-
Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathLibPrespecialized.cpp
745 lines (628 loc) · 25.7 KB
/
LibPrespecialized.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
//===--- LibPrespecialized.cpp - Interface for prespecializations----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2024 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/Runtime/LibPrespecialized.h"
#include "MetadataCache.h"
#include "Private.h"
#include "swift/Basic/Lazy.h"
#include "swift/Runtime/EnvironmentVariables.h"
#include "swift/Runtime/Metadata.h"
#include <atomic>
#if SWIFT_STDLIB_HAS_DLADDR && __has_include(<dlfcn.h>)
#include <dlfcn.h>
#define USE_DLOPEN 1
#endif
#if __has_include(<mach-o/dyld_priv.h>)
#include <mach-o/dyld_priv.h>
#endif
#if __has_include(<os/feature_private.h>)
#include <os/feature_private.h> // for os_feature_enabled_simple()
#define HAS_OS_FEATURE 1
#endif
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <ShlWapi.h>
#include <Windows.h>
#endif
using namespace swift;
static bool prespecializedLoggingEnabled = false;
#define LOG(fmt, ...) \
do { \
if (SWIFT_UNLIKELY(prespecializedLoggingEnabled)) \
fprintf(stderr, "Prespecializations library: " fmt "\n", __VA_ARGS__); \
} while (0)
#define LOG0(string) LOG("%s", string)
static bool environmentProcessListContainsProcess(const char *list,
const char *progname) {
auto prognameLen = strlen(progname);
const char *cursor = list;
while (true) {
const char *next = strchr(cursor, ':');
if (!next) {
// Last entry in the list. Compare with the entire rest of the string.
return strcmp(progname, cursor) == 0;
}
// Entry at beginning or middle of the list. Compare against this substring.
size_t len = next - cursor;
if (len == prognameLen && strncmp(cursor, progname, len) == 0)
return true;
cursor = next + 1;
}
}
static bool isThisProcessEnabled(const LibPrespecializedData<InProcess> *data) {
#if defined(_WIN32)
DWORD dwSize = MAX_PATH;
DWORD dwResult;
std::unique_ptr<WCHAR[]> pwszBuffer(new WCHAR[dwSize]);
while (true) {
dwResult = GetModuleFileNameW(nullptr, pwszBuffer.get(), dwSize);
if (dwResult == 0)
return true;
if (dwResult < dwSize)
break;
if (dwResult == dwSize && GetLastError() == ERROR_INSUFFICIENT_BUFFER)
pwszBuffer.reset(new WCHAR[dwSize <<= 1]);
}
PCWSTR pwszBaseName = PathFindFileNameW(pwszBuffer.get());
DWORD cchLength =
WideCharToMultiByte(CP_UTF8, WC_ERR_INVALID_CHARS | WC_NO_BEST_FIT_CHARS,
pwszBaseName, -1, nullptr, 0, nullptr, nullptr);
if (cchLength == 0)
return true;
std::unique_ptr<char[]> pszBaseName{new char[cchLength]};
cchLength = WideCharToMultiByte(
CP_UTF8, WC_ERR_INVALID_CHARS | WC_NO_BEST_FIT_CHARS, pwszBaseName, -1,
pszBaseName.get(), cchLength, nullptr, nullptr);
if (cchLength == 0)
return true;
const char *__progname = pszBaseName.get();
#else
extern const char *__progname;
if (!__progname)
return true;
#endif
auto envEnabledProcesses =
runtime::environment::SWIFT_DEBUG_LIB_PRESPECIALIZED_ENABLED_PROCESSES();
if (envEnabledProcesses && *envEnabledProcesses) {
if (environmentProcessListContainsProcess(envEnabledProcesses,
__progname)) {
LOG("Found %s in SWIFT_DEBUG_LIB_PRESPECIALIZED_ENABLED_PROCESSES, "
"enabling",
__progname);
return true;
}
}
auto envDisabledProcesses =
runtime::environment::SWIFT_DEBUG_LIB_PRESPECIALIZED_DISABLED_PROCESSES();
if (envDisabledProcesses && *envDisabledProcesses) {
if (environmentProcessListContainsProcess(envDisabledProcesses,
__progname)) {
LOG("Found %s in SWIFT_DEBUG_LIB_PRESPECIALIZED_DISABLED_PROCESSES, "
"disabling",
