-
Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathSILGenDestructor.cpp
496 lines (414 loc) · 18.4 KB
/
SILGenDestructor.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
//===--- SILGenDestructor.cpp - SILGen for destructors --------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "ArgumentScope.h"
#include "RValue.h"
#include "SILGenFunction.h"
#include "SILGenFunctionBuilder.h"
#include "SwitchEnumBuilder.h"
#include "swift/AST/GenericSignature.h"
#include "swift/AST/SubstitutionMap.h"
#include "swift/SIL/TypeLowering.h"
#include "llvm/ADT/SmallSet.h"
using namespace swift;
using namespace Lowering;
void SILGenFunction::emitDestroyingDestructor(DestructorDecl *dd) {
MagicFunctionName = DeclName(SGM.M.getASTContext().getIdentifier("deinit"));
RegularLocation Loc(dd);
if (dd->isImplicit())
Loc.markAutoGenerated();
auto cd = cast<ClassDecl>(dd->getDeclContext());
SILValue selfValue = emitSelfDecl(dd->getImplicitSelfDecl());
// Create a basic block to jump to for the implicit destruction behavior
// of releasing the elements and calling the superclass destructor.
// We won't actually emit the block until we finish with the destructor body.
prepareEpilog(None, false, CleanupLocation(Loc));
emitProfilerIncrement(dd->getTypecheckedBody());
// Emit the destructor body.
emitStmt(dd->getTypecheckedBody());
Optional<SILValue> maybeReturnValue;
SILLocation returnLoc(Loc);
std::tie(maybeReturnValue, returnLoc) = emitEpilogBB(Loc);
if (!maybeReturnValue)
return;
auto cleanupLoc = CleanupLocation(Loc);
// If we have a superclass, invoke its destructor.
SILValue resultSelfValue;
SILType objectPtrTy = SILType::getNativeObjectType(F.getASTContext());
SILType classTy = selfValue->getType();
if (cd->hasSuperclass() && !cd->isNativeNSObjectSubclass()) {
Type superclassTy =
dd->mapTypeIntoContext(cd->getSuperclass());
ClassDecl *superclass = superclassTy->getClassOrBoundGenericClass();
auto superclassDtorDecl = superclass->getDestructor();
SILDeclRef dtorConstant =
SILDeclRef(superclassDtorDecl, SILDeclRef::Kind::Destroyer);
SILType baseSILTy = getLoweredLoadableType(superclassTy);
SILValue baseSelf = B.createUpcast(cleanupLoc, selfValue, baseSILTy);
ManagedValue dtorValue;
SILType dtorTy;
auto subMap
= superclassTy->getContextSubstitutionMap(SGM.M.getSwiftModule(),
superclass);
std::tie(dtorValue, dtorTy)
= emitSiblingMethodRef(cleanupLoc, baseSelf, dtorConstant, subMap);
resultSelfValue = B.createApply(cleanupLoc, dtorValue.forward(*this),
subMap, baseSelf);
} else {
resultSelfValue = selfValue;
}
/// A distributed actor resigns its identity as it is deallocated.
/// This way the transport knows it must not deliver any more messages to it,
/// and can remove it from its (weak) lookup tables.
if (cd->isDistributedActor()) {
SILBasicBlock *continueBB = createBasicBlock();
RegularLocation loc(dd);
if (dd->isImplicit())
loc.markAutoGenerated();
// FIXME: what should the type of management be for this?
auto managedSelf = ManagedValue::forBorrowedRValue(selfValue);
emitConditionalResignIdentityCall(loc, cd, managedSelf, continueBB);
B.emitBlock(continueBB);
}
ArgumentScope S(*this, Loc);
ManagedValue borrowedValue =
ManagedValue::forUnmanaged(resultSelfValue).borrow(*this, cleanupLoc);
if (classTy != borrowedValue.getType()) {
borrowedValue =
B.createUncheckedRefCast(cleanupLoc, borrowedValue, classTy);
}
// Release our members.
