-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathDemangle.cpp
933 lines (807 loc) · 32.3 KB
/
Demangle.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
//===----------------------------------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "Private.h"
#include "swift/ABI/TypeIdentity.h"
#include "swift/Basic/Range.h"
#include "swift/Runtime/Metadata.h"
#include "swift/Runtime/Portability.h"
#include "swift/Strings.h"
#include <vector>
#include <inttypes.h>
#if SWIFT_OBJC_INTEROP
#include <objc/runtime.h>
#endif
using namespace swift;
Demangle::NodePointer
swift::_buildDemanglingForContext(const ContextDescriptor *context,
llvm::ArrayRef<NodePointer> demangledGenerics,
Demangle::Demangler &Dem) {
unsigned usedDemangledGenerics = 0;
NodePointer node = nullptr;
// Walk up the context tree.
llvm::SmallVector<const ContextDescriptor *, 8> descriptorPath;
{
const ContextDescriptor *parent = context;
while (parent) {
descriptorPath.push_back(parent);
parent = parent->Parent;
}
}
auto getGenericArgsTypeListForContext =
[&](const ContextDescriptor *context) -> NodePointer {
if (demangledGenerics.empty())
return nullptr;
if (context->getKind() == ContextDescriptorKind::Anonymous)
return nullptr;
auto generics = context->getGenericContext();
if (!generics)
return nullptr;
auto numParams = generics->getGenericContextHeader().NumParams;
if (numParams <= usedDemangledGenerics)
return nullptr;
auto genericArgsList = Dem.createNode(Node::Kind::TypeList);
for (unsigned e = generics->getGenericContextHeader().NumParams;
usedDemangledGenerics < e;
++usedDemangledGenerics) {
genericArgsList->addChild(demangledGenerics[usedDemangledGenerics],
Dem);
}
return genericArgsList;
};
for (auto component : llvm::reverse(descriptorPath)) {
switch (auto kind = component->getKind()) {
case ContextDescriptorKind::Module: {
assert(node == nullptr && "module should be top level");
auto name = llvm::cast<ModuleContextDescriptor>(component)->Name.get();
node = Dem.createNode(Node::Kind::Module, name);
break;
}
case ContextDescriptorKind::Extension: {
auto extension = llvm::cast<ExtensionContextDescriptor>(component);
// Demangle the extension self type.
auto selfType = Dem.demangleType(extension->getMangledExtendedContext(),
ResolveToDemanglingForContext(Dem));
if (selfType->getKind() == Node::Kind::Type)
selfType = selfType->getChild(0);
// Substitute in the generic arguments.
auto genericArgsList = getGenericArgsTypeListForContext(component);
if (selfType->getKind() == Node::Kind::BoundGenericEnum
|| selfType->getKind() == Node::Kind::BoundGenericStructure
|| selfType->getKind() == Node::Kind::BoundGenericClass
|| selfType->getKind() == Node::Kind::BoundGenericOtherNominalType) {
if (genericArgsList) {
auto substSelfType = Dem.createNode(selfType->getKind());
substSelfType->addChild(selfType->getChild(0), Dem);
substSelfType->addChild(genericArgsList, Dem);
selfType = substSelfType;
} else {
// TODO: Use the unsubstituted type if we can't handle the
// substitutions yet.
selfType = selfType->getChild(0)->getChild(0);
}
}
auto extNode = Dem.createNode(Node::Kind::Extension);
extNode->addChild(node, Dem);
extNode->addChild(selfType, Dem);
// TODO: Turn the generic signature into a demangling as the third
// generic argument.
node = extNode;
break;
}
case ContextDescriptorKind::Protocol: {
auto protocol = llvm::cast<ProtocolDescriptor>(component);
auto name = protocol->Name.get();
auto protocolNode = Dem.createNode(Node::Kind::Protocol);
protocolNode->addChild(node, Dem);
auto nameNode = Dem.createNode(Node::Kind::Identifier, name);
protocolNode->addChild(nameNode, Dem);
node = protocolNode;
break;
}
default:
// Form a type context demangling for type contexts.