__progname);
return false;
}
}
if (auto *disabledProcesses = data->getDisabledProcessesTable()) {
auto *cursor = disabledProcesses;
while (auto *name = *cursor) {
if (strcmp(name, __progname) == 0) {
LOG("Found %s in disabled processes list, disabling", name);
return false;
}
cursor++;
}
}
return true;
}
struct LibPrespecializedState {
struct AddressRange {
uintptr_t start, end;
bool contains(const void *ptr) const {
return start <= (uintptr_t)ptr && (uintptr_t)ptr < end;
}
};
enum class MapConfiguration {
Unset,
UseNameKeyedMap,
UsePointerKeyedMap,
UsePointerKeyedMapDebugMode,
Disabled,
};
const LibPrespecializedData<InProcess> *data;
std::atomic<MapConfiguration> mapConfiguration = MapConfiguration::Unset;
AddressRange sharedCacheRange{0, 0};
AddressRange metadataAllocatorInitialPoolRange{0, 0};
bool descriptorMapEnabled;
LibPrespecializedState() {
prespecializedLoggingEnabled =
runtime::environment::SWIFT_DEBUG_ENABLE_LIB_PRESPECIALIZED_LOGGING();
data = findLibPrespecialized();
#if DYLD_GET_SWIFT_PRESPECIALIZED_DATA_DEFINED
size_t sharedCacheLength;
sharedCacheRange.start =
(uintptr_t)_dyld_get_shared_cache_range(&sharedCacheLength);
sharedCacheRange.end = sharedCacheRange.start + sharedCacheLength;
auto [initialPoolStart, initialPoolLength] =
MetadataAllocator::InitialPoolLocation();
metadataAllocatorInitialPoolRange.start = (uintptr_t)initialPoolStart;
metadataAllocatorInitialPoolRange.end =
metadataAllocatorInitialPoolRange.start + initialPoolLength;
#endif
// Compute our map configuration if it hasn't already been set. We must do
// this after the shared cache range has been retrieved, because the map
// configuration can be different depending on whether the map is in the
// shared cache.
if (mapConfiguration.load(std::memory_order_relaxed) ==
MapConfiguration::Unset)
mapConfiguration.store(computeMapConfiguration(data),
std::memory_order_relaxed);
if (data) {
descriptorMapEnabled =
data->getOptionFlags() &
LibPrespecializedData<InProcess>::OptionFlagDescriptorMapDefaultOn;
LOG("Setting descriptorMapEnabled=%s from the option flags.",
descriptorMapEnabled ? "true" : "false");
}
if (runtime::environment::
SWIFT_DEBUG_ENABLE_LIB_PRESPECIALIZED_DESCRIPTOR_LOOKUP_isSet()) {
descriptorMapEnabled = runtime::environment::
SWIFT_DEBUG_ENABLE_LIB_PRESPECIALIZED_DESCRIPTOR_LOOKUP();
LOG("Setting descriptorMapEnabled=%s from "
"SWIFT_DEBUG_ENABLE_LIB_PRESPECIALIZED_DESCRIPTOR_LOOKUP.",
descriptorMapEnabled ? "true" : "false");
} else {
#if HAS_OS_FEATURE
if (os_feature_enabled_simple(Swift, togglePrespecializationDescriptorMap,
false)) {
descriptorMapEnabled = !descriptorMapEnabled;
LOG("Toggling descriptorMapEnabled to %s "
"togglePrespecializationDescriptorMap is set.",
descriptorMapEnabled ? "true" : "false");
}
#endif
}
}
MapConfiguration
computeMapConfiguration(const LibPrespecializedData<InProcess> *data) {
// If no data, we have to disable.
if (!data)
return MapConfiguration::Disabled;
if (!runtime::environment::
SWIFT_DEBUG_ENABLE_LIB_PRESPECIALIZED_METADATA()) {
LOG0("Disabling metadata, SWIFT_DEBUG_ENABLE_LIB_PRESPECIALIZED_METADATA "
"is false.");
return MapConfiguration::Disabled;
}
auto nameKeyedMap = data->getMetadataMap();
auto pointerKeyedMap = data->getPointerKeyedMetadataMap();
// If we don't have either map, then disable it completely.
if (!nameKeyedMap && !pointerKeyedMap) {
LOG("No prespecializations map available from data at %p, disabling.",
data);
return MapConfiguration::Disabled;
}
// If we don't have the pointer-keyed map, fall back to the name-keyed map.
