-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathTypeCheckStmt.cpp
2085 lines (1807 loc) · 74.3 KB
/
TypeCheckStmt.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- TypeCheckStmt.cpp - Type Checking for Statements -----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for statements.
//
//===----------------------------------------------------------------------===//
#include "TypeChecker.h"
#include "TypeCheckAvailability.h"
#include "TypeCheckType.h"
#include "MiscDiagnostics.h"
#include "ConstraintSystem.h"
#include "swift/Subsystems.h"
#include "swift/AST/ASTPrinter.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/DiagnosticsSema.h"
#include "swift/AST/DiagnosticSuppression.h"
#include "swift/AST/Identifier.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/PrettyStackTrace.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/TypeCheckRequests.h"
#include "swift/Basic/Range.h"
#include "swift/Basic/STLExtras.h"
#include "swift/Basic/SourceManager.h"
#include "swift/Basic/Statistic.h"
#include "swift/Basic/TopCollection.h"
#include "swift/Parse/Lexer.h"
#include "swift/Parse/LocalContext.h"
#include "swift/Syntax/TokenKinds.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/Timer.h"
using namespace swift;
#define DEBUG_TYPE "TypeCheckStmt"
#ifndef NDEBUG
/// Determine whether the given context is for the backing property of a
/// property wrapper.
static bool isPropertyWrapperBackingInitContext(DeclContext *dc) {
auto initContext = dyn_cast<Initializer>(dc);
if (!initContext) return false;
auto patternInitContext = dyn_cast<PatternBindingInitializer>(initContext);
if (!patternInitContext) return false;
auto binding = patternInitContext->getBinding();
if (!binding) return false;
auto singleVar = binding->getSingleVar();
if (!singleVar) return false;
return singleVar->getOriginalWrappedProperty() != nullptr;
}
#endif
namespace {
class ContextualizeClosures : public ASTWalker {
DeclContext *ParentDC;
public:
unsigned NextDiscriminator = 0;
ContextualizeClosures(DeclContext *parent,
unsigned nextDiscriminator = 0)
: ParentDC(parent), NextDiscriminator(nextDiscriminator) {}
std::pair<bool, Expr *> walkToExprPre(Expr *E) override {
// Autoclosures need to be numbered and potentially reparented.
// Reparenting is required with:
// - nested autoclosures, because the inner autoclosure will be
// parented to the outer context, not the outer autoclosure
// - non-local initializers
if (auto CE = dyn_cast<AutoClosureExpr>(E)) {
// FIXME: Work around an apparent reentrancy problem with the REPL.
// I don't understand what's going on here well enough to fix the
// underlying issue. -Joe
if (CE->getParent() == ParentDC
&& CE->getDiscriminator() != AutoClosureExpr::InvalidDiscriminator)
return { false, E };
assert(CE->getDiscriminator() == AutoClosureExpr::InvalidDiscriminator);
CE->setDiscriminator(NextDiscriminator++);
CE->setParent(ParentDC);
// Recurse into the autoclosure body using the same sequence,
// but parenting to the autoclosure instead of the outer closure.
auto oldParentDC = ParentDC;
ParentDC = CE;
CE->getBody()->walk(*this);
ParentDC = oldParentDC;
TypeChecker::computeCaptures(CE);
return { false, E };
}
// Capture lists need to be reparented to enclosing autoclosures.
if (auto CapE = dyn_cast<CaptureListExpr>(E)) {
if (isa<AutoClosureExpr>(ParentDC)) {
for (auto &Cap : CapE->getCaptureList()) {
Cap.Init->setDeclContext(ParentDC);
Cap.Var->setDeclContext(ParentDC);
}
}
}
// Explicit closures start their own sequence.
if (auto CE = dyn_cast<ClosureExpr>(E)) {
// In the repl, the parent top-level context may have been re-written.
if (CE->getParent() != ParentDC) {
if ((CE->getParent()->getContextKind() !=
ParentDC->getContextKind()) ||
ParentDC->getContextKind() != DeclContextKind::TopLevelCodeDecl) {
// If a closure is nested within an auto closure, we'll need to update
// its parent to the auto closure parent.
assert((ParentDC->getContextKind() ==
DeclContextKind::AbstractClosureExpr ||
isPropertyWrapperBackingInitContext(ParentDC)) &&
"Incorrect parent decl context for closure");
CE->setParent(ParentDC);
}
}
// If the closure has a single expression body or has had a function
// builder applied to it, we need to walk into it with a new sequence.