if (auto type = llvm::dyn_cast<TypeContextDescriptor>(component)) {
auto identity = ParsedTypeIdentity::parse(type);
Node::Kind nodeKind;
Node::Kind genericNodeKind;
switch (kind) {
case ContextDescriptorKind::Class:
nodeKind = Node::Kind::Class;
genericNodeKind = Node::Kind::BoundGenericClass;
break;
case ContextDescriptorKind::Struct:
nodeKind = Node::Kind::Structure;
genericNodeKind = Node::Kind::BoundGenericStructure;
break;
case ContextDescriptorKind::Enum:
nodeKind = Node::Kind::Enum;
genericNodeKind = Node::Kind::BoundGenericEnum;
break;
default:
// We don't know about this kind of type. Use an "other type" mangling
// for it.
nodeKind = Node::Kind::OtherNominalType;
genericNodeKind = Node::Kind::BoundGenericOtherNominalType;
break;
}
// Override the node kind if this is a Clang-imported type so we give it
// a stable mangling.
if (identity.isCTypedef()) {
nodeKind = Node::Kind::TypeAlias;
} else if (nodeKind != Node::Kind::Structure &&
_isCImportedTagType(type, identity)) {
nodeKind = Node::Kind::Structure;
}
auto typeNode = Dem.createNode(nodeKind);
typeNode->addChild(node, Dem);
auto nameNode = Dem.createNode(Node::Kind::Identifier,
identity.getABIName());
if (identity.isAnyRelatedEntity()) {
auto kindNode = Dem.createNode(Node::Kind::Identifier,
identity.getRelatedEntityName());
auto relatedName = Dem.createNode(Node::Kind::RelatedEntityDeclName);
relatedName->addChild(kindNode, Dem);
relatedName->addChild(nameNode, Dem);
nameNode = relatedName;
}
typeNode->addChild(nameNode, Dem);
node = typeNode;
// Apply generic arguments if the context is generic.
if (auto genericArgsList = getGenericArgsTypeListForContext(component)){
auto unspecializedType = Dem.createNode(Node::Kind::Type);
unspecializedType->addChild(node, Dem);
auto genericNode = Dem.createNode(genericNodeKind);
genericNode->addChild(unspecializedType, Dem);
genericNode->addChild(genericArgsList, Dem);
node = genericNode;
}
break;
}
// This runtime doesn't understand this context, or it's a context with
// no richer runtime information available about it (such as an anonymous
// context). Use an unstable mangling to represent the context by its
// pointer identity.
char addressBuf[sizeof(void*) * 2 + 1 + 1];
snprintf(addressBuf, sizeof(addressBuf), "$%" PRIxPTR, (uintptr_t)component);
auto anonNode = Dem.createNode(Node::Kind::AnonymousContext);
CharVector addressStr;
addressStr.append(addressBuf, Dem);
auto name = Dem.createNode(Node::Kind::Identifier, addressStr);
anonNode->addChild(name, Dem);
anonNode->addChild(node, Dem);
// Collect generic arguments if the context is generic.
auto genericArgsList = getGenericArgsTypeListForContext(component);
if (!genericArgsList)
genericArgsList = Dem.createNode(Node::Kind::TypeList);
anonNode->addChild(genericArgsList, Dem);
node = anonNode;
break;
}
}
// Wrap the final result in a top-level Type node.
auto top = Dem.createNode(Node::Kind::Type);
top->addChild(node, Dem);
return top;
}
// FIXME: This stuff should be merged with the existing logic in
// include/swift/RemoteInspection/TypeRefBuilder.h as part of the rewrite
// to change stdlib reflection over to using remote mirrors.