if (!pointerKeyedMap) {
LOG("Data at %p only contains name-keyed map.", data);
return MapConfiguration::UseNameKeyedMap;
}
// If we don't have the name-keyed map, always use the pointer-keyed map.
if (!nameKeyedMap) {
LOG("Data at %p only contains pointer-keyed map.", data);
return MapConfiguration::UsePointerKeyedMap;
}
// We have both. Consult the option flag.
bool usePointerKeyedMap =
data->getOptionFlags() &
LibPrespecializedData<InProcess>::OptionFlagDefaultToPointerKeyedMap;
#if HAS_OS_FEATURE
if (os_feature_enabled_simple(Swift, useAlternatePrespecializationMap,
false))
usePointerKeyedMap = !usePointerKeyedMap;
#endif
LOG("Data at %p contains both maps. Using %s keyed map.", data,
usePointerKeyedMap ? "pointer" : "name");
if (usePointerKeyedMap) {
// If we're using a map outside the shared cache, then we're in debug mode
// and need to use our own slow lookup.
if (!sharedCacheRange.contains(pointerKeyedMap))
return MapConfiguration::UsePointerKeyedMapDebugMode;
return MapConfiguration::UsePointerKeyedMap;
}
return MapConfiguration::UseNameKeyedMap;
}
const LibPrespecializedData<InProcess> *findLibPrespecialized() {
const void *dataPtr = nullptr;
#if USE_DLOPEN
auto path = runtime::environment::SWIFT_DEBUG_LIB_PRESPECIALIZED_PATH();
if (path && path[0]) {
// Use RTLD_NOLOAD to avoid actually loading the library. We just want to
// find it if it has already been loaded by other means, such as
// DYLD_INSERT_LIBRARIES.
void *handle = dlopen(path, RTLD_LAZY | RTLD_NOLOAD);
if (!handle) {
swift::warning(0, "Failed to load prespecializations library: %s\n",
dlerror());
return nullptr;
}
dataPtr = dlsym(handle, LIB_PRESPECIALIZED_TOP_LEVEL_SYMBOL_NAME);
LOG("Loaded custom library from %s, found dataPtr %p", path, dataPtr);
}
#if DYLD_GET_SWIFT_PRESPECIALIZED_DATA_DEFINED
else if (SWIFT_RUNTIME_WEAK_CHECK(_dyld_get_swift_prespecialized_data)) {
dataPtr = SWIFT_RUNTIME_WEAK_USE(_dyld_get_swift_prespecialized_data());
LOG("Got dataPtr %p from _dyld_get_swift_prespecialized_data", dataPtr);
// Disable the prespecialized metadata if anything in the shared cache is
// overridden. Eventually we want to be cleverer and only disable the
// prespecializations that have been invalidated, but we'll start with the
// simplest approach.
if (dyld_shared_cache_some_image_overridden()) {
mapConfiguration.store(MapConfiguration::Disabled,
std::memory_order_release);
LOG("Disabling prespecialized metadata, "
"dyld_shared_cache_some_image_overridden = %d",
dyld_shared_cache_some_image_overridden());
}
}
#endif
#endif
LOG("Returning data pointer %p", dataPtr);
if (!dataPtr)
return nullptr;
auto *data =
reinterpret_cast<const LibPrespecializedData<InProcess> *>(dataPtr);
if (data->majorVersion !=
LibPrespecializedData<InProcess>::currentMajorVersion) {
LOG("Unknown major version %" PRIu32 ", disabling", data->majorVersion);
return nullptr;
}
if (!isThisProcessEnabled(data))
return nullptr;
LOG("Returning data %p, major version %" PRIu32 " minor %" PRIu32, data,
data->majorVersion, data->minorVersion);
LOG(" optionFlags=%#zx", data->getOptionFlags());
LOG(" metadataMap=%p", data->getMetadataMap());
LOG(" disabledProcessTable=%p", data->getDisabledProcessesTable());
LOG(" pointerKeyedMetadataMap=%p", data->getPointerKeyedMetadataMap());
LOG(" descriptorMap=%p", data->getDescriptorMap());
return data;
}
};
static Lazy<LibPrespecializedState> LibPrespecialized;
// Returns true if the type has any arguments that aren't plain types (packs,
// values, or unknown kinds).
static bool
hasNonTypeGenericArguments(const TargetGenericContext<InProcess> *generics) {
for (auto param : generics->getGenericParams())
if (param.getKind() != GenericParamKind::Type)
return true;
return false;
}
static bool
isPotentialPrespecializedPointer(const LibPrespecializedState &state,
const void *pointer) {
// Prespecialized metadata descriptors and arguments are always in the shared
// cache. They're either statically emitted metadata, or they're
// prespecialized metadata. Anything that's dynamically allocated, or
// statically allocated outside the shared cache, is not a possible candidate.
