-
Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathLICM.cpp
587 lines (501 loc) · 19.4 KB
/
LICM.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
//===--- LICM.cpp - Loop invariant code motion ----------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-licm"
#include "swift/SIL/Dominance.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/Analysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/LoopAnalysis.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/Analysis/SideEffectAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFG.h"
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/InstructionUtils.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
using namespace swift;
/// Instructions which read from memory, e.g. loads, or function calls without
/// side effects.
using ReadSet = llvm::SmallPtrSet<SILInstruction *, 8>;
/// Instructions which (potentially) write memory.
using WriteSet = SmallVector<SILInstruction *, 8>;
/// Returns true if the \p MayWrites set contains any memory writes which may
/// alias with the memory addressed by \a LI.
static bool mayWriteTo(AliasAnalysis *AA, WriteSet &MayWrites, LoadInst *LI) {
for (auto *W : MayWrites)
if (AA->mayWriteToMemory(W, LI->getOperand())) {
DEBUG(llvm::dbgs() << " mayWriteTo\n" << *W << " to " << *LI << "\n");
return true;
}
return false;
}
/// Returns true if the \p MayWrites set contains any memory writes which may
/// alias with any memory which is read by \p AI.
static bool mayWriteTo(AliasAnalysis *AA, SideEffectAnalysis *SEA,
WriteSet &MayWrites, ApplyInst *AI) {
SideEffectAnalysis::FunctionEffects E;
SEA->getEffects(E, AI);
assert(E.getMemBehavior(RetainObserveKind::IgnoreRetains) <=
SILInstruction::MemoryBehavior::MayRead &&
"apply should only read from memory");
if (E.getGlobalEffects().mayRead() && !MayWrites.empty()) {
// We don't know which memory is read in the callee. Therefore we bail if
// there are any writes in the loop.
return true;
}
for (unsigned Idx = 0, End = AI->getNumArguments(); Idx < End; ++Idx) {
auto &ArgEffect = E.getParameterEffects()[Idx];
if (!ArgEffect.mayRead())
continue;
SILValue Arg = AI->getArgument(Idx);
// Check if the memory addressed by the argument may alias any writes.
for (auto *W : MayWrites) {
if (AA->mayWriteToMemory(W, Arg)) {
DEBUG(llvm::dbgs() << " mayWriteTo\n" << *W << " to " << *AI << "\n");
return true;
}
}
}
return false;
}
static void removeWrittenTo(AliasAnalysis *AA, ReadSet &Reads,
SILInstruction *ByInst) {
// We can ignore retains, cond_fails, and dealloc_stacks.
if (isa<StrongRetainInst>(ByInst) || isa<RetainValueInst>(ByInst) ||
isa<CondFailInst>(ByInst) || isa<DeallocStackInst>(ByInst))
return;
SmallVector<SILInstruction *, 8> RS(Reads.begin(), Reads.end());
for (auto R : RS) {
auto *LI = dyn_cast<LoadInst>(R);
if (LI && !AA->mayWriteToMemory(ByInst, LI->getOperand()))
continue;
DEBUG(llvm::dbgs() << " mayWriteTo\n" << *ByInst << " to " << *R << "\n");
Reads.erase(R);
}
}
static bool hasLoopInvariantOperands(SILInstruction *I, SILLoop *L) {
auto Opds = I->getAllOperands();
return std::all_of(Opds.begin(), Opds.end(), [=](Operand &Op) {
ValueBase *Def = Op.get();
// Operand is defined outside the loop.
if (auto *Inst = dyn_cast<SILInstruction>(Def))
return !L->contains(Inst->getParent());
if (auto *Arg = dyn_cast<SILArgument>(Def))
return !L->contains(Arg->getParent());
return false;
});
}
/// Check if an address does not depend on other values in a basic block.
static SILInstruction *addressIndependent(SILValue Addr) {
Addr = stripCasts(Addr);
if (GlobalAddrInst *SGAI = dyn_cast<GlobalAddrInst>(Addr))
return SGAI;
if (StructElementAddrInst *SEAI = dyn_cast<StructElementAddrInst>(Addr))
return addressIndependent(SEAI->getOperand());
return nullptr;
}
/// Check if two addresses can potentially access the same memory.
