-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathProtocolConformance.cpp
683 lines (575 loc) · 23.9 KB
/
ProtocolConformance.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
//===--- ProtocolConformance.cpp - Swift conformance checking backport ----===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2020 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// Checking and caching of Swift protocol conformances.
//
// This is a version of the Swift 5.2 protocol conformance cache implementation
// adapted for backporting to Swift 5.1 with the following fixes applied:
//
// - rdar://problem/59460603, fixing a problem where the conformance cache would
// eagerly instantiate metadata for types when not necessary, causing crashes
// if instantiating the type relied on weak-linked symbols that aren't
// available on the client OS
//
//===----------------------------------------------------------------------===//
#include "Concurrent.h"
#include "Overrides.h"
#include "swift/Basic/Lazy.h"
#include "../../public/runtime/Private.h"
#include <mach-o/dyld.h>
#include <mach-o/getsect.h>
#include <objc/runtime.h>
#include <assert.h>
#include <dlfcn.h>
using namespace swift;
using swift::overrides::ConcurrentMap;
using swift::overrides::ConcurrentReadableArray;
// Look up Swift runtime entry points dynamically. This handles the case
// where the main executable can't link against libswiftCore.dylib because
// it will be loaded dynamically from a location that isn't known at build
// time.
static const Metadata *getObjCClassMetadata(const ClassMetadata *c) {
using FPtr = const Metadata *(*)(const ClassMetadata *);
FPtr func = SWIFT_LAZY_CONSTANT(
reinterpret_cast<FPtr>(dlsym(RTLD_DEFAULT, "swift_getObjCClassMetadata")));
return func(c);
}
static const ExistentialTypeMetadata *getExistentialTypeMetadata(
ProtocolClassConstraint classConstraint,
const Metadata *superclassConstraint,
size_t numProtocols,
const ProtocolDescriptorRef *protocols) {
auto func = SWIFT_LAZY_CONSTANT(
reinterpret_cast<const ExistentialTypeMetadata *(*)(ProtocolClassConstraint classConstraint,
const Metadata *superclassConstraint,
size_t numProtocols,
const ProtocolDescriptorRef *protocols)>(
dlsym(RTLD_DEFAULT, "swift_getExistentialTypeMetadata")));
return func(classConstraint, superclassConstraint, numProtocols, protocols);
}
static const TypeContextDescriptor *getTypeContextDescriptor(const Metadata *type) {
auto func = SWIFT_LAZY_CONSTANT(
reinterpret_cast<const TypeContextDescriptor *(*)(const Metadata *)>(
dlsym(RTLD_DEFAULT, "swift_getTypeContextDescriptor")));
return func(type);
}
// Clone of private helper swift::_swift_class_getSuperclass
// for use in the override implementation.
//
// This also gets used from the Compatibility50 library.
const Metadata *_swiftoverride_class_getSuperclass(
const Metadata *theClass) {
if (const ClassMetadata *classType = theClass->getClassObject()) {
if (classHasSuperclass(classType))
return getObjCClassMetadata(classType->Superclass);
}
if (const ForeignClassMetadata *foreignClassType
= dyn_cast<ForeignClassMetadata>(theClass)) {
if (const Metadata *superclass = foreignClassType->Superclass)
return superclass;
}
return nullptr;
}
// Clone of private function getRootSuperclass. This returns the SwiftObject
// class in the ABI-stable dylib, regardless of what the local runtime build
// does, since we're always patching an ABI-stable dylib.
__attribute__((visibility("hidden"), weak))
const ClassMetadata *swift::getRootSuperclass() {
auto theClass = SWIFT_LAZY_CONSTANT(objc_getClass("_TtCs12_SwiftObject"));
return (const ClassMetadata *)theClass;
}
namespace {
StringRef getTypeContextIdentity(const TypeContextDescriptor *type) {
// The first component is the user-facing name and (unless overridden)
// the ABI name.