// Otherwise, it'll have been separately type-checked.
if (CE->hasSingleExpressionBody() || CE->hasAppliedFunctionBuilder())
CE->getBody()->walk(ContextualizeClosures(CE));
TypeChecker::computeCaptures(CE);
return { false, E };
}
// Caller-side default arguments need their @autoclosures checked.
if (auto *DAE = dyn_cast<DefaultArgumentExpr>(E))
if (DAE->isCallerSide() && DAE->getParamDecl()->isAutoClosure())
DAE->getCallerSideDefaultExpr()->walk(*this);
return { true, E };
}
/// We don't want to recurse into most local declarations.
bool walkToDeclPre(Decl *D) override {
// But we do want to walk into the initializers of local
// variables.
return isa<PatternBindingDecl>(D);
}
};
static DeclName getDescriptiveName(AbstractFunctionDecl *AFD) {
DeclName name = AFD->getName();
if (!name) {
if (auto *accessor = dyn_cast<AccessorDecl>(AFD)) {
name = accessor->getStorage()->getName();
}
}
return name;
}
/// Used for debugging which parts of the code are taking a long time to
/// compile.
class FunctionBodyTimer {
AnyFunctionRef Function;
llvm::TimeRecord StartTime = llvm::TimeRecord::getCurrentTime();
public:
FunctionBodyTimer(AnyFunctionRef Fn) : Function(Fn) {}
~FunctionBodyTimer() {
llvm::TimeRecord endTime = llvm::TimeRecord::getCurrentTime(false);
auto elapsed = endTime.getProcessTime() - StartTime.getProcessTime();
unsigned elapsedMS = static_cast<unsigned>(elapsed * 1000);
ASTContext &ctx = Function.getAsDeclContext()->getASTContext();
auto *AFD = Function.getAbstractFunctionDecl();
if (ctx.TypeCheckerOpts.DebugTimeFunctionBodies) {
// Round up to the nearest 100th of a millisecond.
llvm::errs() << llvm::format("%0.2f", ceil(elapsed * 100000) / 100) << "ms\t";
Function.getLoc().print(llvm::errs(), ctx.SourceMgr);
if (AFD) {
llvm::errs()
<< "\t" << Decl::getDescriptiveKindName(AFD->getDescriptiveKind())
<< " " << getDescriptiveName(AFD);
} else {
llvm::errs() << "\t(closure)";
}
llvm::errs() << "\n";
}
const auto WarnLimit = ctx.TypeCheckerOpts.WarnLongFunctionBodies;
if (WarnLimit != 0 && elapsedMS >= WarnLimit) {
if (AFD) {
ctx.Diags.diagnose(AFD, diag::debug_long_function_body,
AFD->getDescriptiveKind(), getDescriptiveName(AFD),
elapsedMS, WarnLimit);
} else {
ctx.Diags.diagnose(Function.getLoc(), diag::debug_long_closure_body,
elapsedMS, WarnLimit);
}
}
}
};
} // end anonymous namespace
void TypeChecker::contextualizeInitializer(Initializer *DC, Expr *E) {
ContextualizeClosures CC(DC);
E->walk(CC);
}
void TypeChecker::contextualizeTopLevelCode(TopLevelCodeDecl *TLCD) {
auto &Context = TLCD->DeclContext::getASTContext();
unsigned nextDiscriminator = Context.NextAutoClosureDiscriminator;
ContextualizeClosures CC(TLCD, nextDiscriminator);
TLCD->getBody()->walk(CC);
assert(nextDiscriminator == Context.NextAutoClosureDiscriminator &&
"reentrant/concurrent invocation of contextualizeTopLevelCode?");
Context.NextAutoClosureDiscriminator = CC.NextDiscriminator;
}
/// Emits an error with a fixit for the case of unnecessary cast over a
/// OptionSet value. The primary motivation is to help with SDK changes.
