-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathCSStep.cpp
694 lines (574 loc) · 23.5 KB
/
CSStep.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
//===--- CSStep.cpp - Constraint Solver Steps -----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2018 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the \c SolverStep class and its related types,
// which is used by constraint solver to do iterative solving.
//
//===----------------------------------------------------------------------===//
#include "CSStep.h"
#include "ConstraintSystem.h"
#include "swift/AST/Types.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace swift;
using namespace constraints;
ComponentStep::Scope::Scope(ComponentStep &component)
: CS(component.CS), Component(component) {
TypeVars = std::move(CS.TypeVariables);
for (auto *typeVar : component.TypeVars)
CS.addTypeVariable(typeVar);
auto &workList = CS.InactiveConstraints;
workList.splice(workList.end(), *component.Constraints);
SolverScope = new ConstraintSystem::SolverScope(CS);
PrevPartialScope = CS.solverState->PartialSolutionScope;
CS.solverState->PartialSolutionScope = SolverScope;
}
StepResult SplitterStep::take(bool prevFailed) {
// "split" is considered a failure if previous step failed,
// or there is a failure recorded by constraint system, or
// system can't be simplified.
if (prevFailed || CS.failedConstraint || CS.simplify())
return done(/*isSuccess=*/false);
SmallVector<std::unique_ptr<SolverStep>, 4> followup;
// Try to run "connected components" algorithm and split
// type variables and their constraints into independent
// sub-systems to solve.
computeFollowupSteps(followup);
// If there is only one step, there is no reason to
// try to merge solutions, "split" step should be considered
// done and replaced by a single component step.
if (followup.size() < 2)
return replaceWith(std::move(followup.front()));
/// Wait until all of the steps are done.
return suspend(followup);
}
StepResult SplitterStep::resume(bool prevFailed) {
// Restore the state of the constraint system to before split.
CS.CG.setOrphanedConstraints(std::move(OrphanedConstraints));
auto &workList = CS.InactiveConstraints;
for (auto &component : Components)
workList.splice(workList.end(), component);
// If we came back to this step and previous (one of the components)
// failed, it means that we can't solve this step either.
if (prevFailed)
return done(/*isSuccess=*/false);
// Otherwise let's try to merge partial solutions together
// and form a complete solution(s) for this split.
return done(mergePartialSolutions());
}
void SplitterStep::computeFollowupSteps(
SmallVectorImpl<std::unique_ptr<SolverStep>> &steps) {
// Compute next steps based on that connected components
// algorithm tells us is splittable.
auto &CG = CS.getConstraintGraph();
// Contract the edges of the constraint graph.
CG.optimize();
// Compute the connected components of the constraint graph.
auto components = CG.computeConnectedComponents(CS.getTypeVariables());
unsigned numComponents = components.size();
if (numComponents < 2) {
steps.push_back(std::make_unique<ComponentStep>(
CS, 0, &CS.InactiveConstraints, Solutions));
return;
}
if (isDebugMode()) {
auto &log = getDebugLogger();
// Verify that the constraint graph is valid.
CG.verify();
log << "---Constraint graph---\n";
CG.print(CS.getTypeVariables(), log);
log << "---Connected components---\n";
CG.printConnectedComponents(CS.getTypeVariables(), log);
}
// Take the orphaned constraints, because they'll go into a component now.
OrphanedConstraints = CG.takeOrphanedConstraints();
IncludeInMergedResults.resize(numComponents, true);
Components.resize(numComponents);
PartialSolutions = std::unique_ptr<SmallVector<Solution, 4>[]>(
new SmallVector<Solution, 4>[numComponents]);
// Add components.
for (unsigned i : indices(components)) {
unsigned solutionIndex = components[i].solutionIndex;
// If there are no dependencies, build a normal component step.
if (components[i].dependsOn.empty()) {
steps.push_back(std::make_unique<ComponentStep>(
CS, solutionIndex, &Components[i], std::move(components[i]),
PartialSolutions[solutionIndex]));
continue;
}
// Note that the partial results from any dependencies of this component
// need not be included in the final merged results, because they'll
// already be part of the partial results for this component.
for (auto dependsOn : components[i].dependsOn) {
IncludeInMergedResults[dependsOn] = false;
}
// Otherwise, build a dependent component "splitter" step, which
// handles all combinations of incoming partial solutions.
steps.push_back(std::make_unique<DependentComponentSplitterStep>(
CS, &Components[i], solutionIndex, std::move(components[i]),
llvm::makeMutableArrayRef(PartialSolutions.get(), numComponents)));
}
assert(CS.InactiveConstraints.empty() && "Missed a constraint");
}
namespace {
/// Retrieve the size of a container.
template<typename Container>
unsigned getSize(const Container &container) {
return container.size();
}
/// Retrieve the size of a container referenced by a pointer.
template<typename Container>
unsigned getSize(const Container *container) {
return container->size();
}
/// Identity getSize() for cases where we are working with a count.
unsigned getSize(unsigned size) {
return size;
}
/// Compute the next combination of indices into the given array of
/// containers.
