) {
LLVM_DEBUG(llvm::dbgs() << "Found mergeable pair: " << *mergeableAccess
<< " with " << *beginAccess << "\n");
result.mergePairs.emplace_back(mergeableAccess, beginAccess);
}
// For the purpose of data-flow, removing the out-of-scope access does not
// need to be done until the corresponding EndAccess is seen.
}
void AccessConflictAndMergeAnalysis::visitEndAccess(EndAccessInst *endAccess,
RegionState &state) {
auto *beginAccess = endAccess->getBeginAccess();
if (beginAccess->getEnforcement() != SILAccessEnforcement::Dynamic)
return;
// Remove the corresponding in-scope access (it is no longer in-scope).
if (state.inScopeConflictFreeAccesses.remove(beginAccess)) {
LLVM_DEBUG(llvm::dbgs() << "No conflict on one path from " << *beginAccess
<< " to " << *endAccess);
}
// Any out-of-scope access with non-distinct storage is now longer mergeable.
// If this access doesn't currently overlap with it, then merging it with
// another later access could introduce a conflict with this access.
auto currStorageInfo = result.getAccessInfo(beginAccess);
removeConflicts(state.outOfScopeConflictFreeAccesses, currStorageInfo);
// This access is now out-of-scope access; inform data flow.
insertOutOfScopeAccess(state, beginAccess, currStorageInfo);
}
void AccessConflictAndMergeAnalysis::visitFullApply(FullApplySite fullApply,
RegionState &state) {
FunctionAccessStorage callSiteAccesses;
ASA->getCallSiteEffects(callSiteAccesses, fullApply);
LLVM_DEBUG(llvm::dbgs() << "Visiting: " << *fullApply.getInstruction()
<< " call site accesses:\n";
callSiteAccesses.dump());
recordConflicts(state, callSiteAccesses.getResult());
}
void AccessConflictAndMergeAnalysis::visitMayRelease(SILInstruction *instr,
RegionState &state) {
// TODO Introduce "Pure Swift" deinitializers
// We can then make use of alias information for instr's operands
// If they don't alias - we might get away with not recording a conflict
LLVM_DEBUG(llvm::dbgs() << "MayRelease Instruction: " << *instr);
// This is similar to recordUnknownConflict, but only class and global
// accesses can be affected by a deinitializer.
auto isHeapAccess = [](AccessStorage::Kind accessKind) {
return accessKind == AccessStorage::Class || accessKind == AccessStorage::Global;
};
// Mark the in-scope accesses as having a nested conflict
llvm::for_each(state.inScopeConflictFreeAccesses, [&](BeginAccessInst *bai) {
auto &accessInfo = result.getAccessInfo(bai);
if (isHeapAccess(accessInfo.getKind())) {
accessInfo.setSeenNestedConflict();
LLVM_DEBUG(llvm::dbgs() << " may conflict with:\n"; accessInfo.dump());
}
});
// Remove both in-scope and out-of-scope accesses from
// the data flow state.
state.inScopeConflictFreeAccesses.remove_if([&](BeginAccessInst *bai) {
auto &accessInfo = result.getAccessInfo(bai);
return isHeapAccess(accessInfo.getKind());
});
state.outOfScopeConflictFreeAccesses.remove_if([&](BeginAccessInst *bai) {
auto &accessInfo = result.getAccessInfo(bai);
return isHeapAccess(accessInfo.getKind());
});
}
// Merge the data flow result in 'otherSet' into 'accessSet'. If 'accessSet' is
// not initialized, simply copy 'otherSet'; otherwise, "merge" the results by
// deleting any accesses that aren't in common.
void AccessConflictAndMergeAnalysis::mergeAccessSet(
DenseAccessSet &accessSet, const DenseAccessSet &otherSet,
bool isInitialized) {
if (!isInitialized) {
accessSet.insert(otherSet.begin(), otherSet.end());
return;
}
accessSet.remove_if(
[&](BeginAccessInst *bai) { return !otherSet.count(bai); });
}
// Merge the data flow result in `otherState` into `state`.