/// Example:
/// \code
/// func supported() -> MyMask {
/// return Int(MyMask.Bingo.rawValue)
/// }
/// \endcode
static void tryDiagnoseUnnecessaryCastOverOptionSet(ASTContext &Ctx,
Expr *E,
Type ResultType,
ModuleDecl *module) {
auto *NTD = ResultType->getAnyNominal();
if (!NTD)
return;
auto optionSetType = dyn_cast_or_null<ProtocolDecl>(Ctx.getOptionSetDecl());
if (!optionSetType)
return;
SmallVector<ProtocolConformance *, 4> conformances;
if (!(optionSetType &&
NTD->lookupConformance(module, optionSetType, conformances)))
return;
auto *CE = dyn_cast<CallExpr>(E);
if (!CE)
return;
if (!isa<ConstructorRefCallExpr>(CE->getFn()))
return;
auto *ParenE = dyn_cast<ParenExpr>(CE->getArg());
if (!ParenE)
return;
auto *ME = dyn_cast<MemberRefExpr>(ParenE->getSubExpr());
if (!ME)
return;
ValueDecl *VD = ME->getMember().getDecl();
if (!VD || VD->getBaseName() != Ctx.Id_rawValue)
return;
auto *BME = dyn_cast<MemberRefExpr>(ME->getBase());
if (!BME)
return;
if (!BME->getType()->isEqual(ResultType))
return;
Ctx.Diags.diagnose(E->getLoc(), diag::unnecessary_cast_over_optionset,
ResultType)
.highlight(E->getSourceRange())
.fixItRemoveChars(E->getLoc(), ME->getStartLoc())
.fixItRemove(SourceRange(ME->getDotLoc(), E->getEndLoc()));
}
namespace {
class StmtChecker : public StmtVisitor<StmtChecker, Stmt*> {
public:
ASTContext &Ctx;
/// This is the current function or closure being checked.
/// This is null for top level code.
Optional<AnyFunctionRef> TheFunc;
/// DC - This is the current DeclContext.
DeclContext *DC;
// Scope information for control flow statements
// (break, continue, fallthrough).
/// The level of loop nesting. 'break' and 'continue' are valid only in scopes
/// where this is greater than one.
SmallVector<LabeledStmt*, 2> ActiveLabeledStmts;
/// The level of 'switch' nesting. 'fallthrough' is valid only in scopes where
/// this is greater than one.
unsigned SwitchLevel = 0;
/// The destination block for a 'fallthrough' statement. Null if the switch
/// scope depth is zero or if we are checking the final 'case' of the current
/// switch.
CaseStmt /*nullable*/ *FallthroughSource = nullptr;
CaseStmt /*nullable*/ *FallthroughDest = nullptr;
FallthroughStmt /*nullable*/ *PreviousFallthrough = nullptr;
SourceLoc EndTypeCheckLoc;
/// Used to check for discarded expression values: in the REPL top-level
/// expressions are not discarded.
bool IsREPL;
/// Used to distinguish the first BraceStmt that starts a TopLevelCodeDecl.
bool IsBraceStmtFromTopLevelDecl;
ASTContext &getASTContext() const { return Ctx; };
struct AddLabeledStmt {
StmtChecker &SC;
AddLabeledStmt(StmtChecker &SC, LabeledStmt *LS) : SC(SC) {
// Verify that we don't have label shadowing.
if (!LS->getLabelInfo().Name.empty())
for (auto PrevLS : SC.ActiveLabeledStmts) {
if (PrevLS->getLabelInfo().Name == LS->getLabelInfo().Name) {
auto &DE = SC.getASTContext().Diags;
DE.diagnose(LS->getLabelInfo().Loc,
diag::label_shadowed, LS->getLabelInfo().Name);
DE.diagnose(PrevLS->getLabelInfo().Loc,
diag::invalid_redecl_prev,
PrevLS->getLabelInfo().Name);
}
}
// In any case, remember that we're in this labeled statement so that
// break and continue are aware of it.
SC.ActiveLabeledStmts.push_back(LS);
}
~AddLabeledStmt() {
SC.ActiveLabeledStmts.pop_back();
}
};
struct AddSwitchNest {
StmtChecker &SC;
CaseStmt *OuterFallthroughDest;
AddSwitchNest(StmtChecker &SC) : SC(SC),
OuterFallthroughDest(SC.FallthroughDest) {
++SC.SwitchLevel;
}
~AddSwitchNest() {
--SC.SwitchLevel;
SC.FallthroughDest = OuterFallthroughDest;
}
};
StmtChecker(AbstractFunctionDecl *AFD)
: Ctx(AFD->getASTContext()), TheFunc(AFD), DC(AFD), IsREPL(false),
IsBraceStmtFromTopLevelDecl(false) {}
StmtChecker(ClosureExpr *TheClosure)
: Ctx(TheClosure->getASTContext()), TheFunc(TheClosure),
DC(TheClosure), IsREPL(false), IsBraceStmtFromTopLevelDecl(false) {}
StmtChecker(DeclContext *DC)
: Ctx(DC->getASTContext()), TheFunc(), DC(DC), IsREPL(false),
IsBraceStmtFromTopLevelDecl(false) {
if (const SourceFile *SF = DC->getParentSourceFile())
if (SF->Kind == SourceFileKind::REPL)
IsREPL = true;
IsBraceStmtFromTopLevelDecl = isa<TopLevelCodeDecl>(DC);
}
//===--------------------------------------------------------------------===//
// Helper Functions.