/// For now, return true when both can be traced to the same global variable.
static bool addressCanPairUp(SILValue Addr1, SILValue Addr2) {
SILInstruction *Origin1 = addressIndependent(Addr1);
return Origin1 && Origin1 == addressIndependent(Addr2);
}
/// Move cond_fail down if it can potentially help register promotion later.
static bool sinkCondFail(SILLoop *Loop) {
// Only handle innermost loops for now.
if (!Loop->getSubLoops().empty())
return false;
bool Changed = false;
for (auto *BB : Loop->getBlocks()) {
// A list of CondFails that can be moved down.
SmallVector<CondFailInst*, 4> CFs;
// A pair of load and store that are independent of the CondFails and
// can potentially access the same memory.
LoadInst *LIOfPair = nullptr;
bool foundPair = false;
for (auto &Inst : *BB) {
if (foundPair) {
// Move CFs to right before Inst.
for (unsigned I = 0, E = CFs.size(); I < E; I++) {
DEBUG(llvm::dbgs() << "sinking cond_fail down ");
DEBUG(CFs[I]->dump());
DEBUG(llvm::dbgs() << " before ");
DEBUG(Inst.dump());
CFs[I]->moveBefore(&Inst);
}
Changed = true;
foundPair = false;
LIOfPair = nullptr;
}
if (auto CF = dyn_cast<CondFailInst>(&Inst)) {
CFs.push_back(CF);
} else if (auto LI = dyn_cast<LoadInst>(&Inst)) {
if (addressIndependent(LI->getOperand())) {
LIOfPair = LI;
} else {
CFs.clear();
LIOfPair = nullptr;
}
} else if (auto SI = dyn_cast<StoreInst>(&Inst)) {
if (addressIndependent(SI->getDest())) {
if (LIOfPair &&
addressCanPairUp(SI->getDest(), LIOfPair->getOperand()))
foundPair = true;
} else {
CFs.clear();
LIOfPair = nullptr;
}
} else if (Inst.mayHaveSideEffects()) {
CFs.clear();
LIOfPair = nullptr;
}
}
}
return Changed;
}
/// Checks if \p Inst has no side effects which prevent hoisting.
/// The \a SafeReads set contain instructions which we already proved to have
/// no such side effects.
static bool hasNoSideEffect(SILInstruction *Inst, ReadSet &SafeReads) {
// We can (and must) hoist cond_fail instructions if the operand is
// invariant. We must hoist them so that we preserve memory safety. A
// cond_fail that would have protected (executed before) a memory access
// must - after hoisting - also be executed before said access.
if (isa<CondFailInst>(Inst))
return true;
// Can't hoist if the instruction could read from memory and is not marked
// as safe.
if (SafeReads.count(Inst))
return true;
if (Inst->getMemoryBehavior() == SILInstruction::MemoryBehavior::None)
return true;
return false;
}
static bool canHoistInstruction(SILInstruction *Inst, SILLoop *Loop,
ReadSet &SafeReads) {
// Can't hoist terminators.
if (isa<TermInst>(Inst))
return false;
// Can't hoist allocation and dealloc stacks.
if (isa<AllocationInst>(Inst) || isa<DeallocStackInst>(Inst))
return false;
// Can't hoist instructions which may have side effects.
if (!hasNoSideEffect(Inst, SafeReads))
return false;
// The operands need to be loop invariant.
if (!hasLoopInvariantOperands(Inst, Loop)) {
DEBUG(llvm::dbgs() << " loop variant operands\n");
return false;
}
return true;
}
static bool hoistInstructions(SILLoop *Loop, DominanceInfo *DT,
ReadSet &SafeReads, bool RunsOnHighLevelSil) {
auto Preheader = Loop->getLoopPreheader();
if (!Preheader)
return false;
DEBUG(llvm::dbgs() << " Hoisting instructions.\n");
auto HeaderBB = Loop->getHeader();
bool Changed = false;
// Traverse the dominator tree starting at the loop header. Hoisting
// instructions as we go.