void AccessConflictAndMergeAnalysis::mergeState(RegionState &state,
const RegionState &otherState,
bool isInitialized) {
mergeAccessSet(state.inScopeConflictFreeAccesses,
otherState.inScopeConflictFreeAccesses, isInitialized);
mergeAccessSet(state.outOfScopeConflictFreeAccesses,
otherState.outOfScopeConflictFreeAccesses, isInitialized);
}
RegionState &AccessConflictAndMergeAnalysis::mergePredAccesses(
unsigned regionID, RegionIDToLocalStateMap &localRegionStates) {
auto regionStateIterAndInserted = localRegionStates.try_emplace(
regionID, RegionState(result.accessMap.size()));
assert(regionStateIterAndInserted.second && "only visit each region once");
RegionState &state = regionStateIterAndInserted.first->second;
auto *region = LRFI->getRegion(regionID);
auto bbRegionParentID = region->getParentID();
bool isInitialized = false;
for (auto pred : region->getPreds()) {
auto *predRegion = LRFI->getRegion(pred);
assert((predRegion->getParentID() == bbRegionParentID) &&
"predecessor is not part of the parent region - unhandled control "
"flow");
(void)predRegion;
(void)bbRegionParentID;
auto predStateIter = localRegionStates.find(pred);
if (predStateIter == localRegionStates.end()) {
// Backedge / irreducible control flow - bail
state.reset();
break;
}
mergeState(state, predStateIter->second, isInitialized);
isInitialized = true;
}
return state;
}
void AccessConflictAndMergeAnalysis::localDataFlowInBlock(RegionState &state,
SILBasicBlock *bb) {
for (auto &instr : *bb) {
if (auto *beginAccess = dyn_cast<BeginAccessInst>(&instr)) {
visitBeginAccess(beginAccess, state);
continue;
}
if (auto *endAccess = dyn_cast<EndAccessInst>(&instr)) {
visitEndAccess(endAccess, state);
continue;
}
if (auto fullApply = FullApplySite::isa(&instr)) {
visitFullApply(fullApply, state);
continue;
}
if (instr.mayRelease() &&
!isDestructorSideEffectFree(&instr, ASA->getDestructorAnalysis())) {
visitMayRelease(&instr, state);
}
}
}
// -----------------------------------------------------------------------------
// MARK: Access Enforcement Optimization
// -----------------------------------------------------------------------------
/// Perform access folding.
///
/// Data-flow analysis is now complete. Any begin_access that has seen a
/// conflict can be given the [no_nested_conflict] instruction attribute.
///
/// Note: If we later support marking begin_unpaired_access
/// [no_nested_conflict], then we also need to remove any corresponding
/// end_unpaired_access. That can be done either by recording the
/// end_unpaired_access instructions during analysis and deleting them here in
/// the same order, or sorting them here by their begin_unpaired_access index.
static bool
foldNonNestedAccesses(AccessConflictAndMergeAnalysis::AccessMap &accessMap) {
bool changed = false;
// Iteration over accessMap is nondeterministic. Setting the conflict flags
// can be done in any order.
for (auto &beginAccessAndInfo : accessMap) {
BeginAccessInst *beginAccess = beginAccessAndInfo.first;
AccessInfo &info = beginAccessAndInfo.second;
if (info.seenNestedConflict())
continue;
// Optimize this begin_access by setting [no_nested_conflict].
beginAccess->setNoNestedConflict(true);
changed = true;
LLVM_DEBUG(llvm::dbgs() << "Folding " << *beginAccess);
}
return changed;
}
/// Perform local access marker elimination.
///
/// Disable access checks for uniquely identified local storage for which no
/// accesses can have nested conflicts. This is only valid if the function's
/// local storage cannot be potentially modified by unidentified access:
///
/// - Arguments cannot alias with local storage, so accessing an argument has no
/// effect on analysis of the current function. When a callee accesses an
/// argument, AccessStorageAnalysis will either map the accessed storage to
/// a value in the caller's function, or mark it as unidentified.