//===--------------------------------------------------------------------===//
bool isInDefer() const {
if (!TheFunc.hasValue()) return false;
auto *FD = dyn_cast_or_null<FuncDecl>
(TheFunc.getValue().getAbstractFunctionDecl());
return FD && FD->isDeferBody();
}
template<typename StmtTy>
bool typeCheckStmt(StmtTy *&S) {
FrontendStatsTracer StatsTracer(getASTContext().Stats,
"typecheck-stmt", S);
PrettyStackTraceStmt trace(getASTContext(), "type-checking", S);
StmtTy *S2 = cast_or_null<StmtTy>(visit(S));
if (S2 == nullptr)
return true;
S = S2;
performStmtDiagnostics(getASTContext(), S);
return false;
}
/// Type-check an entire function body.
bool typeCheckBody(BraceStmt *&S) {
bool HadError = typeCheckStmt(S);
S->walk(ContextualizeClosures(DC));
return HadError;
}
//===--------------------------------------------------------------------===//
// Visit Methods.
//===--------------------------------------------------------------------===//
Stmt *visitBraceStmt(BraceStmt *BS);
Stmt *visitReturnStmt(ReturnStmt *RS) {
if (!TheFunc.hasValue()) {
getASTContext().Diags.diagnose(RS->getReturnLoc(),
diag::return_invalid_outside_func);
return nullptr;
}
// If the return is in a defer, then it isn't valid either.
if (isInDefer()) {
getASTContext().Diags.diagnose(RS->getReturnLoc(),
diag::jump_out_of_defer, "return");
return nullptr;
}
Type ResultTy = TheFunc->getBodyResultType();
if (!ResultTy || ResultTy->hasError())
return nullptr;
if (!RS->hasResult()) {
if (!ResultTy->isVoid())
getASTContext().Diags.diagnose(RS->getReturnLoc(),
diag::return_expr_missing);
return RS;
}
// If the body consisted of a single return without a result
//
// func foo() -> Int {
// return
// }
//
// in parseAbstractFunctionBody the return is given an empty, implicit tuple
// as its result
//
// func foo() -> Int {
// return ()
// }
//
// Look for that case and diagnose it as missing return expression.
if (!ResultTy->isVoid() && TheFunc->hasSingleExpressionBody()) {
auto expr = TheFunc->getSingleExpressionBody();
if (expr->isImplicit() && isa<TupleExpr>(expr) &&
cast<TupleExpr>(expr)->getNumElements() == 0) {
getASTContext().Diags.diagnose(RS->getReturnLoc(),
diag::return_expr_missing);
return RS;
}
}
Expr *E = RS->getResult();
// In an initializer, the only expression allowed is "nil", which indicates
// failure from a failable initializer.
if (auto ctor = dyn_cast_or_null<ConstructorDecl>(
TheFunc->getAbstractFunctionDecl())) {
// The only valid return expression in an initializer is the literal
// 'nil'.
auto nilExpr = dyn_cast<NilLiteralExpr>(E->getSemanticsProvidingExpr());
if (!nilExpr) {
getASTContext().Diags.diagnose(RS->getReturnLoc(),
diag::return_init_non_nil)
.highlight(E->getSourceRange());
RS->setResult(nullptr);
return RS;
}
// "return nil" is only permitted in a failable initializer.
if (!ctor->isFailable()) {
getASTContext().Diags.diagnose(RS->getReturnLoc(),
diag::return_non_failable_init)
.highlight(E->getSourceRange());
getASTContext().Diags.diagnose(ctor->getLoc(), diag::make_init_failable,
ctor->getName())
.fixItInsertAfter(ctor->getLoc(), "?");
RS->setResult(nullptr);
return RS;
}
// Replace the "return nil" with a new 'fail' statement.