auto DTRoot = DT->getNode(HeaderBB);
SmallVector<SILBasicBlock *, 8> ExitingBBs;
Loop->getExitingBlocks(ExitingBBs);
for (llvm::df_iterator<DominanceInfoNode *> It = llvm::df_begin(DTRoot),
E = llvm::df_end(DTRoot);
It != E;) {
auto *CurBB = It->getBlock();
// Don't decent into control-dependent code. Only traverse into basic blocks
// that dominate all exits.
if (!std::all_of(ExitingBBs.begin(), ExitingBBs.end(),
[=](SILBasicBlock *ExitBB) {
if (DT->dominates(CurBB, ExitBB))
return true;
return false;
})) {
DEBUG(llvm::dbgs() << " skipping conditional block " << *CurBB << "\n");
It.skipChildren();
continue;
}
// We now that the block is guaranteed to be executed. Hoist if we can.
for (auto InstIt = CurBB->begin(), E = CurBB->end(); InstIt != E; ) {
SILInstruction *Inst = &*InstIt;
++InstIt;
DEBUG(llvm::dbgs() << " looking at " << *Inst);
if (canHoistInstruction(Inst, Loop, SafeReads)) {
DEBUG(llvm::dbgs() << " hoisting to preheader.\n");
Changed = true;
Inst->moveBefore(Preheader->getTerminator());
} else if (RunsOnHighLevelSil) {
ArraySemanticsCall semCall(Inst);
switch (semCall.getKind()) {
case ArrayCallKind::kGetCount:
case ArrayCallKind::kGetCapacity:
if (hasLoopInvariantOperands(Inst, Loop) &&
semCall.canHoist(Preheader->getTerminator(), DT)) {
Changed = true;
semCall.hoist(Preheader->getTerminator(), DT);
}
break;
default:
break;
}
}
}
// Next block in dominator tree.
++It;
}
return Changed;
}
static bool sinkFixLifetime(SILLoop *Loop, DominanceInfo *DomTree,
SILLoopInfo *LI) {
DEBUG(llvm::errs() << " Sink fix_lifetime attempt\n");
auto Preheader = Loop->getLoopPreheader();
if (!Preheader)
return false;
// Only handle innermost loops for now.
if (!Loop->getSubLoops().empty())
return false;
// Only handle single exit blocks for now.
auto *ExitBB = Loop->getExitBlock();
if (!ExitBB)
return false;
auto *ExitingBB = Loop->getExitingBlock();
if (!ExitingBB)
return false;
// We can sink fix_lifetime instructions if there are no reference counting
// instructions in the loop.
SmallVector<FixLifetimeInst *, 16> FixLifetimeInsts;
for (auto *BB : Loop->getBlocks()) {
for (auto &Inst : *BB) {
if (auto FLI = dyn_cast<FixLifetimeInst>(&Inst)) {
FixLifetimeInsts.push_back(FLI);
} else if (Inst.mayHaveSideEffects() && !isa<LoadInst>(&Inst) &&
!isa<StoreInst>(&Inst)) {
DEBUG(llvm::errs() << " mayhavesideeffects because of" << Inst);
DEBUG(Inst.getParent()->dump());
return false;
}
}
}
// Sink the fix_lifetime instruction.
bool Changed = false;
for (auto *FLI : FixLifetimeInsts)
if (DomTree->dominates(FLI->getOperand()->getParentBB(),
Preheader)) {
auto Succs = ExitingBB->getSuccessors();
for (unsigned EdgeIdx = 0; EdgeIdx < Succs.size(); ++EdgeIdx) {
SILBasicBlock *BB = Succs[EdgeIdx];
if (BB == ExitBB) {
auto *SplitBB = splitCriticalEdge(ExitingBB->getTerminator(), EdgeIdx,
DomTree, LI);
auto *OutsideBB = SplitBB ? SplitBB : ExitBB;
// Update the ExitBB.