Demangle::NodePointer
swift::_swift_buildDemanglingForMetadata(const Metadata *type,
Demangle::Demangler &Dem);
static Demangle::NodePointer
_buildDemanglerForBuiltinType(const Metadata *type, Demangle::Demangler &Dem) {
#define BUILTIN_TYPE(Symbol, Name) \
if (type == &METADATA_SYM(Symbol).base) \
return Dem.createNode(Node::Kind::BuiltinTypeName, Name);
#if !SWIFT_STDLIB_ENABLE_VECTOR_TYPES
#define BUILTIN_VECTOR_TYPE(ElementSymbol, ElementName, Width)
#endif
#include "swift/Runtime/BuiltinTypes.def"
return nullptr;
}
// Build a demangled type tree for a type pack.
static Demangle::NodePointer
_buildDemanglingForMetadataPack(MetadataPackPointer pack, size_t count,
Demangle::Demangler &Dem) {
using namespace Demangle;
auto node = Dem.createNode(Node::Kind::Pack);
for (size_t i = 0; i < count; ++i) {
auto elt = _swift_buildDemanglingForMetadata(pack.getElements()[i], Dem);
if (elt == nullptr)
return nullptr;
node->addChild(elt, Dem);
}
return node;
}
/// Build an array of demangling trees for each generic argument to the given
/// generic type context descriptor.
///
/// Note:
/// - The input array has an entry for those generic parameter descriptors which
/// are key arguments only.
/// - The output array has an entry for each generic parameter descriptor,
/// whether or not it is a key argument.
///
/// The generic parameters which are not key arguments were made non-canonical
/// by constraining them to a concrete type or another generic parameter.
///
/// We figure out their type by looking at the same-type requirements of the
/// generic context. We demangle their type from the requirement, using the
/// generic arguments area as the substitution map; this gives us the metadata
/// for their argument. Then we convert the metadata to a mangling.
///
/// The output array is flat; the generic parameters of each depth are
/// concatenated together.
static bool _buildDemanglingForGenericArgs(
const TypeContextDescriptor *description,
const Metadata *const *genericArgs,
llvm::SmallVectorImpl<NodePointer> &demangledGenerics,
Demangle::Demangler &Dem) {
auto generics = description->getGenericContext();
if (!generics)
return true;
auto packHeader = generics->getGenericPackShapeHeader();
auto packDescriptors = generics->getGenericPackShapeDescriptors();
llvm::SmallVector<MetadataOrPack> allGenericArgs;
auto numKeyArgs = 0;
for (auto param : generics->getGenericParams()) {
if (param.hasKeyArgument()) {
numKeyArgs += 1;
}
}
// _gatherWrittenGenericParameters expects to immediately read key generic
// arguments, so skip past the shape classes if we have any.
auto nonShapeClassGenericArgs = genericArgs + packHeader.NumShapeClasses;
llvm::ArrayRef<const void *> genericArgsRef(
reinterpret_cast<const void * const *>(nonShapeClassGenericArgs), numKeyArgs);
if (!_gatherWrittenGenericParameters(description, genericArgsRef,
allGenericArgs, Dem)) {
return false;
}
auto argIndex = 0;
auto packIndex = 0;
for (auto param : generics->getGenericParams()) {
auto genericArg = allGenericArgs[argIndex];
switch (param.getKind()) {
case GenericParamKind::Type: {
auto metadata = genericArg.getMetadata();
auto genericArgDemangling =
_swift_buildDemanglingForMetadata(metadata, Dem);
if (!genericArgDemangling) {
return false;
}
demangledGenerics.push_back(genericArgDemangling);
break;
}
case GenericParamKind::TypePack: {
auto packDescriptor = packDescriptors[packIndex];
assert(packDescriptor.Kind == GenericPackKind::Metadata);
assert(packDescriptor.ShapeClass < packHeader.NumShapeClasses);
// Arg index is not interested in the shape classes, but the pack
// descriptor's index is in terms of the shape classes.
