-
Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathArrayBoundsCheckOpts.cpp
1359 lines (1161 loc) · 47.4 KB
/
ArrayBoundsCheckOpts.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- ArrayBoundsCheckOpts.cpp - Bounds check elim ---------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-abcopts"
#include "swift/Basic/STLExtras.h"
#include "swift/AST/Builtins.h"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SILOptimizer/Analysis/Analysis.h"
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SILOptimizer/Analysis/DestructorAnalysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Analysis/IVAnalysis.h"
#include "swift/SILOptimizer/Analysis/LoopAnalysis.h"
#include "swift/SILOptimizer/Analysis/RCIdentityAnalysis.h"
#include "swift/SILOptimizer/PassManager/Passes.h"
#include "swift/SILOptimizer/PassManager/Transforms.h"
#include "swift/SILOptimizer/Utils/CFG.h"
#include "swift/SILOptimizer/Utils/Local.h"
#include "swift/SILOptimizer/Utils/SILSSAUpdater.h"
#include "swift/SIL/Dominance.h"
#include "swift/SIL/PatternMatch.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/InstructionUtils.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
#include "llvm/Support/CommandLine.h"
using namespace swift;
using namespace PatternMatch;
static llvm::cl::opt<bool> ShouldReportBoundsChecks("sil-abcopts-report",
llvm::cl::init(false));
static llvm::cl::opt<bool> EnableABCOpts("enable-abcopts",
llvm::cl::init(true));
static llvm::cl::opt<bool> EnableABCHoisting("enable-abc-hoisting",
llvm::cl::init(true));
using ArraySet = llvm::SmallPtrSet<SILValue, 16>;
// A pair of the array pointer and the array check kind (kCheckIndex or
// kCheckSubscript).
using ArrayAccessDesc = llvm::PointerIntPair<ValueBase *, 1, bool>;
using IndexedArraySet = llvm::DenseSet<std::pair<ValueBase *, ArrayAccessDesc>>;
using InstructionSet = llvm::SmallPtrSet<SILInstruction *, 16>;
/// The effect an instruction can have on array bounds.
enum class ArrayBoundsEffect {
kNone = 0,
kMayChangeArg, // Can only change the array argument.
kMayChangeAny // Might change any array.
};
static SILValue getArrayStructPointer(ArrayCallKind K, SILValue Array) {
assert(K != ArrayCallKind::kNone);
if (K < ArrayCallKind::kMakeMutable) {
auto LI = dyn_cast<LoadInst>(Array);
if (!LI) {
return Array;
}
return LI->getOperand();
}
return Array;
}
/// Check whether the store is to the address obtained from a getElementAddress
/// semantic call.
/// %40 = function_ref @getElementAddress
/// %42 = apply %40(%28, %37)
/// %43 = struct_extract %42
/// %44 = pointer_to_address strict %43
/// store %1 to %44 : $*Int
static bool isArrayEltStore(StoreInst *SI) {
// Strip the MarkDependenceInst (new array implementation) where the above
// pattern looks like the following.
// %40 = function_ref @getElementAddress
// %41 = apply %40(%21, %35)
// %42 = struct_element_addr %0 : $*Array<Int>, #Array._buffer
// %43 = struct_element_addr %42 : $*_ArrayBuffer<Int>, #_ArrayBuffer._storage
// %44 = struct_element_addr %43 : $*_BridgeStorage
// %45 = load %44 : $*Builtin.BridgeObject
// %46 = unchecked_ref_cast %45 : $... to $_ContiguousArrayStorageBase
// %47 = unchecked_ref_cast %46 : $... to $Builtin.NativeObject
// %48 = struct_extract %41 : $..., #UnsafeMutablePointer._rawValue
// %49 = pointer_to_address %48 : $Builtin.RawPointer to strict $*Int
// %50 = mark_dependence %49 : $*Int on %47 : $Builtin.NativeObject
// store %1 to %50 : $*Int
SILValue Dest = SI->getDest();
if (auto *MD = dyn_cast<MarkDependenceInst>(Dest))
Dest = MD->getOperand(0);
if (auto *PtrToAddr =
dyn_cast<PointerToAddressInst>(stripAddressProjections(Dest)))
if (auto *SEI = dyn_cast<StructExtractInst>(PtrToAddr->getOperand())) {
ArraySemanticsCall Call(SEI->getOperand());
if (Call && Call.getKind() == ArrayCallKind::kGetElementAddress)
return true;
}
return false;
}
static bool isReleaseSafeArrayReference(SILValue Ref,
ArraySet &ReleaseSafeArrayReferences,
RCIdentityFunctionInfo *RCIA) {
auto RefRoot = RCIA->getRCIdentityRoot(Ref);
if (ReleaseSafeArrayReferences.count(RefRoot))
return true;
RefRoot = getArrayStructPointer(ArrayCallKind::kCheckIndex, RefRoot);
return ReleaseSafeArrayReferences.count(RefRoot);
}
/// Determines the kind of array bounds effect the instruction can have.
