-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathBasicBlockUtils.cpp
559 lines (484 loc) · 19.4 KB
/
BasicBlockUtils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
//===--- BasicBlockUtils.cpp - Utilities for SILBasicBlock ----------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SIL/BasicBlockUtils.h"
#include "swift/SIL/BasicBlockDatastructures.h"
#include "swift/Basic/Defer.h"
#include "swift/Basic/STLExtras.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/LoopInfo.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBasicBlock.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/TerminatorUtils.h"
#include "llvm/ADT/STLExtras.h"
using namespace swift;
static bool hasBranchArguments(TermInst *T, unsigned edgeIdx) {
if (auto *BI = dyn_cast<BranchInst>(T)) {
assert(edgeIdx == 0);
return BI->getNumArgs() != 0;
}
if (auto CBI = dyn_cast<CondBranchInst>(T)) {
assert(edgeIdx <= 1);
return edgeIdx == CondBranchInst::TrueIdx ? !CBI->getTrueArgs().empty()
: !CBI->getFalseArgs().empty();
}
// No other terminator have branch arguments.
return false;
}
void swift::changeBranchTarget(TermInst *T, unsigned edgeIdx,
SILBasicBlock *newDest, bool preserveArgs) {
// In many cases, we can just rewrite the successor in place.
if (preserveArgs || !hasBranchArguments(T, edgeIdx)) {
T->getSuccessors()[edgeIdx] = newDest;
return;
}
// Otherwise, we have to build a new branch instruction.
SILBuilderWithScope B(T);
switch (T->getTermKind()) {
// Only Branch and CondBranch may have arguments.
case TermKind::BranchInst: {
auto *BI = cast<BranchInst>(T);
SmallVector<SILValue, 8> args;
if (preserveArgs) {
for (auto arg : BI->getArgs())
args.push_back(arg);
}
B.createBranch(T->getLoc(), newDest, args);
BI->dropAllReferences();
BI->eraseFromParent();
return;
}
case TermKind::CondBranchInst: {
auto CBI = cast<CondBranchInst>(T);
SILBasicBlock *trueDest = CBI->getTrueBB();
SILBasicBlock *falseDest = CBI->getFalseBB();
SmallVector<SILValue, 8> trueArgs;
SmallVector<SILValue, 8> falseArgs;
if (edgeIdx == CondBranchInst::FalseIdx) {
falseDest = newDest;
for (auto arg : CBI->getTrueArgs())
trueArgs.push_back(arg);
} else {
trueDest = newDest;
for (auto arg : CBI->getFalseArgs())
falseArgs.push_back(arg);
}
B.createCondBranch(CBI->getLoc(), CBI->getCondition(), trueDest, trueArgs,
falseDest, falseArgs, CBI->getTrueBBCount(),
CBI->getFalseBBCount());
CBI->dropAllReferences();
CBI->eraseFromParent();
return;
}
default:
llvm_unreachable("only branch and cond_branch have branch arguments");
}
}
template <class SwitchInstTy>
static SILBasicBlock *getNthEdgeBlock(SwitchInstTy *S, unsigned edgeIdx) {
if (S->getNumCases() == edgeIdx)
return S->getDefaultBB();
return S->getCase(edgeIdx).second;
}
static SILBasicBlock *getNthEdgeBlock(SwitchEnumTermInst S, unsigned edgeIdx) {
if (S.getNumCases() == edgeIdx)
return S.getDefaultBB();
return S.getCase(edgeIdx).second;
}
void swift::getEdgeArgs(TermInst *T, unsigned edgeIdx, SILBasicBlock *newEdgeBB,
llvm::SmallVectorImpl<SILValue> &args) {
switch (T->getKind()) {
case SILInstructionKind::BranchInst: {
auto *B = cast<BranchInst>(T);
for (auto V : B->getArgs())
args.push_back(V);
return;
}
case SILInstructionKind::CondBranchInst: {
auto CBI = cast<CondBranchInst>(T);
assert(edgeIdx < 2);
auto OpdArgs = edgeIdx ? CBI->getFalseArgs() : CBI->getTrueArgs();
for (auto V : OpdArgs)
args.push_back(V);
return;
}
case SILInstructionKind::AwaitAsyncContinuationInst: {