/// \param containers Containers (each of which must have a `size()`) in
/// which the indices will be generated.
/// \param indices The current indices into the containers, which will
/// be updated to represent the next combination.
/// \returns true to indicate that \c indices contains the next combination,
/// or \c false to indicate that there are no combinations left.
template<typename Container>
bool nextCombination(ArrayRef<Container> containers,
MutableArrayRef<unsigned> indices) {
assert(containers.size() == indices.size() &&
"Indices should have been initialized to the same size with 0s");
unsigned numIndices = containers.size();
for (unsigned n = numIndices; n > 0; --n) {
++indices[n - 1];
// If we haven't run out of solutions yet, we're done.
if (indices[n - 1] < getSize(containers[n - 1]))
break;
// If we ran out of solutions at the first position, we're done.
if (n == 1) {
return false;
}
// Zero out the indices from here to the end.
for (unsigned i = n - 1; i != numIndices; ++i)
indices[i] = 0;
}
return true;
}
}
bool SplitterStep::mergePartialSolutions() const {
assert(Components.size() >= 2);
// Compute the # of partial solutions that will be merged for each
// component. Components that shouldn't be included will get a count of 1,
// an we'll skip them later.
auto numComponents = Components.size();
SmallVector<unsigned, 2> countsVec;
countsVec.reserve(numComponents);
for (unsigned idx : range(numComponents)) {
countsVec.push_back(
IncludeInMergedResults[idx] ? PartialSolutions[idx].size() : 1);
}
// Produce all combinations of partial solutions.
ArrayRef<unsigned> counts = countsVec;
SmallVector<unsigned, 2> indices(numComponents, 0);
bool anySolutions = false;
size_t solutionMemory = 0;
do {
// Create a new solver scope in which we apply all of the relevant partial
// solutions.
ConstraintSystem::SolverScope scope(CS);
for (unsigned i : range(numComponents)) {
if (!IncludeInMergedResults[i])
continue;
CS.applySolution(PartialSolutions[i][indices[i]]);
}
// This solution might be worse than the best solution found so far.
// If so, skip it.
if (!CS.worseThanBestSolution()) {
// Finalize this solution.
auto solution = CS.finalize();
solutionMemory += solution.getTotalMemory();
if (isDebugMode())
getDebugLogger() << "(composed solution " << CS.CurrentScore << ")\n";
// Save this solution.
Solutions.push_back(std::move(solution));
anySolutions = true;
}
// Since merging partial solutions can go exponential, make sure we didn't
// pass the "too complex" thresholds including allocated memory and time.
if (CS.getExpressionTooComplex(solutionMemory))
return false;
} while (nextCombination(counts, indices));
return anySolutions;
}
StepResult DependentComponentSplitterStep::take(bool prevFailed) {
// "split" is considered a failure if previous step failed,
// or there is a failure recorded by constraint system, or
// system can't be simplified.
if (prevFailed || CS.getFailedConstraint() || CS.simplify())
return done(/*isSuccess=*/false);
// Figure out the sets of partial solutions that this component depends on.
SmallVector<const SmallVector<Solution, 4> *, 2> dependsOnSets;
for (auto index : Component.dependsOn) {
dependsOnSets.push_back(&AllPartialSolutions[index]);
}
// Produce all combinations of partial solutions for the inputs.
SmallVector<std::unique_ptr<SolverStep>, 4> followup;
SmallVector<unsigned, 2> indices(Component.dependsOn.size(), 0);
auto dependsOnSetsRef = llvm::makeArrayRef(dependsOnSets);
do {
// Form the set of input partial solutions.