return new (getASTContext()) FailStmt(RS->getReturnLoc(),
nilExpr->getLoc(),
RS->isImplicit());
}
TypeCheckExprOptions options = {};
if (EndTypeCheckLoc.isValid()) {
assert(DiagnosticSuppression::isEnabled(getASTContext().Diags) &&
"Diagnosing and AllowUnresolvedTypeVariables don't seem to mix");
options |= TypeCheckExprFlags::AllowUnresolvedTypeVariables;
}
ContextualTypePurpose ctp = CTP_ReturnStmt;
if (auto func =
dyn_cast_or_null<FuncDecl>(TheFunc->getAbstractFunctionDecl())) {
if (func->hasSingleExpressionBody()) {
ctp = CTP_ReturnSingleExpr;
}
}
auto exprTy = TypeChecker::typeCheckExpression(E, DC,
TypeLoc::withoutLoc(ResultTy),
ctp, options);
RS->setResult(E);
if (!exprTy) {
tryDiagnoseUnnecessaryCastOverOptionSet(getASTContext(), E, ResultTy,
DC->getParentModule());
}
return RS;
}
Stmt *visitYieldStmt(YieldStmt *YS) {
// If the yield is in a defer, then it isn't valid.
if (isInDefer()) {
getASTContext().Diags.diagnose(YS->getYieldLoc(),
diag::jump_out_of_defer, "yield");
return YS;
}
SmallVector<AnyFunctionType::Yield, 4> buffer;
auto yieldResults = TheFunc->getBodyYieldResults(buffer);
auto yieldExprs = YS->getMutableYields();
if (yieldExprs.size() != yieldResults.size()) {
getASTContext().Diags.diagnose(YS->getYieldLoc(), diag::bad_yield_count,
yieldResults.size());
return YS;
}
for (auto i : indices(yieldExprs)) {
Type yieldType = yieldResults[i].getType();
auto exprToCheck = yieldExprs[i];
InOutExpr *inout = nullptr;
// Classify whether we're yielding by reference or by value.
ContextualTypePurpose contextTypePurpose;
Type contextType = yieldType;
if (yieldResults[i].isInOut()) {
contextTypePurpose = CTP_YieldByReference;
contextType = LValueType::get(contextType);
// Check that the yielded expression is a &.
if ((inout = dyn_cast<InOutExpr>(exprToCheck))) {
// Strip the & off so that the constraint system doesn't complain
// about the unparented &.
exprToCheck = inout->getSubExpr();
} else {
getASTContext().Diags.diagnose(exprToCheck->getLoc(),
diag::missing_address_of_yield, yieldType)
.highlight(exprToCheck->getSourceRange());
inout = new (getASTContext()) InOutExpr(exprToCheck->getStartLoc(),
exprToCheck,
Type(), /*implicit*/ true);
}
} else {
contextTypePurpose = CTP_YieldByValue;
}
TypeChecker::typeCheckExpression(exprToCheck, DC,
TypeLoc::withoutLoc(contextType),
contextTypePurpose);
// Propagate the change into the inout expression we stripped before.
if (inout) {
inout->setSubExpr(exprToCheck);
inout->setType(InOutType::get(yieldType));
exprToCheck = inout;
}
// Note that this modifies the statement's expression list in-place.
yieldExprs[i] = exprToCheck;
}
return YS;
}
Stmt *visitThrowStmt(ThrowStmt *TS) {
// Coerce the operand to the exception type.