StringRef component = type->Name.get();
// If we don't have import info, we're done.
if (!type->getTypeContextDescriptorFlags().hasImportInfo()) {
return component;
}
// The identity starts with the user-facing name.
const char *startOfIdentity = component.begin();
const char *endOfIdentity = component.end();
enum class TypeImportComponent : char {
ABIName = 'N',
SymbolNamespace = 'S',
RelatedEntityName = 'R',
};
while (true) {
// Parse the next component. If it's empty, we're done.
component = StringRef(component.end() + 1);
if (component.empty()) break;
// Update the identity bounds and assert that the identity
// components are in the right order.
auto kind = TypeImportComponent(component[0]);
if (kind == TypeImportComponent::ABIName) {
startOfIdentity = component.begin() + 1;
endOfIdentity = component.end();
} else if (kind == TypeImportComponent::SymbolNamespace) {
endOfIdentity = component.end();
} else if (kind == TypeImportComponent::RelatedEntityName) {
endOfIdentity = component.end();
}
}
return StringRef(startOfIdentity, endOfIdentity - startOfIdentity);
}
// Reimplementation of the runtime-private function `swift::equalContexts`
static bool override_equalContexts(const ContextDescriptor *a,
const ContextDescriptor *b)
{
// Fast path: pointer equality.
if (a == b) return true;
// If either context is null, we're done.
if (a == nullptr || b == nullptr)
return false;
// If either descriptor is known to be unique, we're done.
if (a->isUnique() || b->isUnique()) return false;
// Do the kinds match?
if (a->getKind() != b->getKind()) return false;
// Do the parents match?
if (!override_equalContexts(a->Parent.get(), b->Parent.get()))
return false;
// Compare kind-specific details.
switch (auto kind = a->getKind()) {
case ContextDescriptorKind::Module: {
// Modules with the same name are equivalent.
auto moduleA = cast<ModuleContextDescriptor>(a);
auto moduleB = cast<ModuleContextDescriptor>(b);
return strcmp(moduleA->Name.get(), moduleB->Name.get()) == 0;
}
case ContextDescriptorKind::Extension:
case ContextDescriptorKind::Anonymous:
// These context kinds are always unique.
return false;
default:
// Types in the same context with the same name are equivalent.
if (kind >= ContextDescriptorKind::Type_First
&& kind <= ContextDescriptorKind::Type_Last) {
auto typeA = cast<TypeContextDescriptor>(a);
auto typeB = cast<TypeContextDescriptor>(b);
return getTypeContextIdentity(typeA) == getTypeContextIdentity(typeB);
}
// Otherwise, this runtime doesn't know anything about this context kind.
// Conservatively return false.
return false;
}
}
// Reimplementation of the runtime-private function
// `ProtocolConformanceDescriptor::getCanonicalTypeMetadata`.
static const Metadata *
override_getCanonicalTypeMetadata(const ProtocolConformanceDescriptor *conf) {
switch (conf->getTypeKind()) {
// The class may be ObjC, in which case we need to instantiate its Swift
// metadata. The class additionally may be weak-linked, so we have to check
// for null.
case TypeReferenceKind::IndirectObjCClass:
if (auto cls = *conf->getIndirectObjCClass())
return getObjCClassMetadata(cls);
return nullptr;
case TypeReferenceKind::DirectObjCClassName:
if (auto cls = reinterpret_cast<const ClassMetadata *>(
objc_lookUpClass(conf->getDirectObjCClassName())))
return getObjCClassMetadata(cls);
return nullptr;
case TypeReferenceKind::DirectTypeDescriptor:
case TypeReferenceKind::IndirectTypeDescriptor: {
if (auto anyType = conf->getTypeDescriptor()) {
if (auto type = dyn_cast<TypeContextDescriptor>(anyType)) {
if (!type->isGeneric()) {
if (auto accessFn = type->getAccessFunction())
return accessFn(MetadataState::Abstract).Value;
}
} else if (auto protocol = dyn_cast<ProtocolDescriptor>(anyType)) {
auto protocolRef = ProtocolDescriptorRef::forSwift(protocol);
auto constraint =
protocol->getProtocolContextDescriptorFlags().getClassConstraint();
return getExistentialTypeMetadata(constraint,
/*superclass bound*/ nullptr,
/*num protocols*/ 1,
&protocolRef);
}
}
return nullptr;
}
}
swift_runtime_unreachable("Unhandled TypeReferenceKind in switch.");
}
class ConformanceCandidate {
const void *candidate;
bool candidateIsMetadata;
public:
ConformanceCandidate() : candidate(0), candidateIsMetadata(false) { }
ConformanceCandidate(const ProtocolConformanceDescriptor &conformance)
: ConformanceCandidate()
{
if (auto description = conformance.getTypeDescriptor()) {
candidate = description;
candidateIsMetadata = false;
return;
}
if (auto metadata = override_getCanonicalTypeMetadata(&conformance)) {
candidate = metadata;
candidateIsMetadata = true;
return;
}
}
/// Retrieve the conforming type as metadata, or NULL if the candidate's
/// conforming type is described in another way (e.g., a nominal type
/// descriptor).