emitClassMemberDestruction(borrowedValue, cd, cleanupLoc);
S.pop();
if (resultSelfValue->getType() != objectPtrTy) {
resultSelfValue =
B.createUncheckedRefCast(cleanupLoc, resultSelfValue, objectPtrTy);
}
if (resultSelfValue.getOwnershipKind() != OwnershipKind::Owned) {
assert(resultSelfValue.getOwnershipKind() == OwnershipKind::Guaranteed);
resultSelfValue = B.createUncheckedOwnershipConversion(
cleanupLoc, resultSelfValue, OwnershipKind::Owned);
}
B.createReturn(returnLoc, resultSelfValue);
}
void SILGenFunction::emitDeallocatingDestructor(DestructorDecl *dd) {
MagicFunctionName = DeclName(SGM.M.getASTContext().getIdentifier("deinit"));
// The deallocating destructor is always auto-generated.
RegularLocation loc(dd);
loc.markAutoGenerated();
// Emit the prolog.
SILValue initialSelfValue = emitSelfDecl(dd->getImplicitSelfDecl());
// Form a reference to the destroying destructor.
SILDeclRef dtorConstant(dd, SILDeclRef::Kind::Destroyer);
auto classTy = initialSelfValue->getType();
auto classDecl = classTy.getASTType()->getAnyNominal();
ManagedValue dtorValue;
SILType dtorTy;
auto subMap = classTy.getASTType()
->getContextSubstitutionMap(SGM.M.getSwiftModule(),
classDecl);
std::tie(dtorValue, dtorTy)
= emitSiblingMethodRef(loc, initialSelfValue, dtorConstant, subMap);
// Call the destroying destructor.
SILValue selfForDealloc;
{
FullExpr CleanupScope(Cleanups, CleanupLocation(loc));
ManagedValue borrowedSelf = emitManagedBeginBorrow(loc, initialSelfValue);
selfForDealloc = B.createApply(loc, dtorValue.forward(*this), subMap,
borrowedSelf.getUnmanagedValue());
}
// Balance out the +1 from the self argument using end_lifetime.
//
// The issue here is that:
//
// 1. Self is passed into deallocating deinits at +1.
// 2. Destroying deinits take in self as a +0 value that is then returned at
// +1.
//
// This means that the lifetime of self can not be modeled statically in a
// deallocating deinit without analyzing the body of the destroying deinit
// (something that violates semantic sil). Thus we add an artificial destroy of
// self before the actual destroy of self so that the verifier can understand
// that self is being properly balanced.
B.createEndLifetime(loc, initialSelfValue);
// Deallocate the object.
selfForDealloc = B.createUncheckedRefCast(loc, selfForDealloc, classTy);
B.createDeallocRef(loc, selfForDealloc);
emitProfilerIncrement(dd->getTypecheckedBody());
// Return.
B.createReturn(loc, emitEmptyTuple(loc));
}
void SILGenFunction::emitIVarDestroyer(SILDeclRef ivarDestroyer) {
auto cd = cast<ClassDecl>(ivarDestroyer.getDecl());
RegularLocation loc(cd);
loc.markAutoGenerated();
ManagedValue selfValue = ManagedValue::forUnmanaged(
emitSelfDecl(cd->getDestructor()->getImplicitSelfDecl()));
auto cleanupLoc = CleanupLocation(loc);
prepareEpilog(None, false, cleanupLoc);
{
Scope S(*this, cleanupLoc);
// Self is effectively guaranteed for the duration of any destructor. For
// ObjC classes, self may be unowned. A conversion to guaranteed is required
// to access its members.
if (selfValue.getOwnershipKind() != OwnershipKind::Guaranteed) {
// %guaranteedSelf = unchecked_ownership_conversion %self to @guaranteed
// ...