auto AACI = cast<AwaitAsyncContinuationInst>(T);
switch (edgeIdx) {
case 0:
// resume BB. this takes the resume value argument if the operand is
// GetAsyncContinuation, or no argument if the operand is
// GetAsyncContinuationAddr
if (auto contOperand = dyn_cast<GetAsyncContinuationInst>(AACI->getOperand())) {
args.push_back(newEdgeBB->createPhiArgument(
contOperand->getLoweredResumeType(), OwnershipKind::Owned));
}
return;
case 1: {
assert(AACI->getErrorBB());
auto &C = AACI->getFunction()->getASTContext();
auto errorTy = C.getErrorExistentialType();
auto errorSILTy = SILType::getPrimitiveObjectType(errorTy);
// error BB. this takes the error value argument
args.push_back(
newEdgeBB->createPhiArgument(errorSILTy, OwnershipKind::Owned));
return;
}
default:
llvm_unreachable("only has at most two edges");
}
}
case SILInstructionKind::SwitchValueInst: {
auto SEI = cast<SwitchValueInst>(T);
auto *succBB = getNthEdgeBlock(SEI, edgeIdx);
assert(succBB->getNumArguments() == 0 && "Can't take an argument");
(void)succBB;
return;
}
// A switch_enum can implicitly pass the enum payload. We need to look at the
// destination block to figure this out.
case SILInstructionKind::SwitchEnumInst:
case SILInstructionKind::SwitchEnumAddrInst: {
SwitchEnumTermInst branch(T);
auto *succBB = getNthEdgeBlock(branch, edgeIdx);
assert(succBB->getNumArguments() < 2 && "Can take at most one argument");
if (!succBB->getNumArguments())
return;
args.push_back(newEdgeBB->createPhiArgument(
succBB->getArgument(0)->getType(),
succBB->getArgument(0)->getOwnershipKind()));
return;
}
// A dynamic_method_br passes the function to the first basic block.
case SILInstructionKind::DynamicMethodBranchInst: {
auto DMBI = cast<DynamicMethodBranchInst>(T);
auto *succBB =
(edgeIdx == 0) ? DMBI->getHasMethodBB() : DMBI->getNoMethodBB();
if (!succBB->getNumArguments())
return;
args.push_back(newEdgeBB->createPhiArgument(
succBB->getArgument(0)->getType(),
succBB->getArgument(0)->getOwnershipKind()));
return;
}
/// A checked_cast_br passes the result of the cast to the first basic block.
case SILInstructionKind::CheckedCastBranchInst: {
auto CBI = cast<CheckedCastBranchInst>(T);
auto succBB = edgeIdx == 0 ? CBI->getSuccessBB() : CBI->getFailureBB();
if (!succBB->getNumArguments())
return;
args.push_back(newEdgeBB->createPhiArgument(
succBB->getArgument(0)->getType(),
succBB->getArgument(0)->getOwnershipKind()));
return;
}
case SILInstructionKind::CheckedCastAddrBranchInst: {
auto CBI = cast<CheckedCastAddrBranchInst>(T);
auto succBB = edgeIdx == 0 ? CBI->getSuccessBB() : CBI->getFailureBB();
if (!succBB->getNumArguments())
return;
args.push_back(newEdgeBB->createPhiArgument(
succBB->getArgument(0)->getType(),
succBB->getArgument(0)->getOwnershipKind()));
return;
}
case SILInstructionKind::TryApplyInst: {
auto *TAI = cast<TryApplyInst>(T);
auto *succBB = edgeIdx == 0 ? TAI->getNormalBB() : TAI->getErrorBB();
if (!succBB->getNumArguments())
return;
args.push_back(newEdgeBB->createPhiArgument(
succBB->getArgument(0)->getType(),
succBB->getArgument(0)->getOwnershipKind()));
return;
}
case SILInstructionKind::YieldInst:
// The edges from 'yield' never have branch arguments.
return;
case SILInstructionKind::ReturnInst:
case SILInstructionKind::ThrowInst:
case SILInstructionKind::UnwindInst:
case SILInstructionKind::UnreachableInst:
llvm_unreachable("terminator never has successors");
#define TERMINATOR(ID, ...)