assert(packDescriptor.Index == argIndex + packHeader.NumShapeClasses);
MetadataPackPointer pack(genericArg.getMetadataPack());
size_t count = reinterpret_cast<size_t>(genericArgs[packDescriptor.ShapeClass]);
auto genericArgDemangling = _buildDemanglingForMetadataPack(pack, count, Dem);
if (genericArgDemangling == nullptr)
return false;
demangledGenerics.push_back(genericArgDemangling);
packIndex += 1;
break;
}
default:
// We don't know about this kind of parameter.
return false;
}
argIndex += 1;
}
return true;
}
/// Build a demangled type tree for a nominal type.
static Demangle::NodePointer
_buildDemanglingForNominalType(const Metadata *type, Demangle::Demangler &Dem) {
using namespace Demangle;
// Get the context descriptor from the type metadata.
const TypeContextDescriptor *description;
switch (type->getKind()) {
case MetadataKind::Class: {
auto classType = static_cast<const ClassMetadata *>(type);
if (!classType->isTypeMetadata()) {
return nullptr;
}
#if SWIFT_OBJC_INTEROP
// Peek through artificial subclasses.
while (classType->isArtificialSubclass())
classType = classType->Superclass;
#endif
description = classType->getDescription();
break;
}
case MetadataKind::Enum:
case MetadataKind::Optional: {
auto enumType = static_cast<const EnumMetadata *>(type);
description = enumType->Description;
break;
}
case MetadataKind::Struct: {
auto structType = static_cast<const StructMetadata *>(type);
description = structType->Description;
break;
}
case MetadataKind::ForeignClass: {
auto foreignType = static_cast<const ForeignClassMetadata *>(type);
description = foreignType->Description;
break;
}
case MetadataKind::ForeignReferenceType: {
auto foreignType = static_cast<const ForeignReferenceTypeMetadata *>(type);
description = foreignType->Description;
break;
}
default:
return nullptr;
}
llvm::SmallVector<NodePointer, 8> demangledGenerics;
if (description->isGeneric()) {
auto genericArgs = description->getGenericArguments(type);
// Gather the complete set of generic arguments that must be written to
// form this type.
if (!_buildDemanglingForGenericArgs(description, genericArgs,
demangledGenerics, Dem))
return nullptr;
}
return _buildDemanglingForContext(description, demangledGenerics, Dem);
}
// Build a demangled type tree for a type.
//
// FIXME: This should use MetadataReader.h.
Demangle::NodePointer
swift::_swift_buildDemanglingForMetadata(const Metadata *type,
Demangle::Demangler &Dem) {
using namespace Demangle;
switch (type->getKind()) {
case MetadataKind::Class:
case MetadataKind::Enum:
case MetadataKind::Optional:
case MetadataKind::Struct:
case MetadataKind::ForeignClass:
case MetadataKind::ForeignReferenceType:
return _buildDemanglingForNominalType(type, Dem);
case MetadataKind::ObjCClassWrapper: {
#if SWIFT_OBJC_INTEROP
auto objcWrapper = static_cast<const ObjCClassWrapperMetadata *>(type);
const char *className = class_getName(objcWrapper->getObjCClassObject());
auto module = Dem.createNode(Node::Kind::Module, MANGLING_MODULE_OBJC);
auto node = Dem.createNode(Node::Kind::Class);
node->addChild(module, Dem);
node->addChild(Dem.createNode(Node::Kind::Identifier,
llvm::StringRef(className)), Dem);
return node;
#else
assert(false && "no ObjC interop");
return nullptr;
#endif
}
case MetadataKind::Existential: {
auto exis = static_cast<const ExistentialTypeMetadata *>(type);
auto protocols = exis->getProtocols();
auto type_list = Dem.createNode(Node::Kind::TypeList);
auto proto_list = Dem.createNode(Node::Kind::ProtocolList);
proto_list->addChild(type_list, Dem);
// The protocol descriptors should be pre-sorted since the compiler will
// only ever make a swift_getExistentialTypeMetadata invocation using
// its canonical ordering of protocols.
for (auto protocol : protocols) {
#if SWIFT_OBJC_INTEROP
if (protocol.isObjC()) {
// The protocol name is mangled as a type symbol, with the _Tt prefix.