// end_borrow %guaranteedSelf
auto guaranteedSelf = B.createUncheckedOwnershipConversion(
cleanupLoc, selfValue.forward(*this), OwnershipKind::Guaranteed);
selfValue = emitManagedBorrowedRValueWithCleanup(guaranteedSelf);
}
emitClassMemberDestruction(selfValue, cd, cleanupLoc);
}
B.createReturn(loc, emitEmptyTuple(loc));
emitEpilog(loc);
}
void SILGenFunction::destroyClassMember(SILLocation cleanupLoc,
ManagedValue selfValue, VarDecl *D) {
const TypeLowering &ti = getTypeLowering(D->getType());
if (!ti.isTrivial()) {
SILValue addr =
B.createRefElementAddr(cleanupLoc, selfValue.getValue(), D,
ti.getLoweredType().getAddressType());
addr = B.createBeginAccess(
cleanupLoc, addr, SILAccessKind::Deinit, SILAccessEnforcement::Static,
false /*noNestedConflict*/, false /*fromBuiltin*/);
B.createDestroyAddr(cleanupLoc, addr);
B.createEndAccess(cleanupLoc, addr, false /*is aborting*/);
}
}
/// Finds stored properties that have the same type as `cd` and thus form
/// a recursive structure.
///
/// Example:
///
/// class Node<T> {
/// let element: T
/// let next: Node<T>?
/// }
///
/// In the above example `next` is a recursive link and would be recognized
/// by this function and added to the result set.
static void findRecursiveLinks(ClassDecl *cd,
llvm::SmallSetVector<VarDecl *, 4> &result) {
auto selfTy = cd->getDeclaredInterfaceType();
// Collect all stored properties that would form a recursive structure,
// so we can remove the recursion and prevent the call stack from
// overflowing.
for (VarDecl *vd : cd->getStoredProperties()) {
auto Ty = vd->getInterfaceType()->getOptionalObjectType();
if (Ty && Ty->getCanonicalType() == selfTy->getCanonicalType()) {
result.insert(vd);
}
}
// NOTE: Right now we only optimize linear recursion, so if there is more
// than one stored property of the same type, clear out the set and don't
// perform any recursion optimization.
if (result.size() > 1) {
result.clear();
}
}
void SILGenFunction::emitRecursiveChainDestruction(ManagedValue selfValue,
ClassDecl *cd,
VarDecl *recursiveLink,
CleanupLocation cleanupLoc) {
auto selfTy = F.mapTypeIntoContext(cd->getDeclaredInterfaceType());
auto selfTyLowered = getTypeLowering(selfTy).getLoweredType();
SILBasicBlock *cleanBB = createBasicBlock();
SILBasicBlock *noneBB = createBasicBlock();
SILBasicBlock *notUniqueBB = createBasicBlock();
SILBasicBlock *uniqueBB = createBasicBlock();
SILBasicBlock *someBB = createBasicBlock();
SILBasicBlock *loopBB = createBasicBlock();
// var iter = self.link
// self.link = nil
auto Ty = getTypeLowering(F.mapTypeIntoContext(recursiveLink->getInterfaceType())).getLoweredType();
auto optionalNone = B.createOptionalNone(cleanupLoc, Ty);
SILValue varAddr =
B.createRefElementAddr(cleanupLoc, selfValue.getValue(), recursiveLink,
Ty.getAddressType());
auto *iterAddr = B.createAllocStack(cleanupLoc, Ty);
SILValue addr = B.createBeginAccess(
cleanupLoc, varAddr, SILAccessKind::Modify, SILAccessEnforcement::Static,
true /*noNestedConflict*/, false /*fromBuiltin*/);
SILValue iter = B.createLoad(cleanupLoc, addr, LoadOwnershipQualifier::Take);
B.createStore(cleanupLoc, optionalNone, addr, StoreOwnershipQualifier::Init);
B.createEndAccess(cleanupLoc, addr, false /*is aborting*/);
B.createStore(cleanupLoc, iter, iterAddr, StoreOwnershipQualifier::Init);
B.createBranch(cleanupLoc, loopBB);
// while iter != nil {
{
B.emitBlock(loopBB);
auto iterBorrow =
ManagedValue::forUnmanaged(iterAddr).borrow(*this, cleanupLoc);