const Metadata *getConformingTypeAsMetadata() const {
return candidateIsMetadata ? static_cast<const Metadata *>(candidate)
: nullptr;
}
const ContextDescriptor *
getContextDescriptor(const Metadata *conformingType) const {
const auto *description = getTypeContextDescriptor(conformingType);
if (description)
return description;
// Handle single-protocol existential types for self-conformance.
auto *existentialType = dyn_cast<ExistentialTypeMetadata>(conformingType);
if (existentialType == nullptr ||
existentialType->getProtocols().size() != 1 ||
existentialType->getSuperclassConstraint() != nullptr)
return nullptr;
auto proto = existentialType->getProtocols()[0];
if (proto.isObjC())
return nullptr;
return proto.getSwiftProtocol();
}
/// Whether the conforming type exactly matches the conformance candidate.
bool matches(const Metadata *conformingType) const {
// Check whether the types match.
if (candidateIsMetadata && conformingType == candidate)
return true;
// Check whether the nominal type descriptors match.
if (!candidateIsMetadata) {
const auto *description = getContextDescriptor(conformingType);
auto candidateDescription =
static_cast<const ContextDescriptor *>(candidate);
if (description && override_equalContexts(description, candidateDescription))
return true;
}
return false;
}
/// Retrieve the type that matches the conformance candidate, which may
/// be a superclass of the given type. Returns null if this type does not
/// match this conformance.
const Metadata *getMatchingType(const Metadata *conformingType) const {
while (conformingType) {
// Check for a match.
if (matches(conformingType))
return conformingType;
// Look for a superclass.
conformingType = _swiftoverride_class_getSuperclass(conformingType);
}
return nullptr;
}
};
struct ConformanceSection {
const ProtocolConformanceRecord *Begin, *End;
const ProtocolConformanceRecord *begin() const {
return Begin;
}
const ProtocolConformanceRecord *end() const {
return End;
}
};
struct ConformanceCacheKey {
/// Either a Metadata* or a NominalTypeDescriptor*.
const void *Type;
const ProtocolDescriptor *Proto;
ConformanceCacheKey(const void *type, const ProtocolDescriptor *proto)
: Type(type), Proto(proto) {
assert(type);
}
};
struct ConformanceCacheEntry {
private:
const void *Type;
const ProtocolDescriptor *Proto;
std::atomic<const ProtocolConformanceDescriptor *> Description;
std::atomic<size_t> FailureGeneration;
public:
ConformanceCacheEntry(ConformanceCacheKey key,
const ProtocolConformanceDescriptor *description,
size_t failureGeneration)
: Type(key.Type), Proto(key.Proto), Description(description),
FailureGeneration(failureGeneration) {
}
int compareWithKey(const ConformanceCacheKey &key) const {
if (key.Type != Type) {
return (uintptr_t(key.Type) < uintptr_t(Type) ? -1 : 1);
} else if (key.Proto != Proto) {
return (uintptr_t(key.Proto) < uintptr_t(Proto) ? -1 : 1);
} else {
return 0;
}
}
template <class... Args>
static size_t getExtraAllocationSize(Args &&... ignored) {
return 0;
}
bool isSuccessful() const {
return Description.load(std::memory_order_relaxed) != nullptr;
}
void makeSuccessful(const ProtocolConformanceDescriptor *description) {
Description.store(description, std::memory_order_release);
}
void updateFailureGeneration(size_t failureGeneration) {
assert(!isSuccessful());
FailureGeneration.store(failureGeneration, std::memory_order_relaxed);
}
/// Get the cached conformance descriptor, if successful.
const ProtocolConformanceDescriptor *getDescription() const {
assert(isSuccessful());
return Description.load(std::memory_order_acquire);
}
/// Get the generation in which this lookup failed.
size_t getFailureGeneration() const {
assert(!isSuccessful());
return FailureGeneration.load(std::memory_order_relaxed);
}
};
#if __POINTER_WIDTH__ == 64
using mach_header_platform = mach_header_64;
#else
using mach_header_platform = mach_header;
#endif
// Conformance Cache.