static ArrayBoundsEffect
mayChangeArraySize(SILInstruction *I, ArrayCallKind &Kind, SILValue &Array,
ArraySet &ReleaseSafeArrayReferences,
RCIdentityFunctionInfo *RCIA) {
Array = SILValue();
Kind = ArrayCallKind::kNone;
// TODO: What else.
if (isa<StrongRetainInst>(I) || isa<RetainValueInst>(I) ||
isa<CondFailInst>(I) || isa<DeallocStackInst>(I) ||
isa<AllocationInst>(I))
return ArrayBoundsEffect::kNone;
// A retain on an arbitrary class can have sideeffects because of the deinit
// function.
if (auto SR = dyn_cast<StrongReleaseInst>(I))
return isReleaseSafeArrayReference(SR->getOperand(),
ReleaseSafeArrayReferences, RCIA)
? ArrayBoundsEffect::kNone
: ArrayBoundsEffect::kMayChangeAny;
if (auto RV = dyn_cast<ReleaseValueInst>(I))
return isReleaseSafeArrayReference(RV->getOperand(),
ReleaseSafeArrayReferences, RCIA)
? ArrayBoundsEffect::kNone
: ArrayBoundsEffect::kMayChangeAny;
// Check array bounds semantic.
ArraySemanticsCall ArrayCall(I);
Kind = ArrayCall.getKind();
if (Kind != ArrayCallKind::kNone) {
if (Kind < ArrayCallKind::kMutateUnknown) {
// These methods are not mutating and pass the array owned. Therefore we
// will potentially see a load of the array struct if there are mutating
// functions in the loop on the same array.
Array = getArrayStructPointer(Kind, ArrayCall.getSelf());
return ArrayBoundsEffect::kNone;
} else if (Kind >= ArrayCallKind::kArrayInit)
return ArrayBoundsEffect::kMayChangeAny;
Array = ArrayCall.getSelf();
return ArrayBoundsEffect::kMayChangeArg;
}
if (!I->mayHaveSideEffects())
return ArrayBoundsEffect::kNone;
// A store to an alloc_stack can't possibly store to the array size which is
// stored in a runtime allocated object sub field of an alloca.
if (auto *SI = dyn_cast<StoreInst>(I)) {
auto Ptr = SI->getDest();
return isa<AllocStackInst>(Ptr) || isArrayEltStore(SI)
? ArrayBoundsEffect::kNone
: ArrayBoundsEffect::kMayChangeAny;
}
return ArrayBoundsEffect::kMayChangeAny;
}
/// Two allocations of a mutable array struct cannot reference the same
/// storage after modification. So we can treat them as not aliasing for the
/// purpose of bound checking. The change would only be tracked through one of
/// the allocations.
static bool isIdentifiedUnderlyingArrayObject(SILValue V) {
// Allocations are safe.
if (isa<AllocationInst>(V))
return true;
// Function arguments are safe.
if (auto Arg = dyn_cast<SILArgument>(V))
return Arg->isFunctionArg();
return false;
}
/// Array bounds check analysis finds array bounds checks that are safe to
/// eliminate if there exists an earlier bounds check that covers the same
/// index.
///
/// We analyse a region of code for instructions that mayModify the size of an
/// array whenever we encounter an instruction that mayModify a specific array
/// or all arrays we clear the safe arrays (either a specific array or all of
/// them).
///
/// We classify instructions wrt to their effect on arrays. We are conservative,
/// any instruction that may write the size of an array (ie. an unidentified
/// store) is classified as mayModify.
///
/// Arrays are identified by their 'underlying' pointer to the array structure
/// which must either be an alloc_stack or a function argument.
///
/// Because size modifying instructions would create a copy of the storage this
/// is sufficient for the purpose of eliminating potential aliasing.
///
class ABCAnalysis {
// List of arrays in memory which are unsafe.
ArraySet UnsafeArrays;
// If true, all arrays in memory are considered to be unsafe. In this case the
// list in UnsafeArrays is not relevant.
bool allArraysInMemoryAreUnsafe;
ArraySet &ReleaseSafeArrayReferences;
RCIdentityFunctionInfo *RCIA;
bool LoopMode;
public:
ABCAnalysis(bool loopMode, ArraySet &ReleaseSafe,
RCIdentityFunctionInfo *rcia)
: allArraysInMemoryAreUnsafe(false),
ReleaseSafeArrayReferences(ReleaseSafe), RCIA(rcia),
LoopMode(loopMode) {}
ABCAnalysis(const ABCAnalysis &) = delete;
ABCAnalysis &operator=(const ABCAnalysis &) = delete;
/// Find safe array bounds check in a loop. A bounds_check is safe if no size
/// modifying instruction to the same array has been seen so far.