SwitchEnumBuilder switchBuilder(B, cleanupLoc, iterBorrow);
switchBuilder.addOptionalSomeCase(someBB);
switchBuilder.addOptionalNoneCase(noneBB);
std::move(switchBuilder).emit();
}
// if isKnownUniquelyReferenced(&iter) {
{
B.emitBlock(someBB);
auto isUnique = B.createIsUnique(cleanupLoc, iterAddr);
B.createCondBranch(cleanupLoc, isUnique, uniqueBB, notUniqueBB);
}
// we have a uniquely referenced link, so we need to deinit
{
B.emitBlock(uniqueBB);
// let tail = iter.unsafelyUnwrapped.next
// iter = tail
SILValue iterBorrow = B.createLoadBorrow(cleanupLoc, iterAddr);
auto *link = B.createUncheckedEnumData(
cleanupLoc, iterBorrow, getASTContext().getOptionalSomeDecl(),
selfTyLowered);
varAddr = B.createRefElementAddr(cleanupLoc, link, recursiveLink,
Ty.getAddressType());
addr = B.createBeginAccess(
cleanupLoc, varAddr, SILAccessKind::Read, SILAccessEnforcement::Static,
true /* noNestedConflict */, false /*fromBuiltin*/);
// The deinit of `iter` will decrement the ref count of the field
// containing the next element and potentially leading to its
// deinitialization, causing the recursion. The prevent that,
// we `load [copy]` here to ensure the object stays alive until
// we explicitly release it in the next step of the iteration.
iter = B.createLoad(cleanupLoc, addr, LoadOwnershipQualifier::Copy);
B.createEndAccess(cleanupLoc, addr, false /*is aborting*/);
B.createEndBorrow(cleanupLoc, iterBorrow);
B.createStore(cleanupLoc, iter, iterAddr, StoreOwnershipQualifier::Assign);
B.createBranch(cleanupLoc, loopBB);
}
// the next link in the chain is not unique, so we are done here
{
B.emitBlock(notUniqueBB);
B.createBranch(cleanupLoc, cleanBB);
}
// we reached the end of the chain
{
B.emitBlock(noneBB);
B.createBranch(cleanupLoc, cleanBB);
}
{
B.emitBlock(cleanBB);
B.createDestroyAddr(cleanupLoc, iterAddr);
B.createDeallocStack(cleanupLoc, iterAddr);
}
}
void SILGenFunction::emitClassMemberDestruction(ManagedValue selfValue,
ClassDecl *cd,
CleanupLocation cleanupLoc) {
assert(selfValue.getOwnershipKind() == OwnershipKind::Guaranteed);
/// If this ClassDecl is a distributed actor, we must synthesise another code
/// path for deallocating a 'remote' actor. In that case, these basic blocks
/// are used to return to the "normal" (i.e. 'local' instance) destruction.
///
/// For other cases, the basic blocks are not necessary and the destructor
/// can just emit all the normal destruction code right into the current block.
// If set, used as the basic block for the destroying of all members.
SILBasicBlock *normalMemberDestroyBB = nullptr;
// If set, used as the basic block after members have been destroyed,
// and we're ready to perform final cleanups before returning.
SILBasicBlock *finishBB = nullptr;
/// A distributed actor may be 'remote' in which case there is no need to
/// destroy "all" members, because they never had storage to begin with.
if (cd->isDistributedActor()) {
finishBB = createBasicBlock();
normalMemberDestroyBB = createBasicBlock();
emitDistributedActorClassMemberDestruction(cleanupLoc, selfValue, cd,
normalMemberDestroyBB,
finishBB);
}
// Before we destroy all fields, we check if any of them are
// recursively the same type as `self`, so we can iteratively
// deinitialize them, to prevent deep recursion and potential
// stack overflows.
llvm::SmallSetVector<VarDecl *, 4> recursiveLinks;
findRecursiveLinks(cd, recursiveLinks);
/// Destroy all members.