ExitBB = OutsideBB;
DEBUG(llvm::errs() << " moving fix_lifetime to exit BB " << *FLI);
FLI->moveBefore(&*OutsideBB->begin());
Changed = true;
}
}
} else {
DEBUG(llvm::errs() << " does not dominate " << *FLI);
}
return Changed;
}
namespace {
/// \brief Summary of may writes occurring in the loop tree rooted at \p
/// Loop. This includes all writes of the sub loops and the loop itself.
struct LoopNestSummary {
SILLoop *Loop;
WriteSet MayWrites;
LoopNestSummary(SILLoop *Curr) : Loop(Curr) {}
void copySummary(LoopNestSummary &Other) {
MayWrites.append(Other.MayWrites.begin(), Other.MayWrites.end());
}
LoopNestSummary(const LoopNestSummary &) = delete;
LoopNestSummary &operator=(const LoopNestSummary &) = delete;
LoopNestSummary(LoopNestSummary &&) = delete;
};
/// \brief Optimize the loop tree bottom up propagating loop's summaries up the
/// loop tree.
class LoopTreeOptimization {
llvm::DenseMap<SILLoop *, std::unique_ptr<LoopNestSummary>>
LoopNestSummaryMap;
SmallVector<SILLoop *, 8> BotUpWorkList;
SILLoopInfo *LoopInfo;
AliasAnalysis *AA;
SideEffectAnalysis *SEA;
DominanceInfo *DomTree;
bool Changed;
/// True if LICM is done on high-level SIL, i.e. semantic calls are not
/// inlined yet. In this case some semantic calls can be hoisted.
bool RunsOnHighLevelSil;
public:
LoopTreeOptimization(SILLoop *TopLevelLoop, SILLoopInfo *LI,
AliasAnalysis *AA, SideEffectAnalysis *SEA,
DominanceInfo *DT,
bool RunsOnHighLevelSil)
: LoopInfo(LI), AA(AA), SEA(SEA), DomTree(DT), Changed(false),
RunsOnHighLevelSil(RunsOnHighLevelSil) {
// Collect loops for a recursive bottom-up traversal in the loop tree.
BotUpWorkList.push_back(TopLevelLoop);
for (unsigned i = 0; i < BotUpWorkList.size(); ++i) {
auto *L = BotUpWorkList[i];
for (auto *SubLoop : *L)
BotUpWorkList.push_back(SubLoop);
}
}
/// \brief Optimize this loop tree.
bool optimize();
protected:
/// \brief Propagate the sub-loops' summaries up to the current loop.
void propagateSummaries(std::unique_ptr<LoopNestSummary> &CurrSummary);
/// \brief Collect a set of reads that can be hoisted to the loop's preheader.
void analyzeCurrentLoop(std::unique_ptr<LoopNestSummary> &CurrSummary,
ReadSet &SafeReads);
/// \brief Optimize the current loop nest.
void optimizeLoop(SILLoop *CurrentLoop, ReadSet &SafeReads);
};
}
bool LoopTreeOptimization::optimize() {
// Process loops bottom up in the loop tree.
while (!BotUpWorkList.empty()) {
SILLoop *CurrentLoop = BotUpWorkList.pop_back_val();
DEBUG(llvm::dbgs() << "Processing loop " << *CurrentLoop);
// Collect all summary of all sub loops of the current loop. Since we
// process the loop tree bottom up they are guaranteed to be available in
// the map.
auto CurrLoopSummary = llvm::make_unique<LoopNestSummary>(CurrentLoop);
propagateSummaries(CurrLoopSummary);
// Analyse the current loop for reads that can be hoisted.
ReadSet SafeReads;
analyzeCurrentLoop(CurrLoopSummary, SafeReads);
optimizeLoop(CurrentLoop, SafeReads);
// Store the summary for parent loops to use.
LoopNestSummaryMap[CurrentLoop] = std::move(CurrLoopSummary);
}
return Changed;
}
void LoopTreeOptimization::propagateSummaries(
std::unique_ptr<LoopNestSummary> &CurrSummary) {
for (auto *SubLoop : *CurrSummary->Loop) {
assert(LoopNestSummaryMap.count(SubLoop) && "Must have data for sub loops");
CurrSummary->copySummary(*LoopNestSummaryMap[SubLoop]);
LoopNestSummaryMap.erase(SubLoop);
}
}
void LoopTreeOptimization::analyzeCurrentLoop(
std::unique_ptr<LoopNestSummary> &CurrSummary, ReadSet &SafeReads) {
WriteSet &MayWrites = CurrSummary->MayWrites;
SILLoop *Loop = CurrSummary->Loop;
DEBUG(llvm::dbgs() << " Analysing accesses.\n");
// Contains function calls in the loop, which only read from memory.