auto E = TS->getSubExpr();
Type exnType = getASTContext().getErrorDecl()->getDeclaredType();
if (!exnType) return TS;
TypeChecker::typeCheckExpression(E, DC, TypeLoc::withoutLoc(exnType),
CTP_ThrowStmt);
TS->setSubExpr(E);
return TS;
}
Stmt *visitPoundAssertStmt(PoundAssertStmt *PA) {
Expr *C = PA->getCondition();
TypeChecker::typeCheckCondition(C, DC);
PA->setCondition(C);
return PA;
}
Stmt *visitDeferStmt(DeferStmt *DS) {
TypeChecker::typeCheckDecl(DS->getTempDecl());
Expr *theCall = DS->getCallExpr();
TypeChecker::typeCheckExpression(theCall, DC);
DS->setCallExpr(theCall);
return DS;
}
Stmt *visitIfStmt(IfStmt *IS) {
StmtCondition C = IS->getCond();
TypeChecker::typeCheckStmtCondition(C, DC, diag::if_always_true);
IS->setCond(C);
AddLabeledStmt ifNest(*this, IS);
Stmt *S = IS->getThenStmt();
typeCheckStmt(S);
IS->setThenStmt(S);
if ((S = IS->getElseStmt())) {
typeCheckStmt(S);
IS->setElseStmt(S);
}
return IS;
}
Stmt *visitGuardStmt(GuardStmt *GS) {
StmtCondition C = GS->getCond();
TypeChecker::typeCheckStmtCondition(C, DC, diag::guard_always_succeeds);
GS->setCond(C);
AddLabeledStmt ifNest(*this, GS);
Stmt *S = GS->getBody();
typeCheckStmt(S);
GS->setBody(S);
return GS;
}
Stmt *visitDoStmt(DoStmt *DS) {
AddLabeledStmt loopNest(*this, DS);
Stmt *S = DS->getBody();
typeCheckStmt(S);
DS->setBody(S);
return DS;
}
Stmt *visitWhileStmt(WhileStmt *WS) {
StmtCondition C = WS->getCond();
TypeChecker::typeCheckStmtCondition(C, DC, diag::while_always_true);
WS->setCond(C);
AddLabeledStmt loopNest(*this, WS);
Stmt *S = WS->getBody();
typeCheckStmt(S);
WS->setBody(S);
return WS;
}
Stmt *visitRepeatWhileStmt(RepeatWhileStmt *RWS) {
{
AddLabeledStmt loopNest(*this, RWS);
Stmt *S = RWS->getBody();
typeCheckStmt(S);
RWS->setBody(S);
}
Expr *E = RWS->getCond();
TypeChecker::typeCheckCondition(E, DC);
RWS->setCond(E);
return RWS;
}
Stmt *visitForEachStmt(ForEachStmt *S) {
if (TypeChecker::typeCheckForEachBinding(DC, S))
return nullptr;
// Type-check the body of the loop.
AddLabeledStmt loopNest(*this, S);
BraceStmt *Body = S->getBody();
typeCheckStmt(Body);
S->setBody(Body);
return S;
}
Stmt *visitBreakStmt(BreakStmt *S) {
LabeledStmt *Target = nullptr;
TopCollection<unsigned, LabeledStmt *> labelCorrections(3);
// Pick the nearest break target that matches the specified name.
if (S->getTargetName().empty()) {
for (auto I = ActiveLabeledStmts.rbegin(), E = ActiveLabeledStmts.rend();
I != E; ++I) {
// 'break' with no label looks through non-loop structures
// except 'switch'.
if (!(*I)->requiresLabelOnJump()) {
Target = *I;
break;
}
}
} else {
// Scan inside out until we find something with the right label.
for (auto I = ActiveLabeledStmts.rbegin(), E = ActiveLabeledStmts.rend();
I != E; ++I) {
if (S->getTargetName() == (*I)->getLabelInfo().Name) {
Target = *I;
break;
} else {
unsigned distance =
TypeChecker::getCallEditDistance(
DeclNameRef(S->getTargetName()), (*I)->getLabelInfo().Name,
TypeChecker::UnreasonableCallEditDistance);
if (distance < TypeChecker::UnreasonableCallEditDistance)
labelCorrections.insert(distance, std::move(*I));
}
}
labelCorrections.filterMaxScoreRange(
TypeChecker::MaxCallEditDistanceFromBestCandidate);
}
if (!Target) {
// If we're in a defer, produce a tailored diagnostic.
if (isInDefer()) {
getASTContext().Diags.diagnose(S->getLoc(),
diag::jump_out_of_defer, "break");
} else if (S->getTargetName().empty()) {
// If we're dealing with an unlabeled break inside of an 'if' or 'do'
// statement, produce a more specific error.
if (std::any_of(ActiveLabeledStmts.rbegin(),
ActiveLabeledStmts.rend(),
[&](Stmt *S) -> bool {
return isa<IfStmt>(S) || isa<DoStmt>(S);
})) {
getASTContext().Diags.diagnose(S->getLoc(),
diag::unlabeled_break_outside_loop);
} else {
// Otherwise produce a generic error.