struct ConformanceState {
ConcurrentMap<ConformanceCacheEntry> Cache;
ConcurrentReadableArray<ConformanceSection> SectionsToScan;
ConformanceState();
void cacheSuccess(const void *type, const ProtocolDescriptor *proto,
const ProtocolConformanceDescriptor *description) {
auto result = Cache.getOrInsert(ConformanceCacheKey(type, proto),
description, 0);
// If the entry was already present, we may need to update it.
if (!result.second) {
result.first->makeSuccessful(description);
}
}
void cacheFailure(const void *type, const ProtocolDescriptor *proto,
size_t failureGeneration) {
auto result =
Cache.getOrInsert(ConformanceCacheKey(type, proto),
(const ProtocolConformanceDescriptor *) nullptr,
failureGeneration);
// If the entry was already present, we may need to update it.
if (!result.second) {
result.first->updateFailureGeneration(failureGeneration);
}
}
ConformanceCacheEntry *findCached(const void *type,
const ProtocolDescriptor *proto) {
return Cache.find(ConformanceCacheKey(type, proto));
}
};
static Lazy<ConformanceState> Conformances;
// The Swift runtime in the OS installs this callback to populate its original
// version of the conformance cache, but since we have our own implementation,
// we must install our own callback to populate our copy as well.
static void addImageCallback(const mach_header *mh) {
// Look for a __swift5_proto section.
unsigned long conformancesSize;
const uint8_t *conformances =
getsectiondata(reinterpret_cast<const mach_header_platform *>(mh),
SEG_TEXT, "__swift5_proto",
&conformancesSize);
if (!conformances)
return;
assert(conformancesSize % sizeof(ProtocolConformanceRecord) == 0 &&
"conformances section not a multiple of ProtocolConformanceRecord");
// If we have a section, enqueue the conformances for lookup.
auto conformanceBytes = reinterpret_cast<const char *>(conformances);
auto recordsBegin
= reinterpret_cast<const ProtocolConformanceRecord*>(conformances);
auto recordsEnd
= reinterpret_cast<const ProtocolConformanceRecord*>
(conformanceBytes + conformancesSize);
// Conformance cache should always be sufficiently initialized by this point.
Conformances.unsafeGetAlreadyInitialized()
.SectionsToScan
.push_back(ConformanceSection{recordsBegin, recordsEnd});
};
static void addImageCallback(const mach_header *mh, intptr_t vmaddr_slide) {
addImageCallback(mh);
}
static void initializeProtocolConformanceLookup() {
// If `objc_addLoadImageFunc` is available on this OS, use it.
// We don't use `__builtin_available` because that requires libraries that may
// not be linked into the binary carrying this compatibility shim.
auto objc_addLoadImageFunc = reinterpret_cast<void(*)(objc_func_loadImage)>(
dlsym(RTLD_DEFAULT, "objc_addLoadImageFunc"));
if (objc_addLoadImageFunc) {
objc_addLoadImageFunc(addImageCallback);
} else {
_dyld_register_func_for_add_image(addImageCallback);
}
}
ConformanceState::ConformanceState() {
initializeProtocolConformanceLookup();
}
struct ConformanceCacheResult {
// true if description is an authoritative result as-is.
// false if more searching is required (for example, because a cached
// failure was returned in failureEntry but it is out-of-date.
bool isAuthoritative;
// The matching conformance descriptor, or null if no cached conformance
// was found.
const ProtocolConformanceDescriptor *description;
// If the search fails, this may be the negative cache entry for the
// queried type itself. This entry may be null or out-of-date.
ConformanceCacheEntry *failureEntry;
static ConformanceCacheResult
cachedSuccess(const ProtocolConformanceDescriptor *description) {
return ConformanceCacheResult { true, description, nullptr };
}
static ConformanceCacheResult
cachedFailure(ConformanceCacheEntry *entry, bool auth) {
return ConformanceCacheResult { auth, nullptr, entry };
}
static ConformanceCacheResult
cacheMiss() {
return ConformanceCacheResult { false, nullptr, nullptr };
}
};
/// Retrieve the type key from the given metadata, to be used when looking
/// into the conformance cache.
static const void *getConformanceCacheTypeKey(const Metadata *type) {
if (auto description = getTypeContextDescriptor(type))
return description;
return type;
}
/// Search for a conformance descriptor in the ConformanceCache.
static ConformanceCacheResult
searchInConformanceCache(const Metadata *type,
const ProtocolDescriptor *protocol) {
auto &C = Conformances.get();
auto origType = type;
ConformanceCacheEntry *failureEntry = nullptr;
recur:
{
// Try the specific type first.
if (auto *Value = C.findCached(type, protocol)) {
if (Value->isSuccessful()) {
// Found a conformance on the type or some superclass. Return it.
return ConformanceCacheResult::cachedSuccess(Value->getDescription());
}
// Found a negative cache entry.
bool isAuthoritative;
if (type == origType) {
// This negative cache entry is for the original query type.