// If we're loading a debug libprespecialized, we can't do these checks, so
// just say everything is a potential argument. Performance is not so
// important in that case.
if (!state.sharedCacheRange.contains(state.data))
return true;
// Anything outside the shared cache isn't a potential argument.
if (!state.sharedCacheRange.contains(pointer))
return false;
// Dynamically allocated metadata could be within the shared cache, in the
// initial metadata allocation pool. Reject anything in that region.
if (state.metadataAllocatorInitialPoolRange.contains(pointer))
return false;
return true;
}
static bool isDescriptorLoaded(const void *descriptor, uint16_t imageIndex) {
#if DYLD_GET_SWIFT_PRESPECIALIZED_DATA_DEFINED
return _dyld_is_preoptimized_objc_image_loaded(imageIndex);
#else
// If we're not using the dyld SPI, then we're working with a test dylib, and
// a test dylib can't have pointers to unloaded dylibs.
return true;
#endif
}
void
swift::libPrespecializedImageLoaded() {
#if DYLD_GET_SWIFT_PRESPECIALIZED_DATA_DEFINED
// A newly loaded image might have caused us to load images that are
// overriding images in the shared cache. If we do that, turn off
// prespecialized metadata.
if (dyld_shared_cache_some_image_overridden())
LibPrespecialized.get().mapConfiguration.store(
LibPrespecializedState::MapConfiguration::Disabled,
std::memory_order_release);
#endif
}
static Metadata *
getMetadataFromNameKeyedMap(const LibPrespecializedState &state,
const TypeContextDescriptor *description,
const void *const *arguments) {
auto *generics = description->getGenericContext();
if (!generics)
return nullptr;
// We don't support types with pack parameters yet (and especially not types
// with unknown parameter kinds) so don't even try to look those up.
if (hasNonTypeGenericArguments(generics))
return nullptr;
if (!isPotentialPrespecializedPointer(state, description)) {
LOG("Rejecting descriptor %p, not in the shared cache",
(const void *)description);
return nullptr;
}
auto numKeyArguments = generics->getGenericContextHeader().NumKeyArguments;
for (unsigned i = 0; i < numKeyArguments; i++) {
if (!isPotentialPrespecializedPointer(state, arguments[i])) {
LOG("Rejecting argument %u %p to descriptor %p, not in the shared cache",
i, arguments[i], (const void *)description);
return nullptr;
}
}
StackAllocatedDemangler<4096> dem;
auto mangleNode = _buildDemanglingForGenericType(description, arguments, dem);
if (!mangleNode) {
LOG("failed to build demangling with descriptor %p.", description);
return nullptr;
}
if (mangleNode->getKind() != Node::Kind::Global) {
auto wrapper = dem.createNode(Node::Kind::Global);
wrapper->addChild(mangleNode, dem);
mangleNode = wrapper;
}
auto resolver = [](SymbolicReferenceKind kind,
const void *ref) -> NodePointer {
swift::fatalError(0,
"Unexpected symbolic reference %p in generated mangle "
"tree for generic type lookup.",
ref);
};
auto mangling = Demangle::mangleNode(mangleNode, resolver, dem, Mangle::ManglingFlavor::Default);
if (!mangling.isSuccess()) {
swift::warning(0,
"Mangling for prespecialized metadata failed with code %d",
mangling.error().code);
return nullptr;
}
auto key = mangling.result();
auto *metadataMap = state.data->getMetadataMap();
auto *element = metadataMap->find(key.data(), key.size());
auto *result = element ? element->value : nullptr;
LOG("found %p for key '%.*s'.", result, (int)key.size(), key.data());
return result;
}
static Metadata *
getMetadataFromPointerKeyedMap(const LibPrespecializedState &state,
const TypeContextDescriptor *description,
const void *const *arguments) {
#if DYLD_FIND_POINTER_HASH_TABLE_ENTRY_DEFINED
if (SWIFT_RUNTIME_WEAK_CHECK(_dyld_find_pointer_hash_table_entry)) {
auto *generics = description->getGenericContext();
if (!generics)
return nullptr;
auto argumentCount = generics->getGenericContextHeader().NumKeyArguments;
auto *map = state.data->getPointerKeyedMetadataMap();
auto result = SWIFT_RUNTIME_WEAK_USE(_dyld_find_pointer_hash_table_entry(
map, description, argumentCount, const_cast<const void **>(arguments)));
LOG("Looking up description %p in dyld table, found %p.", description,
result);
return reinterpret_cast<Metadata *>(const_cast<void *>(result));
}
#else
LOG("Looking up description %p but dyld hash table call not available.",
description);
#endif
return nullptr;
}
// When we have a pointer-keyed map from a debug library, it's not built as a
// hash table. We just scan it linearly.