SmallVector<const Solution *, 2> dependsOnSolutions;
for (auto index : swift::indices(indices)) {
dependsOnSolutions.push_back(&(*dependsOnSets[index])[indices[index]]);
}
followup.push_back(
std::make_unique<ComponentStep>(CS, Index, Constraints, Component,
std::move(dependsOnSolutions),
Solutions));
} while (nextCombination(dependsOnSetsRef, indices));
/// Wait until all of the component steps are done.
return suspend(followup);
}
StepResult DependentComponentSplitterStep::resume(bool prevFailed) {
return done(/*isSuccess=*/!Solutions.empty());
}
void DependentComponentSplitterStep::print(llvm::raw_ostream &Out) {
Out << "DependentComponentSplitterStep for dependencies on [";
interleave(Component.dependsOn, [&](unsigned index) { Out << index; },
[&] { Out << ", "; });
Out << "]\n";
}
StepResult ComponentStep::take(bool prevFailed) {
// One of the previous components created by "split"
// failed, it means that we can't solve this component.
if ((prevFailed && DependsOnPartialSolutions.empty()) ||
CS.getExpressionTooComplex(Solutions))
return done(/*isSuccess=*/false);
// Setup active scope, only if previous component didn't fail.
setupScope();
// If there are any dependent partial solutions to compose, do so now.
if (!DependsOnPartialSolutions.empty()) {
for (auto partial : DependsOnPartialSolutions) {
CS.applySolution(*partial);
}
// Activate all of the one-way constraints.
SmallVector<Constraint *, 4> oneWayConstraints;
for (auto &constraint : CS.InactiveConstraints) {
if (constraint.isOneWayConstraint())
oneWayConstraints.push_back(&constraint);
}
for (auto constraint : oneWayConstraints) {
CS.activateConstraint(constraint);
}
// Simplify again.
if (CS.failedConstraint || CS.simplify())
return done(/*isSuccess=*/false);
}
/// Try to figure out what this step is going to be,
/// after the scope has been established.
auto *disjunction = CS.selectDisjunction();
auto bestBindings = CS.determineBestBindings();
if (bestBindings &&
(!disjunction || bestBindings->favoredOverDisjunction(disjunction))) {
// Produce a type variable step.
return suspend(
std::make_unique<TypeVariableStep>(CS, *bestBindings, Solutions));
} else if (disjunction) {
// Produce a disjunction step.
return suspend(
std::make_unique<DisjunctionStep>(CS, disjunction, Solutions));
} else if (!CS.solverState->allowsFreeTypeVariables() &&
CS.hasFreeTypeVariables()) {
// If there are no disjunctions or type variables to bind
// we can't solve this system unless we have free type variables
// allowed in the solution.
return finalize(/*isSuccess=*/false);
}
// If we don't have any disjunction or type variable choices left, we're done
// solving. Make sure we don't have any unsolved constraints left over, using
// report_fatal_error to make sure we trap in release builds instead of
// potentially miscompiling.
if (!CS.ActiveConstraints.empty()) {
CS.print(llvm::errs());
llvm::report_fatal_error("Active constraints left over?");
}
if (!CS.solverState->allowsFreeTypeVariables()) {
if (!CS.InactiveConstraints.empty()) {
CS.print(llvm::errs());
llvm::report_fatal_error("Inactive constraints left over?");
}
if (CS.hasFreeTypeVariables()) {
CS.print(llvm::errs());
llvm::report_fatal_error("Free type variables left over?");
}
}
// If this solution is worse than the best solution we've seen so far,
// skip it.
if (CS.worseThanBestSolution())
return finalize(/*isSuccess=*/false);
// If we only have relational or member constraints and are allowing
// free type variables, save the solution.
for (auto &constraint : CS.InactiveConstraints) {
switch (constraint.getClassification()) {
case ConstraintClassification::Relational:
case ConstraintClassification::Member:
continue;
default:
return finalize(/*isSuccess=*/false);
}
}
auto solution = CS.finalize();
if (isDebugMode())
getDebugLogger() << "(found solution " << getCurrentScore() << ")\n";
Solutions.push_back(std::move(solution));
return finalize(/*isSuccess=*/true);
}
StepResult ComponentStep::finalize(bool isSuccess) {
// If this was a single component, there is nothing to be done,
// because it represents the whole constraint system at some
// point of the solver path.
if (IsSingle)
return done(isSuccess);
// Rewind all modifications done to constraint system.
ComponentScope.reset();
if (isDebugMode()) {
auto &log = getDebugLogger();
log << (isSuccess ? "finished" : "failed") << " component #" << Index
<< ")\n";
}
// If we came either back to this step and previous
// (either disjunction or type var) failed, it means
// that component as a whole has failed.
if (!isSuccess)
return done(/*isSuccess=*/false);
assert(!Solutions.empty() && "No Solutions?");
// For each of the partial solutions, subtract off the current score.
