-
Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathGlobalARCSequenceDataflow.cpp
426 lines (343 loc) · 15.2 KB
/
GlobalARCSequenceDataflow.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
//===--- GlobalARCSequenceDataflow.cpp - ARC Sequence Dataflow Analysis ---===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "arc-sequence-opts"
#include "GlobalARCSequenceDataflow.h"
#include "ARCBBState.h"
#include "ARCSequenceOptUtils.h"
#include "RCStateTransitionVisitors.h"
#include "swift/SILOptimizer/Analysis/ARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/PostOrderAnalysis.h"
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILSuccessor.h"
#include "swift/SIL/CFG.h"
#include "swift/SIL/SILModule.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
namespace {
using ARCBBState = ARCSequenceDataflowEvaluator::ARCBBState;
using ARCBBStateInfo = ARCSequenceDataflowEvaluator::ARCBBStateInfo;
using ARCBBStateInfoHandle = ARCSequenceDataflowEvaluator::ARCBBStateInfoHandle;
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Top Down Dataflow
//===----------------------------------------------------------------------===//
/// Analyze a single BB for refcount inc/dec instructions.
///
/// If anything was found it will be added to DecToIncStateMap.
///
/// NestingDetected will be set to indicate that the block needs to be
/// reanalyzed if code motion occurs.
bool ARCSequenceDataflowEvaluator::processBBTopDown(ARCBBState &BBState) {
LLVM_DEBUG(llvm::dbgs() << ">>>> Top Down!\n");
SILBasicBlock &BB = BBState.getBB();
bool NestingDetected = false;
TopDownDataflowRCStateVisitor<ARCBBState> DataflowVisitor(
RCIA, BBState, DecToIncStateMap, SetFactory);
// If the current BB is the entry BB, initialize a state corresponding to each
// of its owned parameters. This enables us to know that if we see a retain
// before any decrements that the retain is known safe.
//
// We do not handle guaranteed parameters here since those are handled in the
// code in GlobalARCPairingAnalysis. This is because even if we don't do
// anything, we will still pair the retain, releases and then the guaranteed
// parameter will ensure it is known safe to remove them.
if (BB.isEntry()) {
auto Args = BB.getArguments();
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
DataflowVisitor.visit(Args[i]);
}
}
std::function<bool(SILInstruction *)> checkIfRefCountInstIsMatched =
[&DecToIncStateMap = DecToIncStateMap](SILInstruction *Inst) {
assert(isa<StrongReleaseInst>(Inst) || isa<ReleaseValueInst>(Inst));
return DecToIncStateMap.find(Inst) != DecToIncStateMap.end();
};
// For each instruction I in BB...
for (auto &I : BB) {
LLVM_DEBUG(llvm::dbgs() << "VISITING:\n " << I);
auto Result = DataflowVisitor.visit(I.asSILNode());
// If this instruction can have no further effects on another instructions,
// continue. This happens for instance if we have cleared all of the state
// we are tracking.
if (Result.Kind == RCStateTransitionDataflowResultKind::NoEffects)
continue;
// Make sure that we propagate out whether or not nesting was detected.
NestingDetected |= Result.NestingDetected;
// This SILValue may be null if we were unable to find a specific RCIdentity
// that the instruction "visits".
SILValue CurrentRC = Result.RCIdentity;
// For all other [(SILValue, TopDownState)] we are tracking...
for (auto &OtherState : BBState.getTopDownStates()) {
// If the other state's value is blotted, skip it.
if (!OtherState.has_value())
continue;
// If we visited an increment or decrement successfully (and thus Op is
// set), if this is the state for this operand, skip it. We already
// processed it.
if (CurrentRC && OtherState->first == CurrentRC)
continue;
OtherState->second.updateForSameLoopInst(&I, AA);
OtherState->second.checkAndResetKnownSafety(
&I, OtherState->first, checkIfRefCountInstIsMatched, RCIA, AA);
}
}
return NestingDetected;
}
void ARCSequenceDataflowEvaluator::mergePredecessors(
ARCBBStateInfoHandle &DataHandle) {
bool HasAtLeastOnePred = false;
SILBasicBlock *BB = DataHandle.getBB();
ARCBBState &BBState = DataHandle.getState();
// For each successor of BB...
for (SILBasicBlock *PredBB : BB->getPredecessorBlocks()) {
// Try to look up the data handle for it. If we don't have any such state,
// then the predecessor must be unreachable from the entrance and thus is
// uninteresting to us.
auto PredDataHandle = getTopDownBBState(PredBB);
if (!PredDataHandle)
continue;
LLVM_DEBUG(llvm::dbgs() << " Merging Pred: " << PredDataHandle->getID()
<< "\n");
// If the predecessor is the head of a backedge in our traversal, clear any
// state we are tracking now and clear the state of the basic block. There
// is some sort of control flow here that we do not understand.
if (PredDataHandle->isBackedge(BB)) {
BBState.clear();
break;
}
ARCBBState &PredBBState = PredDataHandle->getState();
// If we found the state but the state is for a trap BB, skip it. Trap BBs
// leak all reference counts and do not reference semantic objects
// in any manner.