getASTContext().Diags.diagnose(S->getLoc(), diag::break_outside_loop);
}
} else {
emitUnresolvedLabelDiagnostics(getASTContext().Diags,
S->getTargetLoc(), S->getTargetName(),
labelCorrections);
}
return nullptr;
}
S->setTarget(Target);
return S;
}
Stmt *visitContinueStmt(ContinueStmt *S) {
LabeledStmt *Target = nullptr;
TopCollection<unsigned, LabeledStmt *> labelCorrections(3);
// Scan to see if we are in any non-switch labeled statements (loops). Scan
// inside out.
if (S->getTargetName().empty()) {
for (auto I = ActiveLabeledStmts.rbegin(), E = ActiveLabeledStmts.rend();
I != E; ++I) {
// 'continue' with no label ignores non-loop structures.
if (!(*I)->requiresLabelOnJump() &&
(*I)->isPossibleContinueTarget()) {
Target = *I;
break;
}
}
} else {
// Scan inside out until we find something with the right label.
for (auto I = ActiveLabeledStmts.rbegin(), E = ActiveLabeledStmts.rend();
I != E; ++I) {
if (S->getTargetName() == (*I)->getLabelInfo().Name) {
Target = *I;
break;
} else {
unsigned distance =
TypeChecker::getCallEditDistance(
DeclNameRef(S->getTargetName()), (*I)->getLabelInfo().Name,
TypeChecker::UnreasonableCallEditDistance);
if (distance < TypeChecker::UnreasonableCallEditDistance)
labelCorrections.insert(distance, std::move(*I));
}
}
labelCorrections.filterMaxScoreRange(
TypeChecker::MaxCallEditDistanceFromBestCandidate);
}
if (Target) {
// Continue cannot be used to repeat switches, use fallthrough instead.
if (!Target->isPossibleContinueTarget()) {
getASTContext().Diags.diagnose(
S->getLoc(), diag::continue_not_in_this_stmt,
isa<SwitchStmt>(Target) ? "switch" : "if");
return nullptr;
}
} else {
// If we're in a defer, produce a tailored diagnostic.
if (isInDefer()) {
getASTContext().Diags.diagnose(S->getLoc(),
diag::jump_out_of_defer, "break");
} else if (S->getTargetName().empty()) {
// If we're dealing with an unlabeled continue, produce a generic error.
getASTContext().Diags.diagnose(S->getLoc(),
diag::continue_outside_loop);
} else {
emitUnresolvedLabelDiagnostics(getASTContext().Diags,
S->getTargetLoc(), S->getTargetName(),
labelCorrections);
}
return nullptr;
}
S->setTarget(Target);
return S;
}
static void
emitUnresolvedLabelDiagnostics(DiagnosticEngine &DE,
SourceLoc targetLoc, Identifier targetName,
TopCollection<unsigned, LabeledStmt *> corrections) {
// If an unresolved label was used, but we have a single correction,
// produce the specific diagnostic and fixit.
if (corrections.size() == 1) {
DE.diagnose(targetLoc, diag::unresolved_label_corrected,
targetName, corrections.begin()->Value->getLabelInfo().Name)
.highlight(SourceRange(targetLoc))
.fixItReplace(SourceRange(targetLoc),
corrections.begin()->Value->getLabelInfo().Name.str());
DE.diagnose(corrections.begin()->Value->getLabelInfo().Loc,
diag::decl_declared_here,
corrections.begin()->Value->getLabelInfo().Name);
} else {
// If we have multiple corrections or none, produce a generic diagnostic
// and all corrections available.
DE.diagnose(targetLoc, diag::unresolved_label, targetName)
.highlight(SourceRange(targetLoc));
for (auto &entry : corrections)
DE.diagnose(entry.Value->getLabelInfo().Loc, diag::note_typo_candidate,
entry.Value->getLabelInfo().Name.str())
.fixItReplace(SourceRange(targetLoc),
entry.Value->getLabelInfo().Name.str());
}
}
Stmt *visitFallthroughStmt(FallthroughStmt *S) {
if (!SwitchLevel) {
getASTContext().Diags.diagnose(S->getLoc(),
diag::fallthrough_outside_switch);
return nullptr;
}
if (!FallthroughDest) {
getASTContext().Diags.diagnose(S->getLoc(),
diag::fallthrough_from_last_case);
return nullptr;
}
S->setFallthroughSource(FallthroughSource);
S->setFallthroughDest(FallthroughDest);
PreviousFallthrough = S;
return S;
}
void checkCaseLabelItemPattern(CaseStmt *caseBlock, CaseLabelItem &labelItem,
bool &limitExhaustivityChecks,
Type subjectType,
SmallVectorImpl<VarDecl *> **prevCaseDecls,
SmallVectorImpl<VarDecl *> **nextCaseDecls) {
Pattern *pattern = labelItem.getPattern();
auto *newPattern = TypeChecker::resolvePattern(pattern, DC,
/*isStmtCondition*/ false);
if (!newPattern) {
pattern->collectVariables(**nextCaseDecls);
std::swap(*prevCaseDecls, *nextCaseDecls);
return;
}
pattern = newPattern;
// Coerce the pattern to the subject's type.