// It doesn't contribute.
for (auto &solution : Solutions)
solution.getFixedScore() -= OriginalScore;
// Restore the original best score.
CS.solverState->BestScore = OriginalBestScore;
// When there are multiple partial solutions for a given connected component,
// rank those solutions to pick the best ones. This limits the number of
// combinations we need to produce; in the common case, down to a single
// combination.
filterSolutions(Solutions, /*minimize=*/true);
return done(/*isSuccess=*/true);
}
void TypeVariableStep::setup() {
++CS.solverState->NumTypeVariablesBound;
if (isDebugMode()) {
PrintOptions PO;
PO.PrintTypesForDebugging = true;
auto &log = getDebugLogger();
log << "Initial bindings: ";
interleave(InitialBindings.begin(), InitialBindings.end(),
[&](const Binding &binding) {
log << TypeVar->getString(PO)
<< " := " << binding.BindingType->getString(PO);
},
[&log] { log << ", "; });
log << '\n';
}
}
bool TypeVariableStep::attempt(const TypeVariableBinding &choice) {
++CS.solverState->NumTypeVariableBindings;
if (choice.hasDefaultedProtocol())
SawFirstLiteralConstraint = true;
// Try to solve the system with typeVar := type
return choice.attempt(CS);
}
StepResult TypeVariableStep::resume(bool prevFailed) {
assert(ActiveChoice);
// If there was no failure in the sub-path it means
// that active binding has a solution.
AnySolved |= !prevFailed;
bool shouldStop = shouldStopAfter(ActiveChoice->second);
// Rewind back all of the changes made to constraint system.
ActiveChoice.reset();
if (isDebugMode())
getDebugLogger() << ")\n";
// Let's check if we should stop right before
// attempting any new bindings.
if (shouldStop)
return done(/*isSuccess=*/AnySolved);
// Attempt next type variable binding.
return take(prevFailed);
}
StepResult DisjunctionStep::resume(bool prevFailed) {
// If disjunction step is re-taken and there should be
// active choice, let's see if it has be solved or not.
assert(ActiveChoice);
// If choice (sub-path) has failed, it's okay, other
// choices have to be attempted regardless, since final
// decision could be made only after attempting all
// of the choices, so let's just ignore failed ones.
if (!prevFailed) {
auto &choice = ActiveChoice->second;
auto score = getBestScore(Solutions);
if (!choice.isGenericOperator() && choice.isSymmetricOperator()) {
if (!BestNonGenericScore || score < BestNonGenericScore)
BestNonGenericScore = score;
}
AnySolved = true;
// Remember the last successfully solved choice,
// it would be useful when disjunction is exhausted.
LastSolvedChoice = {choice, *score};
}
// Rewind back the constraint system information.
ActiveChoice.reset();
if (isDebugMode())
getDebugLogger() << ")\n";
// Attempt next disjunction choice (if any left).
return take(prevFailed);
}
bool DisjunctionStep::shouldSkip(const DisjunctionChoice &choice) const {
auto &ctx = CS.getASTContext();
bool attemptFixes = CS.shouldAttemptFixes();
// Enable all disabled choices in "diagnostic" mode.
if (!attemptFixes && choice.isDisabled()) {
if (isDebugMode()) {
auto &log = getDebugLogger();
log << "(skipping ";
choice.print(log, &ctx.SourceMgr);
log << '\n';
}
return true;
}
// Skip unavailable overloads unless solver is in the "diagnostic" mode.
if (!attemptFixes && choice.isUnavailable())
return true;
if (ctx.TypeCheckerOpts.DisableConstraintSolverPerformanceHacks)
return false;
// Don't attempt to solve for generic operators if we already have
// a non-generic solution.