///
/// - Stack or Box local storage could potentially be accessed via Unidentified
/// access. (Some Unidentified accesses are for initialization or for
/// temporary storage instead, but those should never have Dynamic
/// enforcement). These accesses can only be eliminated when there is no
/// Unidentified access within the function without the [no_nested_conflict]
/// flag.
static bool
removeLocalNonNestedAccess(const AccessConflictAndMergeAnalysis::Result &result,
const FunctionAccessStorage &functionAccess) {
if (functionAccess.hasUnidentifiedAccess())
return false;
bool changed = false;
SmallVector<BeginAccessInst *, 8> deadAccesses;
for (auto &beginAccessAndInfo : result.accessMap) {
BeginAccessInst *beginAccess = beginAccessAndInfo.first;
const AccessInfo &info = beginAccessAndInfo.second;
if (info.seenNestedConflict() || !info.isLocal())
continue;
// This particular access to local storage is marked
// [no_nested_conflict]. Now check FunctionAccessStorage to determine if
// that is true for all access to the same storage.
if (functionAccess.hasNoNestedConflict(info)) {
LLVM_DEBUG(llvm::dbgs() << "Disabling dead access " << *beginAccess);
beginAccess->setEnforcement(SILAccessEnforcement::Static);
changed = true;
}
}
return changed;
}
// TODO: support multi-end access cases
static EndAccessInst *getSingleEndAccess(BeginAccessInst *inst) {
EndAccessInst *end = nullptr;
for (auto *currEnd : inst->getEndAccesses()) {
if (end == nullptr)
end = currEnd;
else
return nullptr;
}
return end;
}
struct SCCInfo {
unsigned id;
bool hasLoop;
};
static void mergeEndAccesses(BeginAccessInst *parentIns,
BeginAccessInst *childIns) {
auto *endP = getSingleEndAccess(parentIns);
if (!endP)
llvm_unreachable("not supported");
auto *endC = getSingleEndAccess(childIns);
if (!endC)
llvm_unreachable("not supported");
endC->setOperand(parentIns);
endP->eraseFromParent();
}
static bool canMergeEnd(BeginAccessInst *parentIns, BeginAccessInst *childIns) {
auto *endP = getSingleEndAccess(parentIns);
if (!endP)
return false;
auto *endC = getSingleEndAccess(childIns);
if (!endC)
return false;
return true;
}
// TODO: support other merge patterns
static bool
canMergeBegin(PostDominanceInfo *postDomTree,
const llvm::DenseMap<SILBasicBlock *, SCCInfo> &blockToSCCMap,
BeginAccessInst *parentIns, BeginAccessInst *childIns) {
if (!postDomTree->properlyDominates(childIns, parentIns)) {
return false;
}
auto parentSCCIt = blockToSCCMap.find(parentIns->getParent());
assert(parentSCCIt != blockToSCCMap.end() && "Expected block in SCC Map");
auto childSCCIt = blockToSCCMap.find(childIns->getParent());
assert(childSCCIt != blockToSCCMap.end() && "Expected block in SCC Map");
auto parentSCC = parentSCCIt->getSecond();
auto childSCC = childSCCIt->getSecond();
if (parentSCC.id == childSCC.id) {
return true;
}
if (parentSCC.hasLoop) {
return false;
}
if (childSCC.hasLoop) {
return false;
}
return true;
}
static bool
canMerge(PostDominanceInfo *postDomTree,
const llvm::DenseMap<SILBasicBlock *, SCCInfo> &blockToSCCMap,
BeginAccessInst *parentIns, BeginAccessInst *childIns) {
// A [read] access cannot be converted to a [modify] without potentially
// introducing new conflicts that were previously ignored. Merging read/modify
// will require additional data flow information.
if (childIns->getAccessKind() != parentIns->getAccessKind())