#define INST(ID, BASE) case SILInstructionKind::ID:
#include "swift/SIL/SILNodes.def"
llvm_unreachable("not a terminator");
}
llvm_unreachable("bad instruction kind");
}
SILBasicBlock *swift::splitEdge(TermInst *T, unsigned edgeIdx,
DominanceInfo *DT, SILLoopInfo *LI) {
auto *srcBB = T->getParent();
auto *F = srcBB->getParent();
SILBasicBlock *destBB = T->getSuccessors()[edgeIdx];
// Create a new basic block in the edge, and insert it after the srcBB.
auto *edgeBB = F->createBasicBlockAfter(srcBB);
SmallVector<SILValue, 16> args;
getEdgeArgs(T, edgeIdx, edgeBB, args);
SILBuilderWithScope(edgeBB, T).createBranch(T->getLoc(), destBB, args);
// Strip the arguments and rewire the branch in the source block.
changeBranchTarget(T, edgeIdx, edgeBB, /*PreserveArgs=*/false);
if (!DT && !LI)
return edgeBB;
// Update the dominator tree.
if (DT) {
auto *srcBBNode = DT->getNode(srcBB);
// Unreachable code could result in a null return here.
if (srcBBNode) {
// The new block is dominated by the srcBB.
auto *edgeBBNode = DT->addNewBlock(edgeBB, srcBB);
// Are all predecessors of destBB dominated by destBB?
auto *destBBNode = DT->getNode(destBB);
bool oldSrcBBDominatesAllPreds = std::all_of(
destBB->pred_begin(), destBB->pred_end(), [=](SILBasicBlock *B) {
if (B == edgeBB)
return true;
auto *PredNode = DT->getNode(B);
if (!PredNode)
return true;
if (DT->dominates(destBBNode, PredNode))
return true;
return false;
});
// If so, the new bb dominates destBB now.
if (oldSrcBBDominatesAllPreds)
DT->changeImmediateDominator(destBBNode, edgeBBNode);
}
}
if (!LI)
return edgeBB;
// Update loop info. Both blocks must be in a loop otherwise the split block
// is outside the loop.
SILLoop *srcBBLoop = LI->getLoopFor(srcBB);
if (!srcBBLoop)
return edgeBB;
SILLoop *DstBBLoop = LI->getLoopFor(destBB);
if (!DstBBLoop)
return edgeBB;
// Same loop.
if (DstBBLoop == srcBBLoop) {
DstBBLoop->addBasicBlockToLoop(edgeBB, LI->getBase());
return edgeBB;
}
// Edge from inner to outer loop.
if (DstBBLoop->contains(srcBBLoop)) {
DstBBLoop->addBasicBlockToLoop(edgeBB, LI->getBase());
return edgeBB;
}
// Edge from outer to inner loop.
if (srcBBLoop->contains(DstBBLoop)) {
srcBBLoop->addBasicBlockToLoop(edgeBB, LI->getBase());
return edgeBB;
}
// Neither loop contains the other. The destination must be the header of its
// loop. Otherwise, we would be creating irreducible control flow.
assert(DstBBLoop->getHeader() == destBB
&& "Creating irreducible control flow?");
// Add to outer loop if there is one.
if (auto *parent = DstBBLoop->getParentLoop())
parent->addBasicBlockToLoop(edgeBB, LI->getBase());
return edgeBB;
}
/// Merge the basic block with its successor if possible.
void swift::mergeBasicBlockWithSingleSuccessor(SILBasicBlock *BB,
SILBasicBlock *succBB) {
auto *BI = cast<BranchInst>(BB->getTerminator());
assert(succBB->getSinglePredecessorBlock());
// If there are any BB arguments in the destination, replace them with the
// branch operands, since they must dominate the dest block.
for (unsigned i = 0, e = BI->getArgs().size(); i != e; ++i)
succBB->getArgument(i)->replaceAllUsesWith(BI->getArg(i));
BI->eraseFromParent();
// Move the instruction from the successor block to the current block.
