-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathTypeCheckREPL.cpp
499 lines (413 loc) · 17.7 KB
/
TypeCheckREPL.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
//===--- TypeCheckREPL.cpp - Type Checking for the REPL -------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements REPL-specific semantic analysis rules.
//
//===----------------------------------------------------------------------===//
#include "TypeChecker.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/ASTVisitor.h"
#include "swift/AST/ASTWalker.h"
#include "swift/AST/DiagnosticsFrontend.h"
#include "swift/AST/Expr.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/ParameterList.h"
#include "swift/AST/SourceFile.h"
#include "swift/AST/Stmt.h"
#include "swift/Parse/LocalContext.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/raw_ostream.h"
using namespace swift;
namespace {
/// Find available closure discriminators.
///
/// The parser typically takes care of assigning unique discriminators to
/// closures, but the parser is unavailable to this transform.
class DiscriminatorFinder : public ASTWalker {
unsigned NextDiscriminator = 0;
public:
Expr *walkToExprPost(Expr *E) override {
auto *ACE = dyn_cast<AbstractClosureExpr>(E);
if (!ACE)
return E;
unsigned Discriminator = ACE->getDiscriminator();
assert(Discriminator != AbstractClosureExpr::InvalidDiscriminator &&
"Existing closures should have valid discriminators");
if (Discriminator >= NextDiscriminator)
NextDiscriminator = Discriminator + 1;
return E;
}
// Get the next available closure discriminator.
unsigned getNextDiscriminator() {
if (NextDiscriminator == AbstractClosureExpr::InvalidDiscriminator)
llvm::report_fatal_error("Out of valid closure discriminators");
return NextDiscriminator++;
}
};
struct REPLContext {
ASTContext &Context;
SourceFile &SF;
SmallVector<ValueDecl *, 4> PrintDecls;
SmallVector<ValueDecl *, 4> DebugPrintlnDecls;
REPLContext(SourceFile &SF) : Context(SF.getASTContext()), SF(SF) {}
bool requirePrintDecls() {
if (!PrintDecls.empty() && !DebugPrintlnDecls.empty())
return false;
auto *stdlib = TypeChecker::getStdlibModule(&SF);
{
DeclNameRef Id(Context.getIdentifier("_replPrintLiteralString"));
auto lookup = TypeChecker::lookupUnqualified(stdlib, Id, SourceLoc());
if (!lookup)
return true;
for (auto result : lookup)
PrintDecls.push_back(result.getValueDecl());
}
{
DeclNameRef Id(Context.getIdentifier("_replDebugPrintln"));
auto lookup = TypeChecker::lookupUnqualified(stdlib, Id, SourceLoc());
if (!lookup)
return true;
for (auto result : lookup)
DebugPrintlnDecls.push_back(result.getValueDecl());
}
return false;
}
};
class StmtBuilder {
REPLContext &C;
ASTContext &Context;
DeclContext *DC;
SmallVector<ASTNode, 8> Body;
public:
StmtBuilder(REPLContext &C, DeclContext *DC)
: C(C), Context(C.Context), DC(DC) {
assert(DC);
}
StmtBuilder(StmtBuilder &parent)
: C(parent.C), Context(C.Context), DC(parent.DC) {}
~StmtBuilder() { assert(Body.empty() && "statements remain in builder?"); }
BraceStmt *createBodyStmt(SourceLoc loc, SourceLoc endLoc) {
auto result = BraceStmt::create(Context, loc, Body, endLoc);
Body.clear();
return result;
}
void printLiteralString(StringRef str, SourceLoc loc);
void printReplExpr(VarDecl *Arg, SourceLoc Loc);
void addToBody(ASTNode node) { Body.push_back(node); }
Expr *buildPrintRefExpr(SourceLoc loc) {
assert(!C.PrintDecls.empty());
return TypeChecker::buildRefExpr(C.PrintDecls, DC, DeclNameLoc(loc),
/*Implicit=*/true,
FunctionRefKind::Compound);
}
Expr *buildDebugPrintlnRefExpr(SourceLoc loc) {
assert(!C.DebugPrintlnDecls.empty());
return TypeChecker::buildRefExpr(C.DebugPrintlnDecls, DC, DeclNameLoc(loc),
/*Implicit=*/true,
FunctionRefKind::Compound);
}
};
} // unnamed namespace
void StmtBuilder::printLiteralString(StringRef Str, SourceLoc Loc) {
Expr *PrintFn = buildPrintRefExpr(Loc);
Expr *PrintStr = new (Context) StringLiteralExpr(Str, Loc);
addToBody(CallExpr::createImplicit(Context, PrintFn, { PrintStr }, { }));
}
void StmtBuilder::printReplExpr(VarDecl *Arg, SourceLoc Loc) {
Expr *DebugPrintlnFn = buildDebugPrintlnRefExpr(Loc);
Expr *ArgRef = TypeChecker::buildRefExpr(
Arg, DC, DeclNameLoc(Loc), /*Implicit=*/true, FunctionRefKind::Compound);
addToBody(CallExpr::createImplicit(Context, DebugPrintlnFn, { ArgRef }, { }));
}
static VarDecl *getObviousDeclFromExpr(Expr *E) {
// Ignore lvalue->rvalue and other implicit conversions.