///
/// The code relies on isIdentifiedUnderlyingArrayObject' to make sure that a
/// 'safe arrays' is not aliased.
/// If an instruction is encountered that might modify any array this method
/// stops further analysis and returns false. Otherwise, true is returned and
/// the safe arrays can be queried.
void analyseBlock(SILBasicBlock *BB) {
for (auto &Inst : *BB)
analyseInstruction(&Inst);
}
/// Returns false if the instruction may change the size of any array. All
/// redundant safe array accesses seen up to the instruction can be removed.
void analyse(SILInstruction *I) {
assert(!LoopMode &&
"This function can only be used in on cfg without loops");
(void)LoopMode;
analyseInstruction(I);
}
/// Returns true if the Array is unsafe.
bool isUnsafe(SILValue Array) const {
return allArraysInMemoryAreUnsafe || UnsafeArrays.count(Array) != 0;
}
/// Returns true if all arrays in memory are considered to be unsafe and
/// clears this flag.
bool clearArraysUnsafeFlag() {
bool arraysUnsafe = allArraysInMemoryAreUnsafe;
allArraysInMemoryAreUnsafe = false;
return arraysUnsafe;
}
private:
/// Analyse one instruction wrt. the instructions we have seen so far.
void analyseInstruction(SILInstruction *Inst) {
SILValue Array;
ArrayCallKind K;
auto BoundsEffect =
mayChangeArraySize(Inst, K, Array, ReleaseSafeArrayReferences, RCIA);
if (BoundsEffect == ArrayBoundsEffect::kMayChangeAny) {
DEBUG(llvm::dbgs() << " no safe because kMayChangeAny " << *Inst);
allArraysInMemoryAreUnsafe = true;
// No need to store specific arrays in this case.
UnsafeArrays.clear();
return;
}
assert(Array ||
K == ArrayCallKind::kNone &&
"Need to have an array for array semantic functions");
// We need to make sure that the array container is not aliased in ways
// that we don't understand.
if (Array && !isIdentifiedUnderlyingArrayObject(Array)) {
DEBUG(llvm::dbgs()
<< " not safe because of not identified underlying object "
<< *Array << " in " << *Inst);
allArraysInMemoryAreUnsafe = true;
// No need to store specific arrays in this case.
UnsafeArrays.clear();
return;
}
if (BoundsEffect == ArrayBoundsEffect::kMayChangeArg) {
UnsafeArrays.insert(Array);
return;
}
assert(BoundsEffect == ArrayBoundsEffect::kNone);
}
};
// Get the pair of array and index. Because we want to disambiguate between the
// two types of check bounds checks merge in the type into the lower bit of one
// of the addresse index.
static std::pair<ValueBase *, ArrayAccessDesc>
getArrayIndexPair(SILValue Array, SILValue ArrayIndex, ArrayCallKind K) {
assert((K == ArrayCallKind::kCheckIndex ||
K == ArrayCallKind::kCheckSubscript) &&
"Must be a bounds check call");
return std::make_pair(
Array,
ArrayAccessDesc(ArrayIndex, K == ArrayCallKind::kCheckIndex));
}
/// Remove redundant checks in a basic block. This pass will reset the state
/// after an instruction that may modify any array allowing removal of redundant
/// checks up to that point and after that point.
static bool removeRedundantChecksInBlock(SILBasicBlock &BB, ArraySet &Arrays,
RCIdentityFunctionInfo *RCIA) {
ABCAnalysis ABC(false, Arrays, RCIA);
IndexedArraySet RedundantChecks;
bool Changed = false;
DEBUG(llvm::dbgs() << "Removing in BB\n");
DEBUG(BB.dump());
// Process all instructions in the current block.
for (auto Iter = BB.begin(); Iter != BB.end();) {
auto Inst = &*Iter;
++Iter;
ABC.analyse(Inst);
if (ABC.clearArraysUnsafeFlag()) {
// Any array may be modified -> forget everything. This is just a
// shortcut to the isUnsafe test for a specific array below.
RedundantChecks.clear();
continue;
}
// Is this a check_bounds.
ArraySemanticsCall ArrayCall(Inst);
auto Kind = ArrayCall.getKind();
if (Kind != ArrayCallKind::kCheckSubscript &&
Kind != ArrayCallKind::kCheckIndex) {
DEBUG(llvm::dbgs() << " not a check_bounds call " << *Inst);
continue;
}
auto Array = ArrayCall.getSelf();
// Get the underlying array pointer.