{
if (normalMemberDestroyBB)
B.emitBlock(normalMemberDestroyBB);
for (VarDecl *vd : cd->getStoredProperties()) {
if (recursiveLinks.contains(vd))
continue;
destroyClassMember(cleanupLoc, selfValue, vd);
}
if (!recursiveLinks.empty()) {
assert(recursiveLinks.size() == 1 && "Only linear recursion supported.");
emitRecursiveChainDestruction(selfValue, cd, recursiveLinks[0], cleanupLoc);
}
if (finishBB)
B.createBranch(cleanupLoc, finishBB);
}
{
if (finishBB)
B.emitBlock(finishBB);
if (cd->isRootDefaultActor()) {
// TODO(distributed): we may need to call the distributed destroy here instead?
auto builtinName = getASTContext().getIdentifier(
getBuiltinName(BuiltinValueKind::DestroyDefaultActor));
auto resultTy = SGM.Types.getEmptyTupleType();
B.createBuiltin(cleanupLoc, builtinName, resultTy, /*subs*/{},
{ selfValue.getValue() });
}
}
}
void SILGenFunction::emitObjCDestructor(SILDeclRef dtor) {
auto dd = cast<DestructorDecl>(dtor.getDecl());
auto cd = cast<ClassDecl>(dd->getDeclContext());
MagicFunctionName = DeclName(SGM.M.getASTContext().getIdentifier("deinit"));
RegularLocation loc(dd);
if (dd->isImplicit())
loc.markAutoGenerated();
SILValue selfValue = emitSelfDecl(dd->getImplicitSelfDecl());
// Create a basic block to jump to for the implicit destruction behavior
// of releasing the elements and calling the superclass destructor.
// We won't actually emit the block until we finish with the destructor body.
prepareEpilog(None, false, CleanupLocation(loc));
emitProfilerIncrement(dd->getTypecheckedBody());
// Emit the destructor body.
emitStmt(dd->getTypecheckedBody());
Optional<SILValue> maybeReturnValue;
SILLocation returnLoc(loc);
std::tie(maybeReturnValue, returnLoc) = emitEpilogBB(loc);
if (!maybeReturnValue)
return;
auto cleanupLoc = CleanupLocation(loc);
// Note: the ivar destroyer is responsible for destroying the
// instance variables before the object is actually deallocated.
// Form a reference to the superclass -dealloc.
Type superclassTy = dd->mapTypeIntoContext(cd->getSuperclass());
assert(superclassTy && "Emitting Objective-C -dealloc without superclass?");
ClassDecl *superclass = superclassTy->getClassOrBoundGenericClass();
auto superclassDtorDecl = superclass->getDestructor();
auto superclassDtor = SILDeclRef(superclassDtorDecl,
SILDeclRef::Kind::Deallocator)
.asForeign();
auto superclassDtorType =
SGM.Types.getConstantType(getTypeExpansionContext(), superclassDtor);
SILValue superclassDtorValue = B.createObjCSuperMethod(
cleanupLoc, selfValue, superclassDtor,
superclassDtorType);
// Call the superclass's -dealloc.
SILType superclassSILTy = getLoweredLoadableType(superclassTy);
SILValue superSelf = B.createUpcast(cleanupLoc, selfValue, superclassSILTy);
assert(superSelf.getOwnershipKind() == OwnershipKind::Owned);
auto subMap
= superclassTy->getContextSubstitutionMap(SGM.M.getSwiftModule(),
superclass);
B.createApply(cleanupLoc, superclassDtorValue, subMap, superSelf);
// We know that the givne value came in at +1, but we pass the relevant value
// as unowned to the destructor. Create a fake balance for the verifier to be
// happy.
B.createEndLifetime(cleanupLoc, superSelf);
// Return.
B.createReturn(returnLoc, emitEmptyTuple(cleanupLoc));
}