// FIXME: Less-horrible but still horrible hack to attempt to
// speed things up. Skip the generic operators if we
// already have a solution involving non-generic operators,
// but continue looking for a better non-generic operator
// solution.
if (BestNonGenericScore && choice.isGenericOperator()) {
auto &score = BestNonGenericScore->Data;
// Let's skip generic overload choices only in case if
// non-generic score indicates that there were no forced
// unwrappings of optional(s), no unavailable overload
// choices present in the solution, no fixes required,
// and there are no non-trivial function conversions.
if (score[SK_ForceUnchecked] == 0 && score[SK_Unavailable] == 0 &&
score[SK_Fix] == 0 && score[SK_FunctionConversion] == 0)
return true;
}
return false;
}
bool DisjunctionStep::shouldStopAt(const DisjunctionChoice &choice) const {
if (!LastSolvedChoice)
return false;
auto *lastChoice = LastSolvedChoice->first;
auto delta = LastSolvedChoice->second - getCurrentScore();
bool hasUnavailableOverloads = delta.Data[SK_Unavailable] > 0;
bool hasFixes = delta.Data[SK_Fix] > 0;
auto isBeginningOfPartition = choice.isBeginningOfPartition();
// Attempt to short-circuit evaluation of this disjunction only
// if the disjunction choice we are comparing to did not involve
// selecting unavailable overloads or result in fixes being
// applied to reach a solution.
return !hasUnavailableOverloads && !hasFixes &&
(isBeginningOfPartition ||
shortCircuitDisjunctionAt(choice, lastChoice));
}
bool swift::isSIMDOperator(ValueDecl *value) {
if (!value)
return false;
auto func = dyn_cast<FuncDecl>(value);
if (!func)
return false;
if (!func->isOperator())
return false;
auto nominal = func->getDeclContext()->getSelfNominalTypeDecl();
if (!nominal)
return false;
if (nominal->getName().empty())
return false;
return nominal->getName().str().startswith_lower("simd");
}
bool DisjunctionStep::shortCircuitDisjunctionAt(
Constraint *currentChoice, Constraint *lastSuccessfulChoice) const {
auto &ctx = CS.getASTContext();
// If the successfully applied constraint is favored, we'll consider that to
// be the "best".
if (lastSuccessfulChoice->isFavored() && !currentChoice->isFavored()) {
#if !defined(NDEBUG)
if (lastSuccessfulChoice->getKind() == ConstraintKind::BindOverload) {
auto overloadChoice = lastSuccessfulChoice->getOverloadChoice();
assert((!overloadChoice.isDecl() ||
!overloadChoice.getDecl()->getAttrs().isUnavailable(ctx)) &&
"Unavailable decl should not be favored!");
}
#endif
return true;
}
// Anything without a fix is better than anything with a fix.
if (currentChoice->getFix() && !lastSuccessfulChoice->getFix())
return true;
if (ctx.TypeCheckerOpts.DisableConstraintSolverPerformanceHacks)
return false;
if (auto restriction = currentChoice->getRestriction()) {
// Non-optional conversions are better than optional-to-optional
// conversions.
if (*restriction == ConversionRestrictionKind::OptionalToOptional)
return true;
// Array-to-pointer conversions are better than inout-to-pointer
// conversions.
if (auto successfulRestriction = lastSuccessfulChoice->getRestriction()) {
if (*successfulRestriction == ConversionRestrictionKind::ArrayToPointer &&
*restriction == ConversionRestrictionKind::InoutToPointer)
return true;
}
}
// Implicit conversions are better than checked casts.
if (currentChoice->getKind() == ConstraintKind::CheckedCast)
return true;
// If we have a SIMD operator, and the prior choice was not a SIMD
// Operator, we're done.
if (currentChoice->getKind() == ConstraintKind::BindOverload &&
isSIMDOperator(currentChoice->getOverloadChoice().getDecl()) &&
lastSuccessfulChoice->getKind() == ConstraintKind::BindOverload &&
!isSIMDOperator(lastSuccessfulChoice->getOverloadChoice().getDecl()) &&
!ctx.TypeCheckerOpts.SolverEnableOperatorDesignatedTypes) {
return true;
}
return false;
}
bool DisjunctionStep::attempt(const DisjunctionChoice &choice) {
++CS.solverState->NumDisjunctionTerms;
// If the disjunction requested us to, remember which choice we
// took for it.
if (auto *disjunctionLocator = getLocator()) {
auto index = choice.getIndex();
recordDisjunctionChoice(disjunctionLocator, index);
// Implicit unwraps of optionals are worse solutions than those
// not involving implicit unwraps.
if (!disjunctionLocator->getPath().empty()) {
auto kind = disjunctionLocator->getPath().back().getKind();
if (kind == ConstraintLocator::ImplicitlyUnwrappedDisjunctionChoice ||
kind == ConstraintLocator::DynamicLookupResult) {
assert(index == 0 || index == 1);
if (index == 1)
CS.increaseScore(SK_ForceUnchecked);
}
}
}
return choice.attempt(CS);
}