StringRef ProtoName(protocol.getName());
NodePointer protocolNode = Dem.demangleSymbol(ProtoName);
// ObjC protocol names aren't mangled.
if (!protocolNode) {
auto module = Dem.createNode(Node::Kind::Module,
MANGLING_MODULE_OBJC);
auto node = Dem.createNode(Node::Kind::Protocol);
node->addChild(module, Dem);
node->addChild(Dem.createNode(Node::Kind::Identifier, ProtoName),
Dem);
auto typeNode = Dem.createNode(Node::Kind::Type);
typeNode->addChild(node, Dem);
type_list->addChild(typeNode, Dem);
continue;
}
// Dig out the protocol node.
// Global -> (Protocol|TypeMangling)
protocolNode = protocolNode->getChild(0);
if (protocolNode->getKind() == Node::Kind::TypeMangling) {
protocolNode = protocolNode->getChild(0); // TypeMangling -> Type
protocolNode = protocolNode->getChild(0); // Type -> ProtocolList
protocolNode = protocolNode->getChild(0); // ProtocolList -> TypeList
protocolNode = protocolNode->getChild(0); // TypeList -> Type
assert(protocolNode->getKind() == Node::Kind::Type);
assert(protocolNode->getChild(0)->getKind() == Node::Kind::Protocol);
} else {
assert(protocolNode->getKind() == Node::Kind::Protocol);
}
type_list->addChild(protocolNode, Dem);
continue;
}
#endif
auto protocolNode =
_buildDemanglingForContext(protocol.getSwiftProtocol(), {}, Dem);
if (!protocolNode)
return nullptr;
type_list->addChild(protocolNode, Dem);
}
if (auto superclass = exis->getSuperclassConstraint()) {
// If there is a superclass constraint, we mangle it specially.
auto result = Dem.createNode(Node::Kind::ProtocolListWithClass);
auto superclassNode = _swift_buildDemanglingForMetadata(superclass, Dem);
if (!superclassNode)
return nullptr;
result->addChild(proto_list, Dem);
result->addChild(superclassNode, Dem);
return result;
}
if (exis->isClassBounded()) {
// Check if the class constraint is implied by any of our
// protocols.
bool requiresClassImplicit = false;
for (auto protocol : protocols) {
if (protocol.getClassConstraint() == ProtocolClassConstraint::Class)
requiresClassImplicit = true;
}
// If it was implied, we don't do anything special.
if (requiresClassImplicit)
return proto_list;
// If the existential type has an explicit AnyObject constraint,
// we must mangle it as such.
auto result = Dem.createNode(Node::Kind::ProtocolListWithAnyObject);
result->addChild(proto_list, Dem);
return result;
}
// Just a simple composition of protocols.
return proto_list;
}
case MetadataKind::ExtendedExistential: {
// FIXME: Implement this by demangling the extended existential and
// substituting the generalization arguments into the demangle tree.
// For now, unconditional casts will report '<<< invalid type >>>' when
// they fail.
// TODO: for clients that need to guarantee round-tripping, demangle
// to a SymbolicExtendedExistentialType.