while (auto *ICE = dyn_cast<ImplicitConversionExpr>(E))
E = ICE->getSubExpr();
// Don't bind REPL metavariables to simple declrefs.
if (auto DRE = dyn_cast<DeclRefExpr>(E))
return dyn_cast<VarDecl>(DRE->getDecl());
return nullptr;
}
namespace {
/// This is a lot like Pattern::print, but prints typed patterns and
/// parenthesized patterns a bit differently.
struct PatternBindingPrintLHS : public ASTVisitor<PatternBindingPrintLHS> {
llvm::SmallString<16> &ResultString;
PatternBindingPrintLHS(llvm::SmallString<16> &ResultString)
: ResultString(ResultString) {}
void visitTuplePattern(TuplePattern *P) {
// We print tuples as "(x, y)".
ResultString += "(";
for (unsigned i = 0, e = P->getNumElements(); i != e; ++i) {
visit(P->getElement(i).getPattern());
if (i + 1 != e)
ResultString += ", ";
}
ResultString += ")";
}
void visitNamedPattern(NamedPattern *P) {
ResultString += P->getBoundName().str();
}
void visitAnyPattern(AnyPattern *P) {
ResultString += "_";
}
void visitVarPattern(VarPattern *P) {
visit(P->getSubPattern());
}
void visitTypedPattern(TypedPattern *P) {
// We prefer to print the type separately.
visit(P->getSubPattern());
}
void visitParenPattern(ParenPattern *P) {
// Don't print parentheses: they break the correspondence with the
// way we print the expression.
visit(P->getSubPattern());
}
#define INVALID_PATTERN(Id, Parent) \
void visit##Id##Pattern(Id##Pattern *P) { \
llvm_unreachable("pattern cannot appear in an LHS!"); \
}
#define PATTERN(Id, Parent)
#define REFUTABLE_PATTERN(Id, Parent) INVALID_PATTERN(Id, Parent)
#include "swift/AST/PatternNodes.def"
};
} // end anonymous namespace
namespace {
class REPLChecker : public REPLContext {
DiscriminatorFinder &DF;
/// The index of the next response metavariable to bind to a REPL result.
unsigned NextResponseVariableIndex = 0;
public:
REPLChecker(SourceFile &SF, DiscriminatorFinder &DF)
: REPLContext(SF), DF(DF) {}
void processREPLTopLevelExpr(Expr *E);
void processREPLTopLevelPatternBinding(PatternBindingDecl *PBD);
private:
void generatePrintOfExpression(StringRef name, Expr *E);
Identifier getNextResponseVariableName(DeclContext *DC);
};
} // end anonymous namespace
/// Emit logic to print the specified expression value with the given
/// description of the pattern involved.
void REPLChecker::generatePrintOfExpression(StringRef NameStr, Expr *E) {
// Always print rvalues, not lvalues.
E = TypeChecker::coerceToRValue(Context, E);
SourceLoc Loc = E->getStartLoc();
SourceLoc EndLoc = E->getEndLoc();
// Require a non-trivial set of print functions.
if (requirePrintDecls())
return;
TopLevelCodeDecl *newTopLevel = new (Context) TopLevelCodeDecl(&SF);
// Build function of type T->() which prints the operand.
auto *Arg = new (Context) ParamDecl(
SourceLoc(), SourceLoc(), Identifier(), Loc,
Context.getIdentifier("arg"), /*DC*/ newTopLevel);
Arg->setInterfaceType(E->getType());
Arg->setSpecifier(ParamSpecifier::Default);
auto params = ParameterList::createWithoutLoc(Arg);
unsigned discriminator = DF.getNextDiscriminator();
ClosureExpr *CE =
new (Context) ClosureExpr(SourceRange(), nullptr, params, SourceLoc(),
SourceLoc(), SourceLoc(), TypeLoc(),
discriminator, newTopLevel);
SmallVector<AnyFunctionType::Param, 1> args;
params->getParams(args);
CE->setType(FunctionType::get(args, TupleType::getEmpty(Context)));
// Convert the pattern to a string we can print.
llvm::SmallString<16> PrefixString;
PrefixString += "// ";
PrefixString += NameStr;
PrefixString += " : ";
PrefixString += E->getType()->getWithoutParens()->getString();
PrefixString += " = ";
// Unique the type string into an identifier since PrintLiteralString is
// building an AST around the string that must persist beyond the lifetime of
// PrefixString.
auto TmpStr = Context.getIdentifier(PrefixString).str();
StmtBuilder builder(*this, CE);
builder.printLiteralString(TmpStr, Loc);
builder.printReplExpr(Arg, Loc);
// Typecheck the function.