Array = getArrayStructPointer(Kind, Array);
// Is this an unsafe array whose size could have been changed?
if (ABC.isUnsafe(Array)) {
DEBUG(llvm::dbgs() << " not a safe array argument " << *Array);
continue;
}
// Get the array index.
auto ArrayIndex = ArrayCall.getIndex();
if (!ArrayIndex)
continue;
auto IndexedArray =
getArrayIndexPair(Array, ArrayIndex, Kind);
DEBUG(llvm::dbgs() << " IndexedArray: " << *Array << " and "
<< *ArrayIndex);
// Saw a check for the first time.
if (!RedundantChecks.count(IndexedArray)) {
DEBUG(llvm::dbgs() << " first time: " << *Inst
<< " with array argument: " << *Array);
RedundantChecks.insert(IndexedArray);
continue;
}
// Remove the bounds check.
ArrayCall.removeCall();
Changed = true;
}
return Changed;
}
/// Walk down the dominator tree inside the loop, removing redundant checks.
static bool removeRedundantChecks(DominanceInfoNode *CurBB,
ABCAnalysis &ABC,
IndexedArraySet &DominatingSafeChecks,
SILLoop *Loop) {
auto *BB = CurBB->getBlock();
if (!Loop->contains(BB))
return false;
bool Changed = false;
// When we come back from the dominator tree recursion we need to remove
// checks that we have seen for the first time.
SmallVector<std::pair<ValueBase *, ArrayAccessDesc>, 8> SafeChecksToPop;
// Process all instructions in the current block.
for (auto Iter = BB->begin(); Iter != BB->end();) {
auto Inst = &*Iter;
++Iter;
// Is this a check_bounds.
ArraySemanticsCall ArrayCall(Inst);
auto Kind = ArrayCall.getKind();
if (Kind != ArrayCallKind::kCheckSubscript &&
Kind != ArrayCallKind::kCheckIndex) {
DEBUG(llvm::dbgs() << " not a check_bounds call " << *Inst);
continue;
}
auto Array = ArrayCall.getSelf();
// Get the underlying array pointer.
Array = getArrayStructPointer(Kind, Array);
// Is this an unsafe array whose size could have been changed?
if (ABC.isUnsafe(Array)) {
DEBUG(llvm::dbgs() << " not a safe array argument " << *Array);
continue;
}
// Get the array index.
auto ArrayIndex = ArrayCall.getIndex();
if (!ArrayIndex)
continue;
auto IndexedArray =
getArrayIndexPair(Array, ArrayIndex, Kind);
// Saw a check for the first time.
if (!DominatingSafeChecks.count(IndexedArray)) {
DEBUG(llvm::dbgs() << " first time: " << *Inst
<< " with array arg: " << *Array);
DominatingSafeChecks.insert(IndexedArray);
SafeChecksToPop.push_back(IndexedArray);
continue;
}
// Remove the bounds check.
ArrayCall.removeCall();
Changed = true;
}
// Traverse the children in the dominator tree inside the loop.
for (auto Child: *CurBB)
Changed |=
removeRedundantChecks(Child, ABC, DominatingSafeChecks, Loop);
// Remove checks we have seen for the first time.
std::for_each(SafeChecksToPop.begin(), SafeChecksToPop.end(),
[&](std::pair<ValueBase *, ArrayAccessDesc> &V) {
DominatingSafeChecks.erase(V);
});
return Changed;
}
static CondFailInst *hasCondFailUse(SILInstruction *I) {
for (auto *Op : I->getUses())
if (auto C = dyn_cast<CondFailInst>(Op->getUser()))
return C;
return nullptr;
}
/// Checks whether the apply instruction is checked for overflow by looking for
/// a cond_fail on the second result.
static CondFailInst *isOverflowChecked(BuiltinInst *AI) {
for (auto *Op : AI->getUses()) {
if (!match(Op->getUser(), m_TupleExtractInst(m_ValueBase(), 1)))
continue;
TupleExtractInst *TEI = cast<TupleExtractInst>(Op->getUser());
if (CondFailInst *C = hasCondFailUse(TEI))
return C;
}
return nullptr;
}
/// Look for checks that guarantee that start is less than or equal to end.
static bool isSignedLessEqual(SILValue Start, SILValue End, SILBasicBlock &BB) {
// If we have an inclusive range "low...up" the loop exit count will be
// "up + 1" but the overflow check is on "up".