BB->spliceAtEnd(succBB);
succBB->eraseFromParent();
}
//===----------------------------------------------------------------------===//
// DeadEndBlocks
//===----------------------------------------------------------------------===//
// Propagate the reachability up the control flow graph.
void DeadEndBlocks::propagateNewlyReachableBlocks(unsigned startIdx) {
for (unsigned idx = startIdx; idx < reachableBlocks.size(); ++idx) {
const SILBasicBlock *bb = reachableBlocks[idx];
for (SILBasicBlock *predBB : bb->getPredecessorBlocks())
reachableBlocks.insert(predBB);
}
}
void DeadEndBlocks::compute() {
assert(reachableBlocks.empty() && "Computed twice");
// First step: find blocks which end up in a no-return block (terminated by
// an unreachable instruction).
// Search for function-exiting blocks, i.e. return and throw.
for (const SILBasicBlock &BB : *f) {
const TermInst *TI = BB.getTerminator();
if (TI->isFunctionExiting())
reachableBlocks.insert(&BB);
}
propagateNewlyReachableBlocks(0);
}
void DeadEndBlocks::updateForReachableBlock(SILBasicBlock *reachableBB) {
if (!didComputeValue)
return;
assert(reachableBlocks.count(reachableBB));
unsigned numReachable = reachableBlocks.size();
for (SILBasicBlock *predBB : reachableBB->getPredecessorBlocks()) {
reachableBlocks.insert(predBB);
}
propagateNewlyReachableBlocks(numReachable);
}
void DeadEndBlocks::updateForNewBlock(SILBasicBlock *newBB) {
if (!didComputeValue)
return;
assert(reachableBlocks.count(newBB) == 0);
unsigned numReachable = reachableBlocks.size();
reachableBlocks.insert(newBB);
propagateNewlyReachableBlocks(numReachable);
}
bool DeadEndBlocks::triviallyEndsInUnreachable(SILBasicBlock *block) {
// Handle the case where a single "unreachable" block (e.g. containing a call
// to fatalError()), is jumped to from multiple source blocks.
if (SILBasicBlock *singleSucc = block->getSingleSuccessorBlock())
block = singleSucc;
return isa<UnreachableInst>(block->getTerminator());
}
//===----------------------------------------------------------------------===//
// Post Dominance Set Completion Utilities
//===----------------------------------------------------------------------===//
void swift::findJointPostDominatingSet(
SILBasicBlock *dominatingBlock, ArrayRef<SILBasicBlock *> dominatedBlockSet,
function_ref<void(SILBasicBlock *)> inputBlocksFoundDuringWalk,
function_ref<void(SILBasicBlock *)> foundJointPostDomSetCompletionBlocks,
function_ref<void(SILBasicBlock *)> inputBlocksInJointPostDomSet) {
// If our reachable block set is empty, assert. This is most likely programmer
// error.
assert(dominatedBlockSet.size() != 0);
// If we have a reachable block set with a single block and that block is
// dominatingBlock, then we return success since a block post-doms its self so
// it is already complete.
//
// NOTE: We do not consider this a visited
if (dominatedBlockSet.size() == 1 && dominatingBlock == dominatedBlockSet[0]) {
if (inputBlocksInJointPostDomSet)
inputBlocksInJointPostDomSet(dominatingBlock);
return;
}
/// The worklist that drives the algorithm.
SmallVector<SILBasicBlock *, 32> worklist;
/// All blocks visited during the backwards walk of the CFG, but not including
/// the initial blocks in `dominatedBlockSet`.
BasicBlockSet visitedBlocks(dominatingBlock->getParent());
/// All blocks in `dominatedBlockSet` (= blocks where we begin our walk).