SmallVector<ApplyInst *, 8> ReadOnlyApplies;
for (auto *BB : Loop->getBlocks()) {
for (auto &Inst : *BB) {
// Ignore fix_lifetime instructions.
if (isa<FixLifetimeInst>(&Inst))
continue;
// Collect loads.
auto LI = dyn_cast<LoadInst>(&Inst);
if (LI) {
if (!mayWriteTo(AA, MayWrites, LI))
SafeReads.insert(LI);
continue;
}
if (auto *AI = dyn_cast<ApplyInst>(&Inst)) {
// In contrast to load instructions, we first collect all read-only
// function calls and add them later to SafeReads.
SideEffectAnalysis::FunctionEffects E;
SEA->getEffects(E, AI);
auto MB = E.getMemBehavior(RetainObserveKind::ObserveRetains);
if (MB <= SILInstruction::MemoryBehavior::MayRead)
ReadOnlyApplies.push_back(AI);
}
if (Inst.mayHaveSideEffects()) {
MayWrites.push_back(&Inst);
// Remove clobbered loads we have seen before.
removeWrittenTo(AA, SafeReads, &Inst);
}
}
}
for (auto *AI : ReadOnlyApplies) {
if (!mayWriteTo(AA, SEA, MayWrites, AI))
SafeReads.insert(AI);
}
}
void LoopTreeOptimization::optimizeLoop(SILLoop *CurrentLoop,
ReadSet &SafeReads) {
Changed |= sinkCondFail(CurrentLoop);
Changed |= hoistInstructions(CurrentLoop, DomTree, SafeReads,
RunsOnHighLevelSil);
Changed |= sinkFixLifetime(CurrentLoop, DomTree, LoopInfo);
}
namespace {
/// Hoist loop invariant code out of innermost loops.
class LICM : public SILFunctionTransform {
public:
LICM(bool RunsOnHighLevelSil) : RunsOnHighLevelSil(RunsOnHighLevelSil) {}
/// True if LICM is done on high-level SIL, i.e. semantic calls are not
/// inlined yet. In this case some semantic calls can be hoisted.
/// We only hoist semantic calls on high-level SIL because we can be sure that
/// e.g. an Array as SILValue is really immutable (including its content).
bool RunsOnHighLevelSil;
StringRef getName() override {
return RunsOnHighLevelSil ? "High-level Loop Invariant Code Motion" :
"Loop Invariant Code Motion";
}
void run() override {
SILFunction *F = getFunction();
SILLoopAnalysis *LA = PM->getAnalysis<SILLoopAnalysis>();
SILLoopInfo *LoopInfo = LA->get(F);
if (LoopInfo->empty()) {
DEBUG(llvm::dbgs() << "No loops in " << F->getName() << "\n");
return;
}
DominanceAnalysis *DA = PM->getAnalysis<DominanceAnalysis>();
AliasAnalysis *AA = PM->getAnalysis<AliasAnalysis>();
SideEffectAnalysis *SEA = PM->getAnalysis<SideEffectAnalysis>();
DominanceInfo *DomTree = nullptr;
DEBUG(llvm::dbgs() << "Processing loops in " << F->getName() << "\n");
bool Changed = false;
for (auto *TopLevelLoop : *LoopInfo) {
if (!DomTree) DomTree = DA->get(F);
LoopTreeOptimization Opt(TopLevelLoop, LoopInfo, AA, SEA, DomTree,
RunsOnHighLevelSil);
Changed |= Opt.optimize();
}
if (Changed) {
LA->lockInvalidation();
DA->lockInvalidation();
PM->invalidateAnalysis(F, SILAnalysis::InvalidationKind::FunctionBody);
LA->unlockInvalidation();
DA->unlockInvalidation();
}
}
};
}
SILTransform *swift::createLICM() {
return new LICM(false);
}
SILTransform *swift::createHighLevelLICM() {
return new LICM(true);
}