SILValue PreInclusiveEnd;
if (!match(
End,
m_TupleExtractInst(m_ApplyInst(BuiltinValueKind::SAddOver,
m_SILValue(PreInclusiveEnd), m_One()),
0)))
PreInclusiveEnd = SILValue();
bool IsPreInclusiveEndLEQ = false;
bool IsPreInclusiveEndGTEnd = false;
for (auto &Inst : BB)
if (auto CF = dyn_cast<CondFailInst>(&Inst)) {
// Try to match a cond_fail on "XOR , (SLE Start, End), 1".
if (match(CF->getOperand(),
m_ApplyInst(BuiltinValueKind::Xor,
m_ApplyInst(BuiltinValueKind::ICMP_SLE,
m_Specific(Start),
m_Specific(End)),
m_One())))
return true;
// Inclusive ranges will have a check on the upper value (before adding
// one).
if (PreInclusiveEnd) {
if (match(CF->getOperand(),
m_ApplyInst(BuiltinValueKind::Xor,
m_ApplyInst(BuiltinValueKind::ICMP_SLE,
m_Specific(Start),
m_Specific(PreInclusiveEnd)),
m_One())))
IsPreInclusiveEndLEQ = true;
if (match(CF->getOperand(),
m_ApplyInst(BuiltinValueKind::Xor,
m_ApplyInst(BuiltinValueKind::ICMP_SGT,
m_Specific(End),
m_Specific(PreInclusiveEnd)),
m_One())))
IsPreInclusiveEndGTEnd = true;
if (IsPreInclusiveEndLEQ && IsPreInclusiveEndGTEnd)
return true;
}
}
return false;
}
static bool isLessThan(SILValue Start, SILValue End) {
auto S = dyn_cast<IntegerLiteralInst>(Start);
if (!S)
return false;
auto E = dyn_cast<IntegerLiteralInst>(End);
if (!E)
return false;
return S->getValue().slt(E->getValue());
}
static BuiltinValueKind swapCmpID(BuiltinValueKind ID) {
switch (ID) {
case BuiltinValueKind::ICMP_EQ: return BuiltinValueKind::ICMP_EQ;
case BuiltinValueKind::ICMP_NE: return BuiltinValueKind::ICMP_NE;
case BuiltinValueKind::ICMP_SLE: return BuiltinValueKind::ICMP_SGE;
case BuiltinValueKind::ICMP_SLT: return BuiltinValueKind::ICMP_SGT;
case BuiltinValueKind::ICMP_SGE: return BuiltinValueKind::ICMP_SLE;
case BuiltinValueKind::ICMP_SGT: return BuiltinValueKind::ICMP_SLT;
case BuiltinValueKind::ICMP_ULE: return BuiltinValueKind::ICMP_UGE;
case BuiltinValueKind::ICMP_ULT: return BuiltinValueKind::ICMP_UGT;
case BuiltinValueKind::ICMP_UGE: return BuiltinValueKind::ICMP_ULE;
case BuiltinValueKind::ICMP_UGT: return BuiltinValueKind::ICMP_ULT;
default:
return ID;
}
}
static BuiltinValueKind invertCmpID(BuiltinValueKind ID) {
switch (ID) {
case BuiltinValueKind::ICMP_EQ: return BuiltinValueKind::ICMP_NE;
case BuiltinValueKind::ICMP_NE: return BuiltinValueKind::ICMP_EQ;
case BuiltinValueKind::ICMP_SLE: return BuiltinValueKind::ICMP_SGT;
case BuiltinValueKind::ICMP_SLT: return BuiltinValueKind::ICMP_SGE;
case BuiltinValueKind::ICMP_SGE: return BuiltinValueKind::ICMP_SLT;
case BuiltinValueKind::ICMP_SGT: return BuiltinValueKind::ICMP_SLE;
case BuiltinValueKind::ICMP_ULE: return BuiltinValueKind::ICMP_UGT;
case BuiltinValueKind::ICMP_ULT: return BuiltinValueKind::ICMP_UGE;
case BuiltinValueKind::ICMP_UGE: return BuiltinValueKind::ICMP_ULT;
case BuiltinValueKind::ICMP_UGT: return BuiltinValueKind::ICMP_ULE;
default:
return ID;
}
}
/// Checks if Start to End is the range of 0 to the count of an array.