return nullptr;
}
case MetadataKind::ExistentialMetatype: {
auto metatype = static_cast<const ExistentialMetatypeMetadata *>(type);
auto instance = _swift_buildDemanglingForMetadata(metatype->InstanceType,
Dem);
if (!instance)
return nullptr;
auto node = Dem.createNode(Node::Kind::ExistentialMetatype);
node->addChild(instance, Dem);
return node;
}
case MetadataKind::Function: {
auto func = static_cast<const FunctionTypeMetadata *>(type);
Node::Kind kind;
switch (func->getConvention()) {
case FunctionMetadataConvention::Swift:
if (!func->isEscaping())
kind = Node::Kind::NoEscapeFunctionType;
else
kind = Node::Kind::FunctionType;
break;
case FunctionMetadataConvention::Block:
kind = Node::Kind::ObjCBlock;
break;
case FunctionMetadataConvention::CFunctionPointer:
kind = Node::Kind::CFunctionPointer;
break;
case FunctionMetadataConvention::Thin:
kind = Node::Kind::ThinFunctionType;
break;
}
llvm::SmallVector<std::pair<NodePointer, bool>, 8> inputs;
for (unsigned i = 0, e = func->getNumParameters(); i < e; ++i) {
auto param = func->getParameter(i);
auto flags = func->getParameterFlags(i);
auto input = _swift_buildDemanglingForMetadata(param, Dem);
// If we failed to build the demangling for an input, we have to fail
// building the demangling for the function type too.
if (!input)
return nullptr;
auto wrapInput = [&](Node::Kind kind) {
auto parent = Dem.createNode(kind);
parent->addChild(input, Dem);
input = parent;
};
if (flags.isNoDerivative()) {
wrapInput(Node::Kind::NoDerivative);
}
switch (flags.getOwnership()) {
case ParameterOwnership::Default:
/* nothing */
break;
case ParameterOwnership::InOut:
wrapInput(Node::Kind::InOut);
break;
case ParameterOwnership::Shared:
wrapInput(Node::Kind::Shared);
break;
case ParameterOwnership::Owned:
wrapInput(Node::Kind::Owned);
break;
}
if (flags.isIsolated()) {
wrapInput(Node::Kind::Isolated);
}
if (flags.isTransferring()) {
wrapInput(Node::Kind::Transferring);
}
inputs.push_back({input, flags.isVariadic()});
}
NodePointer totalInput = nullptr;
switch (inputs.size()) {
case 1: {
auto singleParam = inputs.front();
// If the sole unlabeled parameter has a non-tuple type, encode
// the parameter list as a single type.
if (!singleParam.second) {
auto singleType = singleParam.first;
if (singleType->getKind() == Node::Kind::Type)
singleType = singleType->getFirstChild();
if (singleType->getKind() != Node::Kind::Tuple) {
totalInput = singleParam.first;
break;
}
}
// Otherwise it requires a tuple wrapper.
SWIFT_FALLTHROUGH;
}
// This covers both none and multiple parameters.
default:
auto tuple = Dem.createNode(Node::Kind::Tuple);
for (auto &input : inputs) {
NodePointer eltType;
bool isVariadic;
std::tie(eltType, isVariadic) = input;
// Tuple element := variadic-marker label? type
auto tupleElt = Dem.createNode(Node::Kind::TupleElement);
if (isVariadic)
tupleElt->addChild(Dem.createNode(Node::Kind::VariadicMarker), Dem);
if (eltType->getKind() == Node::Kind::Type) {
tupleElt->addChild(eltType, Dem);
} else {
auto type = Dem.createNode(Node::Kind::Type);
type->addChild(eltType, Dem);
tupleElt->addChild(type, Dem);
}
tuple->addChild(tupleElt, Dem);
}
totalInput = tuple;
break;
}
NodePointer parameters = Dem.createNode(Node::Kind::ArgumentTuple);
NodePointer paramType = Dem.createNode(Node::Kind::Type);
paramType->addChild(totalInput, Dem);
parameters->addChild(paramType, Dem);
NodePointer resultTy = _swift_buildDemanglingForMetadata(func->ResultType,