//
// TODO: I think this is a copy paste error, since we a trap BB should have
// an unreachable at its end. See if this can be removed.
if (PredBBState.isTrapBB())
continue;
if (HasAtLeastOnePred) {
BBState.mergePredTopDown(PredBBState);
continue;
}
BBState.initPredTopDown(PredBBState);
HasAtLeastOnePred = true;
}
}
bool ARCSequenceDataflowEvaluator::processTopDown() {
bool NestingDetected = false;
LLVM_DEBUG(llvm::dbgs() << "<<<< Processing Top Down! >>>>\n");
// For each BB in our reverse post order...
for (auto *BB : POA->get(&F)->getReversePostOrder()) {
// We should always have a value here.
auto BBDataHandle = getTopDownBBState(BB).value();
// This will always succeed since we have an entry for each BB in our RPOT.
//
// TODO: When data handles are introduced, print that instead. This code
// should not be touching BBIDs directly.
LLVM_DEBUG(llvm::dbgs() << "Processing BB#: " << BBDataHandle.getID()
<< "\n");
LLVM_DEBUG(llvm::dbgs() << "Merging Predecessors!\n");
mergePredecessors(BBDataHandle);
// Then perform the basic block optimization.
NestingDetected |= processBBTopDown(BBDataHandle.getState());
}
return NestingDetected;
}
//===----------------------------------------------------------------------===//
// Bottom Up Dataflow
//===----------------------------------------------------------------------===//
/// Analyze a single BB for refcount inc/dec instructions.
///
/// If anything was found it will be added to DecToIncStateMap.
///
/// NestingDetected will be set to indicate that the block needs to be
/// reanalyzed if code motion occurs.
///
/// An epilogue release is a release that post dominates all other uses of a
/// pointer in a function that implies that the pointer is alive up to that
/// point. We "freeze" (i.e. do not attempt to remove or move) such releases if
/// FreezeOwnedArgEpilogueReleases is set. This is useful since in certain cases
/// due to dataflow issues, we cannot properly propagate the last use
/// information. Instead we run an extra iteration of the ARC optimizer with
/// this enabled in a side table so the information gets propagated everywhere in
/// the CFG.
bool ARCSequenceDataflowEvaluator::processBBBottomUp(
ARCBBState &BBState, bool FreezeOwnedArgEpilogueReleases) {
LLVM_DEBUG(llvm::dbgs() << ">>>> Bottom Up!\n");
SILBasicBlock &BB = BBState.getBB();
bool NestingDetected = false;
BottomUpDataflowRCStateVisitor<ARCBBState> DataflowVisitor(
RCIA, EAFI, BBState, FreezeOwnedArgEpilogueReleases, IncToDecStateMap,
SetFactory);
std::function<bool(SILInstruction *)> checkIfRefCountInstIsMatched =
[&IncToDecStateMap = IncToDecStateMap](SILInstruction *Inst) {
assert(isa<StrongRetainInst>(Inst) || isa<RetainValueInst>(Inst));
return IncToDecStateMap.find(Inst) != IncToDecStateMap.end();
};
auto II = BB.rbegin();
if (!isARCSignificantTerminator(&cast<TermInst>(*II))) {
II++;
}
// For each instruction I in BB visited in reverse...
for (auto IE = BB.rend(); II != IE;) {
SILInstruction &I = *II;
++II;
LLVM_DEBUG(llvm::dbgs() << "VISITING:\n " << I);
auto Result = DataflowVisitor.visit(I.asSILNode());
// If this instruction can have no further effects on another instructions,
// continue. This happens for instance if we have cleared all of the state
// we are tracking.
if (Result.Kind == RCStateTransitionDataflowResultKind::NoEffects)
continue;
// Make sure that we propagate out whether or not nesting was detected.
NestingDetected |= Result.NestingDetected;
// This SILValue may be null if we were unable to find a specific RCIdentity
// that the instruction "visits".
SILValue CurrentRC = Result.RCIdentity;
// For all other (reference counted value, ref count state) we are
// tracking...
for (auto &OtherState : BBState.getBottomupStates()) {
// If the other state's value is blotted, skip it.
if (!OtherState.has_value())
continue;
// If this is the state associated with the instruction that we are
// currently visiting, bail.
if (CurrentRC && OtherState->first == CurrentRC)
continue;
OtherState->second.updateForSameLoopInst(&I, AA);
OtherState->second.checkAndResetKnownSafety(
&I, OtherState->first, checkIfRefCountInstIsMatched, RCIA, AA);
}
}
return NestingDetected;
}
void
ARCSequenceDataflowEvaluator::
mergeSuccessors(ARCBBStateInfoHandle &DataHandle) {
SILBasicBlock *BB = DataHandle.getBB();
ARCBBState &BBState = DataHandle.getState();
// For each successor of BB...