/// Returns the array is this is the case.
static SILValue getZeroToCountArray(SILValue Start, SILValue End) {
auto *IL = dyn_cast<IntegerLiteralInst>(Start);
if (!IL || IL->getValue() != 0)
return SILValue();
auto *SEI = dyn_cast<StructExtractInst>(End);
if (!SEI)
return SILValue();
ArraySemanticsCall SemCall(SEI->getOperand());
if (SemCall.getKind() != ArrayCallKind::kGetCount)
return SILValue();
return SemCall.getSelf();
}
/// Checks whether the cond_br in the preheader's predecessor ensures that the
/// loop is only executed if "Start < End".
static bool isLessThanCheck(SILValue Start, SILValue End,
CondBranchInst *CondBr, SILBasicBlock *Preheader) {
BuiltinInst *BI = dyn_cast<BuiltinInst>(CondBr->getCondition());
if (!BI)
return false;
BuiltinValueKind Id = BI->getBuiltinInfo().ID;
if (BI->getNumOperands() != 2)
return false;
SILValue LeftArg = BI->getOperand(0);
SILValue RightArg = BI->getOperand(1);
if (RightArg == Start) {
std::swap(LeftArg, RightArg);
Id = swapCmpID(Id);
}
if (LeftArg != Start || RightArg != End)
return false;
if (CondBr->getTrueBB() != Preheader) {
assert(CondBr->getFalseBB() == Preheader);
Id = invertCmpID(Id);
}
switch (Id) {
case BuiltinValueKind::ICMP_SLT:
case BuiltinValueKind::ICMP_ULT:
return true;
case BuiltinValueKind::ICMP_NE:
// Special case: if it is a 0-to-count loop, we know that the count cannot
// be negative. In this case the 'Start < End' check can also be done with
// 'count != 0'.
if (getZeroToCountArray(Start, End))
return true;
return false;
default:
return false;
}
}
/// Checks whether there are checks in the preheader's predecessor that ensure
/// that "Start < End".
static bool isRangeChecked(SILValue Start, SILValue End,
SILBasicBlock *Preheader, DominanceInfo *DT) {
// Check two constants.
if (isLessThan(Start, End))
return true;
// Look for a branch on EQ around the Preheader.
auto *PreheaderPred = Preheader->getSinglePredecessor();
if (!PreheaderPred)
return false;
auto *CondBr = dyn_cast<CondBranchInst>(PreheaderPred->getTerminator());
if (!CondBr)
return false;
if (isLessThanCheck(Start, End, CondBr, Preheader))
return true;
// Walk up the dominator tree looking for a range check ("SLE Start, End").
DominanceInfoNode *CurDTNode = DT->getNode(PreheaderPred);
while (CurDTNode) {
if (isSignedLessEqual(Start, End, *CurDTNode->getBlock()))
return true;
CurDTNode = CurDTNode->getIDom();
}
return false;
}
static bool dominates(DominanceInfo *DT, SILValue V, SILBasicBlock *B) {
if (auto ValueBB = V->getParentBB())
return DT->dominates(ValueBB, B);
return false;
}
/// Subtract a constant from a builtin integer value.
static SILValue getSub(SILLocation Loc, SILValue Val, unsigned SubVal,
SILBuilder &B) {
SmallVector<SILValue, 4> Args(1, Val);
Args.push_back(B.createIntegerLiteral(Loc, Val->getType(), SubVal));
Args.push_back(B.createIntegerLiteral(
Loc, SILType::getBuiltinIntegerType(1, B.getASTContext()), -1));
auto *AI = B.createBuiltinBinaryFunctionWithOverflow(
Loc, "ssub_with_overflow", Args);
return B.createTupleExtract(Loc, AI, 0);
}
/// A canonical induction variable incremented by one from Start to End-1.
struct InductionInfo {
SILArgument *HeaderVal;
BuiltinInst *Inc;
SILValue Start;
SILValue End;
BuiltinValueKind Cmp;
bool IsOverflowCheckInserted;
InductionInfo()
: Cmp(BuiltinValueKind::None), IsOverflowCheckInserted(false) {}
InductionInfo(SILArgument *HV, BuiltinInst *I, SILValue S, SILValue E,
BuiltinValueKind C, bool IsOverflowChecked = false)
: HeaderVal(HV), Inc(I), Start(S), End(E), Cmp(C),
IsOverflowCheckInserted(IsOverflowChecked) {}
bool isValid() { return Start && End; }
operator bool() { return isValid(); }
SILInstruction *getInstruction() { return Inc; }
SILValue getFirstValue() {
return Start;
}
SILValue getLastValue(SILLocation &Loc, SILBuilder &B) {
return getSub(Loc, End, 1, B);
}
/// If necessary insert an overflow for this induction variable.
/// If we compare for equality we need to make sure that the range does wrap.
/// We would have trapped either when overflowing or when accessing an array
/// out of bounds in the original loop.