// Remember it so it can be returned later.
failureEntry = Value;
// An up-to-date entry for the original type is authoritative.
isAuthoritative = true;
} else {
// An up-to-date cached failure for a superclass of the type is not
// authoritative: there may be a still-undiscovered conformance
// for the original query type.
isAuthoritative = false;
}
// Check if the negative cache entry is up-to-date.
if (Value->getFailureGeneration() == C.SectionsToScan.snapshot().count()) {
// Negative cache entry is up-to-date. Return failure along with
// the original query type's own cache entry, if we found one.
// (That entry may be out of date but the caller still has use for it.)
return ConformanceCacheResult::cachedFailure(failureEntry,
isAuthoritative);
}
// Negative cache entry is out-of-date.
// Continue searching for a better result.
}
}
{
// For generic and resilient types, nondependent conformances
// are keyed by the nominal type descriptor rather than the
// metadata, so try that.
auto typeKey = getConformanceCacheTypeKey(type);
// Hash and lookup the type-protocol pair in the cache.
if (auto *Value = C.findCached(typeKey, protocol)) {
if (Value->isSuccessful())
return ConformanceCacheResult::cachedSuccess(Value->getDescription());
// We don't try to cache negative responses for generic
// patterns.
}
}
// If there is a superclass, look there.
if (auto superclass = _swiftoverride_class_getSuperclass(type)) {
type = superclass;
goto recur;
}
// We did not find an up-to-date cache entry.
// If we found an out-of-date entry for the original query type then
// return it (non-authoritatively). Otherwise return a cache miss.
if (failureEntry)
return ConformanceCacheResult::cachedFailure(failureEntry, false);
else
return ConformanceCacheResult::cacheMiss();
}
} // end anonymous namespace
const ProtocolConformanceDescriptor *
swift::swift51override_conformsToSwiftProtocol(const Metadata * const type,
const ProtocolDescriptor *protocol,
StringRef module,
ConformsToSwiftProtocol_t *orig) {
auto &C = Conformances.get();
// See if we have a cached conformance. The ConcurrentMap data structure
// allows us to insert and search the map concurrently without locking.
auto FoundConformance = searchInConformanceCache(type, protocol);
// If the result (positive or negative) is authoritative, return it.
if (FoundConformance.isAuthoritative)
return FoundConformance.description;
auto failureEntry = FoundConformance.failureEntry;
// Prepare to scan conformance records.
auto snapshot = C.SectionsToScan.snapshot();
// Scan only sections that were not scanned yet.
// If we found an out-of-date negative cache entry,
// we need not to re-scan the sections that it covers.
auto startIndex = failureEntry ? failureEntry->getFailureGeneration() : 0;
auto endIndex = snapshot.count();
// If there are no unscanned sections outstanding
// then we can cache failure and give up now.
if (startIndex == endIndex) {
C.cacheFailure(type, protocol, snapshot.count());
return nullptr;
}
// Really scan conformance records.
for (size_t i = startIndex; i < endIndex; i++) {
auto §ion = snapshot.Start[i];
// Eagerly pull records for nondependent witnesses into our cache.
for (const auto &record : section) {
auto &descriptor = *record.get();
// We only care about conformances for this protocol.
if (descriptor.getProtocol() != protocol)
continue;
// If there's a matching type, record the positive result.
ConformanceCandidate candidate(descriptor);
if (candidate.getMatchingType(type)) {
const Metadata *matchingType = candidate.getConformingTypeAsMetadata();
if (!matchingType)
matchingType = type;
C.cacheSuccess(matchingType, protocol, &descriptor);
}
}
}
// Conformance scan is complete.
// Search the cache once more, and this time update the cache if necessary.
FoundConformance = searchInConformanceCache(type, protocol);
if (FoundConformance.isAuthoritative) {
return FoundConformance.description;
} else {
C.cacheFailure(type, protocol, snapshot.count());
return nullptr;
}
}