BraceStmt *Body = builder.createBodyStmt(Loc, EndLoc);
CE->setBody(Body, false);
TypeChecker::typeCheckClosureBody(CE);
TypeChecker::computeCaptures(CE);
auto *TheCall = CallExpr::createImplicit(Context, CE, { E }, { });
TheCall->getArg()->setType(AnyFunctionType::composeInput(Context, args, false));
TheCall->setType(Context.TheEmptyTupleType);
// Inject the call into the top level stream by wrapping it with a TLCD.
auto *BS = BraceStmt::create(Context, Loc, ASTNode(TheCall),
EndLoc);
newTopLevel->setBody(BS);
TypeChecker::checkTopLevelErrorHandling(newTopLevel);
SF.addTopLevelDecl(newTopLevel);
}
/// When we see an expression in a TopLevelCodeDecl in the REPL, process it,
/// adding the proper decls back to the top level of the file.
void REPLChecker::processREPLTopLevelExpr(Expr *E) {
CanType T = E->getType()->getCanonicalType();
// Don't try to print invalid expressions, module exprs, or void expressions.
if (T->hasError() || isa<ModuleType>(T) || T->isVoid())
return;
// Okay, we need to print this expression. We generally do this by creating a
// REPL metavariable (e.g. r4) to hold the result, so it can be referred to
// in the future. However, if this is a direct reference to a decl (e.g. "x")
// then don't create a repl metavariable.
if (VarDecl *d = getObviousDeclFromExpr(E)) {
generatePrintOfExpression(d->getName().str(), E);
return;
}
// Remove the expression from being in the list of decls to execute, we're
// going to reparent it.
auto TLCD = cast<TopLevelCodeDecl>(SF.getTopLevelDecls().back());
E = TypeChecker::coerceToRValue(Context, E);
// Create the meta-variable, let the typechecker name it.
Identifier name = getNextResponseVariableName(&SF);
VarDecl *vd = new (Context) VarDecl(/*IsStatic*/false, VarDecl::Introducer::Let,
/*IsCaptureList*/false, E->getStartLoc(),
name, &SF);
vd->setInterfaceType(E->getType());
SF.addTopLevelDecl(vd);
// Create a PatternBindingDecl to bind the expression into the decl.
Pattern *metavarPat = new (Context) NamedPattern(vd);
metavarPat->setType(E->getType());
PatternBindingDecl *metavarBinding = PatternBindingDecl::create(
Context, /*StaticLoc*/ SourceLoc(), StaticSpellingKind::None,
/*VarLoc*/ E->getStartLoc(), metavarPat, /*EqualLoc*/ SourceLoc(), E,
TLCD);
// Overwrite the body of the existing TopLevelCodeDecl.
TLCD->setBody(BraceStmt::create(Context,
metavarBinding->getStartLoc(),
ASTNode(metavarBinding),
metavarBinding->getEndLoc(),
/*implicit*/true));
// Finally, print the variable's value.
E = TypeChecker::buildCheckedRefExpr(vd, &SF, DeclNameLoc(E->getStartLoc()),
/*Implicit=*/true);
generatePrintOfExpression(vd->getName().str(), E);
}
/// processREPLTopLevelPatternBinding - When we see a new PatternBinding parsed
/// into the REPL, process it by generating code to print it out.
void REPLChecker::processREPLTopLevelPatternBinding(PatternBindingDecl *PBD) {
// If there is no initializer for the new variable, don't auto-print it.
// This would just cause a confusing definite initialization error. Some
// day we will do some high level analysis of uninitialized variables
// (rdar://15157729) but until then, output a specialized error.
for (auto entryIdx : range(PBD->getNumPatternEntries())) {
auto *entryInit = PBD->getInit(entryIdx);
if (!entryInit) {
PBD->diagnose(diag::repl_must_be_initialized);
continue;
}
auto *pattern = PBD->getPattern(entryIdx);
llvm::SmallString<16> PatternString;
PatternBindingPrintLHS(PatternString).visit(pattern);
// If the bound pattern is a single value, use a DeclRefExpr on the
// underlying Decl to print it.
if (auto *NP = dyn_cast<NamedPattern>(pattern->
getSemanticsProvidingPattern())) {
Expr *E = TypeChecker::buildCheckedRefExpr(
NP->getDecl(), &SF, DeclNameLoc(PBD->getStartLoc()),
/*Implicit=*/true);
generatePrintOfExpression(PatternString, E);
continue;
}
// Otherwise, we may not have a way to name all of the pieces of the pattern.