BasicBlockSet initialBlocks(visitedBlocks.getFunction());
// Compute our joint post dominating set. We do this by performing a backwards
// walk up the CFG tracking back liveness until we find our dominating block.
for (auto *block : dominatedBlockSet) {
// We require dominatedBlockSet to be a set and thus assert if we hit it to
// flag user error to our caller.
assert(!initialBlocks.contains(block) &&
"dominatedBlockSet must not contain duplicate elements");
initialBlocks.insert(block);
worklist.push_back(block);
}
// Then until we run out of blocks...
while (!worklist.empty()) {
auto *block = worklist.pop_back_val();
// If we are the dominating block, we are done.
if (dominatingBlock == block)
continue;
for (auto *predBlock : block->getPredecessorBlocks()) {
if (visitedBlocks.insert(predBlock))
worklist.push_back(predBlock);
}
}
// Do the same walk over all visited blocks again to find the "leaking"
// blocks. These leaking blocks are the completion of the post dom set.
//
// Note that we could also keep all visited blocks in a SmallVector in the
// first run. But the worklist algorithm is fast and we don't want
// to risk that the small vector overflows (the set of visited blocks can be
// much larger than the maximum worklist size).
BasicBlockSet visitedBlocksInSecondRun(visitedBlocks.getFunction());
assert(worklist.empty());
worklist.append(dominatedBlockSet.begin(), dominatedBlockSet.end());
while (!worklist.empty()) {
auto *block = worklist.pop_back_val();
if (dominatingBlock == block)
continue;
for (auto *predBlock : block->getPredecessorBlocks()) {
assert(visitedBlocks.contains(predBlock));
if (visitedBlocksInSecondRun.insert(predBlock)) {
worklist.push_back(predBlock);
for (auto *succBlock : predBlock->getSuccessorBlocks()) {
// All not-visited successors of a visited block are "leaking" blocks.
if (!visitedBlocks.contains(succBlock) &&
// For this purpose also the initial blocks count as "visited",
// although they are not added to the visitedBlocks set.
!initialBlocks.contains(succBlock) &&
// Ignore blocks which end in an unreachable. This is a very
// simple check, but covers most of the cases, e.g. block which
// calls fatalError().
!DeadEndBlocks::triviallyEndsInUnreachable(succBlock)) {
assert(succBlock->getSinglePredecessorBlock() == predBlock &&
"CFG must not contain critical edge");
// Note that since there are no critical edges in the CFG, we are
// not calling the closure for a leaking successor block twice.
foundJointPostDomSetCompletionBlocks(succBlock);
}
}
}
}
}
// Pass back the reachable input blocks that were not reachable from other
// input blocks to.
for (auto *block : dominatedBlockSet) {
if (visitedBlocks.contains(block)) {
inputBlocksFoundDuringWalk(block);
} else if (inputBlocksInJointPostDomSet) {
inputBlocksInJointPostDomSet(block);
}
}
}
//===----------------------------------------------------------------------===//
// checkReachingBlockDominance
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
/// Check that \p sourceBlock dominates \p destBlock.
///
/// Useful for *temporary* assertions when Dominance is unavailable. This is
/// worst case O(numberOfBlocksInFunction). It should only be used when \p
/// sourceBlock is expected to be "close to" \p destBlock in almost all
/// cases. Because of the potential for quadratic behavior, it should only be
/// used during feature development, never as a permanent check. If a dominance
/// check is required for correctness, then DominanceInfo should be passed down
/// to the utility function that needs this check.
bool
swift::checkDominates(SILBasicBlock *sourceBlock, SILBasicBlock *destBlock) {
SILBasicBlock *entryBlock = sourceBlock->getParent()->getEntryBlock();
BasicBlockWorklist worklist(destBlock);
bool reaches = false;
while (SILBasicBlock *block = worklist.pop()) {
if (block == sourceBlock) {
reaches = true;
continue;
}
if (block == entryBlock) {
return false; // does not dominate
}
for (auto *predBlock : block->getPredecessorBlocks()) {
worklist.pushIfNotVisited(predBlock);
}
}
return reaches;
}
#endif