/// Returns true if an overflow check was inserted.
bool checkOverflow(SILBuilder &Builder) {
if (IsOverflowCheckInserted || Cmp != BuiltinValueKind::ICMP_EQ)
return false;
auto Loc = Inc->getLoc();
auto ResultTy = SILType::getBuiltinIntegerType(1, Builder.getASTContext());
auto *CmpSGE = Builder.createBuiltinBinaryFunction(
Loc, "cmp_sge", Start->getType(), ResultTy, {Start, End});
Builder.createCondFail(Loc, CmpSGE);
IsOverflowCheckInserted = true;
// We can now remove the cond fail on the increment the above comparison
// guarantees that the addition won't overflow.
auto *CondFail = isOverflowChecked(cast<BuiltinInst>(Inc));
if (CondFail)
CondFail->eraseFromParent();
return true;
}
};
/// Analyse canonical induction variables in a loop to find their start and end
/// values.
/// At the moment we only handle very simple induction variables that increment
/// by one and use equality comparison.
class InductionAnalysis {
using InductionInfoMap = llvm::DenseMap<SILArgument *, InductionInfo *>;
DominanceInfo *DT;
SILBasicBlock *Preheader;
SILBasicBlock *Header;
SILBasicBlock *ExitingBlk;
SILBasicBlock *ExitBlk;
IVInfo &IVs;
InductionInfoMap Map;
llvm::SpecificBumpPtrAllocator<InductionInfo> Allocator;
public:
InductionAnalysis(DominanceInfo *D, IVInfo &IVs, SILBasicBlock *Preheader,
SILBasicBlock *Header, SILBasicBlock *ExitingBlk,
SILBasicBlock *ExitBlk)
: DT(D), Preheader(Preheader), Header(Header), ExitingBlk(ExitingBlk),
ExitBlk(ExitBlk), IVs(IVs) {}
InductionAnalysis(const InductionAnalysis &) = delete;
InductionAnalysis &operator=(const InductionAnalysis &) = delete;
bool analyse() {
bool FoundIndVar = false;
for (auto *Arg : Header->getBBArgs()) {
// Look for induction variables.
IVInfo::IVDesc IV;
if (!(IV = IVs.getInductionDesc(Arg))) {
DEBUG(llvm::dbgs() << " not an induction variable: " << *Arg);
continue;
}
InductionInfo *Info;
if (!(Info = analyseIndVar(Arg, IV.Inc, IV.IncVal))) {
DEBUG(llvm::dbgs() << " could not analyse the induction on: " << *Arg);
continue;
}
DEBUG(llvm::dbgs() << " found an induction variable: " << *Arg);
FoundIndVar = true;
Map[Arg] = Info;
}
return FoundIndVar;
}
InductionInfo *operator[](SILArgument *A) {
InductionInfoMap::iterator It = Map.find(A);
if (It == Map.end())
return nullptr;
return It->second;
}
private:
/// Analyse one potential induction variable starting at Arg.
InductionInfo *analyseIndVar(SILArgument *HeaderVal, BuiltinInst *Inc,
IntegerLiteralInst *IncVal) {
if (IncVal->getValue() != 1)
return nullptr;
// Find the start value.
auto *PreheaderTerm = dyn_cast<BranchInst>(Preheader->getTerminator());
if (!PreheaderTerm)
return nullptr;
auto Start = PreheaderTerm->getArg(HeaderVal->getIndex());
// Find the exit condition.
auto CondBr = dyn_cast<CondBranchInst>(ExitingBlk->getTerminator());
if (!CondBr)
return nullptr;
if (ExitBlk == CondBr->getFalseBB())
return nullptr;
assert(ExitBlk == CondBr->getTrueBB() &&
"The loop's exiting blocks terminator must exit");
auto Cond = CondBr->getCondition();
SILValue End;
// Look for a compare of induction variable + 1.
// TODO: obviously we need to handle many more patterns.
if (!match(Cond, m_ApplyInst(BuiltinValueKind::ICMP_EQ,
m_TupleExtractInst(m_Specific(Inc), 0),
m_SILValue(End))) &&
!match(Cond,
m_ApplyInst(BuiltinValueKind::ICMP_EQ, m_SILValue(End),
m_TupleExtractInst(m_Specific(Inc), 0)))) {
DEBUG(llvm::dbgs() << " found no exit condition\n");
return nullptr;
}
// Make sure our end value is loop invariant.
if (!dominates(DT, End, Preheader))
return nullptr;
DEBUG(llvm::dbgs() << " found an induction variable (ICMP_EQ): "
<< *HeaderVal << " start: " << *Start
<< " end: " << *End);
// Check whether the addition is overflow checked by a cond_fail or whether
// code in the preheader's predecessor ensures that we won't overflow.
bool IsRangeChecked = false;
if (!isOverflowChecked(Inc)) {
IsRangeChecked = isRangeChecked(Start, End, Preheader, DT);
if (!IsRangeChecked)
return nullptr;
}
return new (Allocator.Allocate()) InductionInfo(
HeaderVal, Inc, Start, End, BuiltinValueKind::ICMP_EQ, IsRangeChecked);
}
};
/// A block in the loop is guaranteed to be executed if it dominates the single
/// exiting block.