bool coercionError = false;
if (subjectType) {
auto contextualPattern = ContextualPattern::forRawPattern(pattern, DC);
TypeResolutionOptions patternOptions(TypeResolverContext::InExpression);
auto coercedPattern = TypeChecker::coercePatternToType(
contextualPattern, subjectType, patternOptions);
if (coercedPattern)
pattern = coercedPattern;
else
coercionError = true;
}
if (!subjectType || coercionError) {
limitExhaustivityChecks = true;
// If that failed, mark any variables binding pieces of the pattern
// as invalid to silence follow-on errors.
pattern->forEachVariable([&](VarDecl *VD) {
VD->setInvalid();
});
}
labelItem.setPattern(pattern);
// If we do not have decls from the previous case that we need to match,
// just return. This only happens with the first case label item.
if (!*prevCaseDecls) {
pattern->collectVariables(**nextCaseDecls);
std::swap(*prevCaseDecls, *nextCaseDecls);
return;
}
// Otherwise for each variable in the pattern, make sure its type is
// identical to the initial case decl and stash the previous case decl as
// the parent of the decl.
pattern->forEachVariable([&](VarDecl *vd) {
if (!vd->hasName())
return;
// We know that prev var decls matches the initial var decl. So if we can
// match prevVarDecls, we can also match initial var decl... So for each
// decl in prevVarDecls...
for (auto *expected : **prevCaseDecls) {
// If we do not match the name of vd, continue.
if (!expected->hasName() || expected->getName() != vd->getName())
continue;
// Ok, we found a match! Before we leave, mark expected as the parent of
// vd and add vd to the next case decl list for the next iteration.
SWIFT_DEFER {
vd->setParentVarDecl(expected);
(*nextCaseDecls)->push_back(vd);
};
// Then we check for errors.
//
// NOTE: We emit the diagnostics against the initial case label item var
// decl associated with expected to ensure that we always emit
// diagnostics against a single reference var decl. If we used expected
// instead, we would emit confusing diagnostics since a correct var decl
// after an incorrect var decl will be marked as incorrect. For instance
// given the following case statement.
//
// case .a(let x), .b(var x), .c(let x):
//
// if we use expected, we will emit errors saying that .b(var x) needs
// to be a let and .c(let x) needs to be a var. Thus if one
// automatically applied both fix-its, one would still get an error
// producing program:
//
// case .a(let x), .b(let x), .c(var x):
//
// More complex case label item lists could cause even longer fixup
// sequences. Thus, we emit errors against the VarDecl associated with
// expected in the initial case label item list.
//
// Luckily, it is easy for us to compute this since we only change the
// parent field of the initial case label item's VarDecls /after/ we
// finish updating the parent pointers of the VarDecls associated with
// all other CaseLabelItems. So that initial group of VarDecls are
// guaranteed to still have a parent pointer pointing at our
// CaseStmt. Since we have setup the parent pointer VarDecl linked list
// for all other CaseLabelItem var decls that we have already processed,
// we can use our VarDecl linked list to find that initial case label
// item VarDecl.
auto *initialCaseVarDecl = expected;
while (auto *prev = initialCaseVarDecl->getParentVarDecl()) {
initialCaseVarDecl = prev;
}
assert(isa<CaseStmt>(initialCaseVarDecl->getParentPatternStmt()));
if (!initialCaseVarDecl->isInvalid() &&
!vd->getType()->isEqual(initialCaseVarDecl->getType())) {
getASTContext().Diags.diagnose(vd->getLoc(), diag::type_mismatch_multiple_pattern_list,
vd->getType(), initialCaseVarDecl->getType());
vd->setInvalid();
initialCaseVarDecl->setInvalid();
}