Dem);
if (!resultTy)
return nullptr;
NodePointer result = Dem.createNode(Node::Kind::ReturnType);
result->addChild(resultTy, Dem);
auto funcNode = Dem.createNode(kind);
if (func->hasGlobalActor()) {
auto globalActorTypeNode =
_swift_buildDemanglingForMetadata(func->getGlobalActor(), Dem);
if (!globalActorTypeNode)
return nullptr;
NodePointer globalActorNode =
Dem.createNode(Node::Kind::GlobalActorFunctionType);
globalActorNode->addChild(globalActorTypeNode, Dem);
funcNode->addChild(globalActorNode, Dem);
}
switch (func->getDifferentiabilityKind().Value) {
case FunctionMetadataDifferentiabilityKind::NonDifferentiable:
break;
case FunctionMetadataDifferentiabilityKind::Forward:
funcNode->addChild(Dem.createNode(
Node::Kind::DifferentiableFunctionType,
(Node::IndexType)MangledDifferentiabilityKind::Forward), Dem);
break;
case FunctionMetadataDifferentiabilityKind::Reverse:
funcNode->addChild(Dem.createNode(
Node::Kind::DifferentiableFunctionType,
(Node::IndexType)MangledDifferentiabilityKind::Reverse), Dem);
break;
case FunctionMetadataDifferentiabilityKind::Normal:
funcNode->addChild(Dem.createNode(
Node::Kind::DifferentiableFunctionType,
(Node::IndexType)MangledDifferentiabilityKind::Normal), Dem);
break;
case FunctionMetadataDifferentiabilityKind::Linear:
funcNode->addChild(Dem.createNode(
Node::Kind::DifferentiableFunctionType,
(Node::IndexType)MangledDifferentiabilityKind::Linear), Dem);
break;
}
if (func->isThrowing()) {
if (auto thrownError = func->getThrownError()) {
auto thrownErrorTypeNode =
_swift_buildDemanglingForMetadata(thrownError, Dem);
if (!thrownErrorTypeNode)
return nullptr;
NodePointer thrownErrorNode =
Dem.createNode(Node::Kind::TypedThrowsAnnotation);
thrownErrorNode->addChild(thrownErrorTypeNode, Dem);
funcNode->addChild(thrownErrorNode, Dem);
} else {
funcNode->addChild(Dem.createNode(Node::Kind::ThrowsAnnotation), Dem);
}
}
if (func->isSendable()) {
funcNode->addChild(
Dem.createNode(Node::Kind::ConcurrentFunctionType), Dem);
}
if (func->isAsync())
funcNode->addChild(Dem.createNode(Node::Kind::AsyncAnnotation), Dem);
if (func->getExtendedFlags().hasTransferringResult())
funcNode->addChild(
Dem.createNode(Node::Kind::TransferringResultFunctionType), Dem);
funcNode->addChild(parameters, Dem);
funcNode->addChild(result, Dem);
return funcNode;
}
case MetadataKind::Metatype: {
auto metatype = static_cast<const MetatypeMetadata *>(type);
auto instance = _swift_buildDemanglingForMetadata(metatype->InstanceType,
Dem);
if (!instance)
return nullptr;
auto typeNode = Dem.createNode(Node::Kind::Type);
typeNode->addChild(instance, Dem);
auto node = Dem.createNode(Node::Kind::Metatype);
node->addChild(typeNode, Dem);
return node;
}
case MetadataKind::Tuple: {
auto tuple = static_cast<const TupleTypeMetadata *>(type);
const char *labels = tuple->Labels;
auto tupleNode = Dem.createNode(Node::Kind::Tuple);
for (unsigned i = 0, e = tuple->NumElements; i < e; ++i) {
auto elt = Dem.createNode(Node::Kind::TupleElement);
// Add a label child if applicable:
if (labels) {
// Look for the next space in the labels string.
if (const char *space = strchr(labels, ' ')) {
// If there is one, and the label isn't empty, add a label child.
if (labels != space) {
auto eltName =
Dem.createNode(Node::Kind::TupleElementName,
llvm::StringRef(labels, space - labels));
elt->addChild(eltName, Dem);
}
// Skip past the space.
labels = space + 1;
}
}
// Add the element type child.