static bool isGuaranteedToBeExecuted(DominanceInfo *DT, SILBasicBlock *Block,
SILBasicBlock *SingleExitingBlk) {
// If there are multiple exiting blocks then no block in the loop is
// guaranteed to be executed in _all_ iterations until the upper bound of the
// induction variable is reached.
if (!SingleExitingBlk)
return false;
return DT->dominates(Block, SingleExitingBlk);
}
/// Describes the access function "a[f(i)]" that is based on a canonical
/// induction variable.
class AccessFunction {
InductionInfo *Ind;
AccessFunction(InductionInfo *I) { Ind = I; }
public:
operator bool() { return Ind != nullptr; }
static AccessFunction getLinearFunction(SILValue Idx,
InductionAnalysis &IndVars) {
// Match the actual induction variable buried in the integer struct.
// %2 = struct $Int(%1 : $Builtin.Word)
// = apply %check_bounds(%array, %2) : $@convention(thin) (Int, ArrayInt) -> ()
auto ArrayIndexStruct = dyn_cast<StructInst>(Idx);
if (!ArrayIndexStruct)
return nullptr;
auto AsArg =
dyn_cast<SILArgument>(ArrayIndexStruct->getElements()[0]);
if (!AsArg)
return nullptr;
if (auto *Ind = IndVars[AsArg])
return AccessFunction(Ind);
return nullptr;
}
/// Returns true if the loop iterates from 0 until count of \p Array.
bool isZeroToCount(SILValue Array) {
return getZeroToCountArray(Ind->Start, Ind->End) == Array;
}
/// Hoists the necessary check for beginning and end of the induction
/// encapsulated by this access function to the header.
void hoistCheckToPreheader(ArraySemanticsCall CheckToHoist,
SILBasicBlock *Preheader,
DominanceInfo *DT) {
ApplyInst *AI = CheckToHoist;
SILLocation Loc = AI->getLoc();
SILBuilderWithScope Builder(Preheader->getTerminator(), AI);
// Get the first induction value.
auto FirstVal = Ind->getFirstValue();
// Clone the struct for the start index.
auto Start = cast<SILInstruction>(CheckToHoist.getIndex())
->clone(Preheader->getTerminator());
// Set the new start index to the first value of the induction.
Start->setOperand(0, FirstVal);
// Clone and fixup the load, retain sequence to the header.
auto NewCheck = CheckToHoist.copyTo(Preheader->getTerminator(), DT);
NewCheck->setOperand(1, Start);
// Get the last induction value.
auto LastVal = Ind->getLastValue(Loc, Builder);
// Clone the struct for the end index.
auto End = cast<SILInstruction>(CheckToHoist.getIndex())
->clone(Preheader->getTerminator());
// Set the new end index to the last value of the induction.
End->setOperand(0, LastVal);
NewCheck = CheckToHoist.copyTo(Preheader->getTerminator(), DT);
NewCheck->setOperand(1, End);
}
};
static bool hasArrayType(SILValue Value, SILModule &M) {
return Value->getType().getNominalOrBoundGenericNominal() ==
M.getASTContext().getArrayDecl();
}
/// Hoist bounds check in the loop to the loop preheader.
static bool hoistChecksInLoop(DominanceInfo *DT, DominanceInfoNode *DTNode,
ABCAnalysis &ABC, InductionAnalysis &IndVars,
SILBasicBlock *Preheader, SILBasicBlock *Header,
SILBasicBlock *SingleExitingBlk) {
bool Changed = false;
auto *CurBB = DTNode->getBlock();
bool blockAlwaysExecutes = isGuaranteedToBeExecuted(DT, CurBB,
SingleExitingBlk);
for (auto Iter = CurBB->begin(); Iter != CurBB->end();) {
auto Inst = &*Iter;
++Iter;
ArraySemanticsCall ArrayCall(Inst);
auto Kind = ArrayCall.getKind();
if (Kind != ArrayCallKind::kCheckSubscript &&
Kind != ArrayCallKind::kCheckIndex) {
DEBUG(llvm::dbgs() << " not a check_bounds call " << *Inst);
continue;
}
auto ArrayVal = ArrayCall.getSelf();
// Get the underlying array pointer.
SILValue Array = getArrayStructPointer(Kind, ArrayVal);
// The array must strictly dominate the header.
if (!dominates(DT, Array, Preheader)) {
DEBUG(llvm::dbgs() << " does not dominated header" << *Array);
continue;
}
// Is this a safe array whose size could not have changed?