static Metadata *getMetadataFromPointerKeyedMapDebugMode(
const LibPrespecializedState &state,
const TypeContextDescriptor *description, const void *const *arguments) {
auto *generics = description->getGenericContext();
if (!generics)
return nullptr;
auto argumentCount = generics->getGenericContextHeader().NumKeyArguments;
auto *mapPtr = state.data->getPointerKeyedMetadataMap();
struct MapKey {
size_t count;
void *pointers[];
};
struct MapEntry {
const MapKey *key;
Metadata *value;
};
struct Map {
size_t count;
MapEntry entries[];
};
const Map *map = reinterpret_cast<const Map *>(mapPtr);
for (size_t i = 0; i < map->count; i++) {
auto &entry = map->entries[i];
// Keys are descriptor followed by arguments, so their count is 1 plus the
// argument count.
if (entry.key->count != argumentCount + 1)
continue;
// Check the descriptor.
if (description != entry.key->pointers[0])
continue;
// Check the rest. The pointers array is now offset by 1 since index 0 is
// the descriptor.
bool equal = true;
for (size_t j = 0; j < argumentCount; j++) {
if (entry.key->pointers[j + 1] != arguments[j]) {
equal = false;
break;
}
}
if (equal) {
LOG("Looking up description %p in debug table, found %p.", description,
entry.value);
return entry.value;
}
}
LOG("Looking up description %p in debug table, no entry found.", description);
return nullptr;
}
Metadata *
swift::getLibPrespecializedMetadata(const TypeContextDescriptor *description,
const void *const *arguments) {
auto &state = LibPrespecialized.get();
switch (state.mapConfiguration) {
case LibPrespecializedState::MapConfiguration::Unset:
assert(false &&
"Map configuration should never be unset after initialization.");
return nullptr;
case LibPrespecializedState::MapConfiguration::Disabled:
return nullptr;
case LibPrespecializedState::MapConfiguration::UseNameKeyedMap:
return getMetadataFromNameKeyedMap(state, description, arguments);
case LibPrespecializedState::MapConfiguration::UsePointerKeyedMap:
return getMetadataFromPointerKeyedMap(state, description, arguments);
case LibPrespecializedState::MapConfiguration::UsePointerKeyedMapDebugMode:
return getMetadataFromPointerKeyedMapDebugMode(state, description,
arguments);
}
}
std::pair<LibPrespecializedLookupResult, const TypeContextDescriptor *>
swift::getLibPrespecializedTypeDescriptor(Demangle::NodePointer node) {
auto &state = LibPrespecialized.get();
// Retrieve the map and return immediately if we don't have it.
auto *data = state.data;
if (!data)
return {LibPrespecializedLookupResult::NonDefinitiveNotFound, nullptr};
if (!state.descriptorMapEnabled)
return {LibPrespecializedLookupResult::NonDefinitiveNotFound, nullptr};
auto *descriptorMap = data->getDescriptorMap();
if (!descriptorMap)
return {LibPrespecializedLookupResult::NonDefinitiveNotFound, nullptr};
// Demangler and resolver for subsequent mangling operations.