auto eltType =
_swift_buildDemanglingForMetadata(tuple->getElement(i).Type, Dem);
if (!eltType)
return nullptr;
if (eltType->getKind() == Node::Kind::Type) {
elt->addChild(eltType, Dem);
} else {
auto type = Dem.createNode(Node::Kind::Type);
type->addChild(eltType, Dem);
elt->addChild(type, Dem);
}
// Add the completed element to the tuple.
tupleNode->addChild(elt, Dem);
}
return tupleNode;
}
case MetadataKind::HeapLocalVariable:
case MetadataKind::HeapGenericLocalVariable:
case MetadataKind::ErrorObject:
break;
case MetadataKind::Opaque:
default: {
if (auto builtinType = _buildDemanglerForBuiltinType(type, Dem))
return builtinType;
// FIXME: Some opaque types do have manglings, but we don't have enough info
// to figure them out.
break;
}
}
// Not a type.
return nullptr;
}
Demangle::NodePointer
swift::_buildDemanglingForGenericType(const TypeContextDescriptor *description,
const void *const *arguments,
Demangle::Demangler &Dem) {
auto kind = description->getKind();
if (kind != ContextDescriptorKind::Class &&
kind != ContextDescriptorKind::Enum &&
kind != ContextDescriptorKind::Struct)
return nullptr;
llvm::SmallVector<NodePointer, 8> demangledGenerics;
if (!_buildDemanglingForGenericArgs(description,
(const Metadata *const *)arguments,
demangledGenerics, Dem))
return nullptr;
return _buildDemanglingForContext(description, demangledGenerics, Dem);
}
// NB: This function is not used directly in the Swift codebase, but is
// exported for Xcode support and is used by the sanitizers. Please coordinate
// before changing.
//
/// Demangles a Swift symbol name.
///
/// \param mangledName is the symbol name that needs to be demangled.
/// \param mangledNameLength is the length of the string that should be
/// demangled.
/// \param outputBuffer is the user provided buffer where the demangled name
/// will be placed. If nullptr, a new buffer will be malloced. In that case,
/// the user of this API is responsible for freeing the returned buffer.
/// \param outputBufferSize is the size of the output buffer. If the demangled
/// name does not fit into the outputBuffer, the output will be truncated and
/// the size will be updated, indicating how large the buffer should be.
/// \param flags can be used to select the demangling style. TODO: We should
//// define what these will be.
/// \returns the demangled name. Returns nullptr if the input String is not a
/// Swift mangled name.
SWIFT_RUNTIME_EXPORT
char *swift_demangle(const char *mangledName,
size_t mangledNameLength,
char *outputBuffer,
size_t *outputBufferSize,
uint32_t flags) {
if (flags != 0) {
swift::fatalError(0, "Only 'flags' value of '0' is currently supported.");
}
if (outputBuffer != nullptr && outputBufferSize == nullptr) {
swift::fatalError(0, "'outputBuffer' is passed but the size is 'nullptr'.");
}
// Check if we are dealing with Swift mangled name, otherwise, don't try
// to demangle and send indication to the user.
if (!Demangle::isSwiftSymbol(mangledName))
return nullptr; // Not a mangled name
#if !SWIFT_STDLIB_HAS_TYPE_PRINTING
return nullptr;
#else
// Demangle the name.
auto options = Demangle::DemangleOptions();
options.DisplayDebuggerGeneratedModule = false;
auto result =
Demangle::demangleSymbolAsString(mangledName,
mangledNameLength,
options);
// If the output buffer is not provided, malloc memory ourselves.
if (outputBuffer == nullptr || *outputBufferSize == 0) {
return strdup(result.c_str());
}
// Copy into the provided buffer.
_swift_strlcpy(outputBuffer, result.c_str(), *outputBufferSize);
// Indicate a failure if the result did not fit and was truncated
// by setting the required outputBufferSize.
if (*outputBufferSize < result.length() + 1) {
*outputBufferSize = result.length() + 1;
}
return outputBuffer;
#endif
}