ArrayRef<SILSuccessor> Succs = BB->getSuccessors();
bool HasAtLeastOneSucc = false;
for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
// If it does not have a basic block associated with it...
auto *SuccBB = Succs[i].getBB();
// Skip it.
if (!SuccBB)
continue;
// If the BB is the head of a backedge in our traversal, we have
// hit a loop boundary. In that case, add any instructions we are
// tracking or instructions that we have seen to the banned
// instruction list. Clear the instructions we are tracking
// currently, but leave that we saw a release on them. In a post
// order, we know that all of a BB's successors will always be
// visited before the BB, implying we will know if conservatively
// we saw a release on the pointer going down all paths.
if (DataHandle.isBackedge(SuccBB)) {
BBState.clear();
break;
}
// Otherwise, lookup the BBState associated with the successor and merge
// the successor in. We know this will always succeed.
auto SuccDataHandle = *getBottomUpBBState(SuccBB);
ARCBBState &SuccBBState = SuccDataHandle.getState();
if (SuccBBState.isTrapBB())
continue;
if (HasAtLeastOneSucc) {
BBState.mergeSuccBottomUp(SuccBBState);
continue;
}
BBState.initSuccBottomUp(SuccBBState);
HasAtLeastOneSucc = true;
}
}
bool ARCSequenceDataflowEvaluator::processBottomUp(
bool FreezeOwnedArgEpilogueReleases) {
bool NestingDetected = false;
LLVM_DEBUG(llvm::dbgs() << "<<<< Processing Bottom Up! >>>>\n");
// For each BB in our post order...
for (auto *BB : POA->get(&F)->getPostOrder()) {
// Grab the BBState associated with it and set it to be the current BB.
auto BBDataHandle = *getBottomUpBBState(BB);
// This will always succeed since we have an entry for each BB in our post
// order.
LLVM_DEBUG(llvm::dbgs() << "Processing BB#: " << BBDataHandle.getID()
<< "\n");
LLVM_DEBUG(llvm::dbgs() << "Merging Successors!\n");
mergeSuccessors(BBDataHandle);
// Then perform the basic block optimization.
NestingDetected |= processBBBottomUp(BBDataHandle.getState(),
FreezeOwnedArgEpilogueReleases);
}
return NestingDetected;
}
//===----------------------------------------------------------------------===//
// Top Level ARC Sequence Dataflow Evaluator
//===----------------------------------------------------------------------===//
ARCSequenceDataflowEvaluator::ARCSequenceDataflowEvaluator(
SILFunction &F, AliasAnalysis *AA, PostOrderAnalysis *POA,
RCIdentityFunctionInfo *RCIA, EpilogueARCFunctionInfo *EAFI,
ProgramTerminationFunctionInfo *PTFI,
BlotMapVector<SILInstruction *, TopDownRefCountState> &DecToIncStateMap,
BlotMapVector<SILInstruction *, BottomUpRefCountState> &IncToDecStateMap)
: F(F), AA(AA), POA(POA), RCIA(RCIA), EAFI(EAFI),
DecToIncStateMap(DecToIncStateMap), IncToDecStateMap(IncToDecStateMap),
Allocator(), SetFactory(Allocator),
// We use a malloced pointer here so we don't need to expose
// ARCBBStateInfo in the header.
BBStateInfo(new ARCBBStateInfo(&F, POA, PTFI)) {}
bool ARCSequenceDataflowEvaluator::run(bool FreezeOwnedReleases) {
bool NestingDetected = processBottomUp(FreezeOwnedReleases);
NestingDetected |= processTopDown();
LLVM_DEBUG(
llvm::dbgs() << "*** Bottom-Up and Top-Down analysis results ***\n");
LLVM_DEBUG(dumpDataflowResults());
return NestingDetected;
}
void ARCSequenceDataflowEvaluator::dumpDataflowResults() {
llvm::dbgs() << "IncToDecStateMap:\n";
for (auto it : IncToDecStateMap) {
if (!it.has_value())
continue;
auto instAndState = it.value();
llvm::dbgs() << "Increment: ";
instAndState.first->dump();
instAndState.second.dump();
}
llvm::dbgs() << "DecToIncStateMap:\n";
for (auto it : DecToIncStateMap) {
if (!it.has_value())
continue;
auto instAndState = it.value();
llvm::dbgs() << "Decrement: ";
instAndState.first->dump();
instAndState.second.dump();
}
}
// We put the destructor here so we don't need to expose the type of
// BBStateInfo to the outside world.
ARCSequenceDataflowEvaluator::~ARCSequenceDataflowEvaluator() = default;
void ARCSequenceDataflowEvaluator::clear() { BBStateInfo->clear(); }
llvm::Optional<ARCBBStateInfoHandle>
ARCSequenceDataflowEvaluator::getBottomUpBBState(SILBasicBlock *BB) {
return BBStateInfo->getBottomUpBBHandle(BB);
}
llvm::Optional<ARCBBStateInfoHandle>
ARCSequenceDataflowEvaluator::getTopDownBBState(SILBasicBlock *BB) {
return BBStateInfo->getTopDownBBHandle(BB);
}