// Create a repl metavariable to capture the whole thing so we can reference
// it, then assign that into the pattern. For example, translate:
// var (x, y, _) = foo()
// into:
// var r123 = foo()
// var (x, y, _) = r123
// replPrint(r123)
// Remove PBD from the list of Decls so we can insert before it.
auto PBTLCD = cast<TopLevelCodeDecl>(SF.getTopLevelDecls().back());
SF.truncateTopLevelDecls(SF.getTopLevelDecls().size() - 1);
// Create the meta-variable, let the typechecker name it.
Identifier name = getNextResponseVariableName(SF.getParentModule());
VarDecl *vd = new (Context) VarDecl(/*IsStatic*/false,
VarDecl::Introducer::Let,
/*IsCaptureList*/false,
PBD->getStartLoc(), name, &SF);
vd->setInterfaceType(pattern->getType());
SF.addTopLevelDecl(vd);
// Create a PatternBindingDecl to bind the expression into the decl.
Pattern *metavarPat = new (Context) NamedPattern(vd);
metavarPat->setType(vd->getType());
auto *metavarBinding = PatternBindingDecl::create(
Context, /*StaticLoc*/ SourceLoc(), StaticSpellingKind::None,
/*VarLoc*/ PBD->getStartLoc(), metavarPat, /*EqualLoc*/ SourceLoc(),
entryInit, &SF);
auto MVBrace = BraceStmt::create(Context, metavarBinding->getStartLoc(),
ASTNode(metavarBinding),
metavarBinding->getEndLoc());
auto *MVTLCD = new (Context) TopLevelCodeDecl(&SF, MVBrace);
SF.addTopLevelDecl(MVTLCD);
// Replace the initializer of PBD with a reference to our repl temporary.
Expr *E = TypeChecker::buildCheckedRefExpr(vd, &SF,
DeclNameLoc(vd->getStartLoc()),
/*Implicit=*/true);
E = TypeChecker::coerceToRValue(Context, E);
PBD->setInit(entryIdx, E);
SF.addTopLevelDecl(PBTLCD);
// Finally, print out the result, by referring to the repl temp.
E = TypeChecker::buildCheckedRefExpr(vd, &SF,
DeclNameLoc(vd->getStartLoc()),
/*Implicit=*/true);
generatePrintOfExpression(PatternString, E);
}
}
Identifier REPLChecker::getNextResponseVariableName(DeclContext *DC) {
llvm::SmallString<4> namebuf;
Identifier ident;
bool nameUsed = false;
do {
namebuf.clear();
llvm::raw_svector_ostream names(namebuf);
names << "r" << NextResponseVariableIndex++;
ident = Context.getIdentifier(names.str());
nameUsed = (bool)TypeChecker::lookupUnqualified(DC, DeclNameRef(ident),
SourceLoc());
} while (nameUsed);
return ident;
}
/// processREPLTopLevel - This is called after we've parsed and typechecked some
/// new decls at the top level. We inject code to print out expressions and
/// pattern bindings the are evaluated.
void TypeChecker::processREPLTopLevel(SourceFile &SF) {
// Walk over all decls in the file to find the next available closure
// discriminator.
DiscriminatorFinder DF;
for (Decl *D : SF.getTopLevelDecls())
D->walk(DF);
// Move the new declarations out of the source file.
std::vector<Decl *> NewDecls(SF.getTopLevelDecls().begin(),
SF.getTopLevelDecls().end());
SF.truncateTopLevelDecls(0);
REPLChecker RC(SF, DF);
// Loop over each of the new decls, processing them, adding them back to
// the Decls list.
for (Decl *D : NewDecls) {
SF.addTopLevelDecl(D);
auto *TLCD = dyn_cast<TopLevelCodeDecl>(D);
if (!TLCD || TLCD->getBody()->getElements().empty())
continue;
auto Entry = TLCD->getBody()->getFirstElement();
// Check to see if the TLCD has an expression that we have to transform.
if (auto *E = Entry.dyn_cast<Expr*>())
RC.processREPLTopLevelExpr(E);
else if (auto *D = Entry.dyn_cast<Decl*>())
if (auto *PBD = dyn_cast<PatternBindingDecl>(D))
RC.processREPLTopLevelPatternBinding(PBD);
TypeChecker::contextualizeTopLevelCode(TLCD);
}
}