StackAllocatedDemangler<4096> dem;
ExpandResolvedSymbolicReferences resolver{dem};
if (SWIFT_UNLIKELY(prespecializedLoggingEnabled)) {
auto mangling = Demangle::mangleNode(node, resolver, dem, Mangle::ManglingFlavor::Default);
if (!mangling.isSuccess()) {
LOG("Failed to build demangling for node %p.", node);
return {LibPrespecializedLookupResult::NonDefinitiveNotFound, nullptr};
}
auto mangled = mangling.result();
LOG("Looking up descriptor named '%.*s'.", (int)mangled.size(),
mangled.data());
}
// Get the simplified mangling that we use as the map's key.
auto simplifiedNode = buildSimplifiedDescriptorDemangling(node, dem);
if (!simplifiedNode) {
LOG("Failed to build simplified mangling for node %p.", node);
return {LibPrespecializedLookupResult::NonDefinitiveNotFound, nullptr};
}
auto simplifiedMangling = Demangle::mangleNode(simplifiedNode, resolver, dem, Mangle::ManglingFlavor::Default);
if (!simplifiedMangling.isSuccess()) {
LOG("Failed to build demangling for simplified node %p.\n", node);
return {LibPrespecializedLookupResult::NonDefinitiveNotFound, nullptr};
}
// The map key is the simplified mangled name.
auto key = simplifiedMangling.result();
// Track how many descriptors we checked and how many were actually loaded,
// for logging.
unsigned numDescriptorsChecked = 0;
unsigned numDescriptorsLoaded = 0;
// A descriptor is a match if it's actually loaded, and if it matches the node
// we're looking up.
auto isMatch = [&](auto pointers) {
auto *descriptor = *pointers.first;
uint16_t libraryIndex = *pointers.second;
numDescriptorsChecked++;
if (!isDescriptorLoaded(descriptor, libraryIndex))
return false;
numDescriptorsLoaded++;
return _contextDescriptorMatchesMangling(
(const TypeContextDescriptor *)descriptor, node);
};
// Perform the lookup.
auto isNull = [](auto pointers) { return *pointers.first == nullptr; };
auto found = descriptorMap->find(key.data(), key.size(), isMatch, isNull);
LOG("Hash table lookup checked %u loaded entries, %u total entries.",
numDescriptorsLoaded, numDescriptorsChecked);
// The pointers in `found` are pointers to the map entries, and should always
// be non-NULL. The only condition that returns NULL is if the map has no
// entries where `isMatch` or `isNull` return true, and the map should always
// have at least one NULL entry.
assert(found.first);
if (!found.first) {
LOG("Descriptor table lookup of '%.*s' returned NULL pointer to descriptor "
"pointer.",
(int)key.size(), key.data());
return {LibPrespecializedLookupResult::NonDefinitiveNotFound, nullptr};
}
auto *foundDescriptor = *found.first;
if (!foundDescriptor) {
LOG("Did not find descriptor for key '%.*s'.", (int)key.size(), key.data());
// This result is definitive if the descriptor map is comprehensive. If the
// map is not comprehensive, return NonDefinitiveNotFound to tell the caller
// that it needs to perform a full search.
if (data->getOptionFlags() &
LibPrespecializedData<
InProcess>::OptionFlagDescriptorMapNotComprehensive)
return {LibPrespecializedLookupResult::NonDefinitiveNotFound, nullptr};
return {LibPrespecializedLookupResult::DefinitiveNotFound, nullptr};
}
LOG("Found descriptor %p for key '%.*s'.", foundDescriptor, (int)key.size(),
key.data());
return {LibPrespecializedLookupResult::Found,
(const TypeContextDescriptor *)foundDescriptor};
}
void _swift_validatePrespecializedMetadata() {
auto *data = LibPrespecialized.get().data;
if (!data) {
return;
}
LibPrespecialized.get().mapConfiguration.store(
LibPrespecializedState::MapConfiguration::Disabled,
std::memory_order_release);
unsigned validated = 0;
unsigned failed = 0;
auto *metadataMap = data->getMetadataMap();
auto metadataMapSize = metadataMap->arraySize;
auto *array = metadataMap->array();
for (uint64_t i = 0; i < metadataMapSize; i++) {
auto &element = array[i];
if (!element.key || !element.value)
continue;
validated++;
const char *mangledName = element.key;
// Skip the leading $.
if (mangledName[0] == '$')
mangledName++;
auto result = swift_getTypeByMangledName(MetadataState::Complete,
mangledName, nullptr, {}, {});
if (result.getError()) {
fprintf(stderr,
"Prespecializations library validation: unable to build metadata "
"for mangled name '%s'\n",
mangledName);
failed++;
continue;
}
if (!compareGenericMetadata(result.getType().getMetadata(), element.value))
failed++;
}
fprintf(stderr,
"Prespecializations library validation: validated %u entries, %u "
"failures.\n",
validated, failed);
}