-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathGenArchetype.cpp
472 lines (404 loc) · 18.3 KB
/
GenArchetype.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
//===--- GenArchetype.cpp - Swift IR Generation for Archetype Types -------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements IR generation for archetype types in Swift.
//
//===----------------------------------------------------------------------===//
#include "GenArchetype.h"
#include "swift/AST/ASTContext.h"
#include "swift/AST/Types.h"
#include "swift/AST/Decl.h"
#include "swift/SIL/SILValue.h"
#include "swift/SIL/TypeLowering.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Module.h"
#include "EnumPayload.h"
#include "Explosion.h"
#include "FixedTypeInfo.h"
#include "GenClass.h"
#include "GenHeap.h"
#include "GenMeta.h"
#include "GenOpaque.h"
#include "GenPoly.h"
#include "GenProto.h"
#include "GenType.h"
#include "HeapTypeInfo.h"
#include "IRGenDebugInfo.h"
#include "IRGenFunction.h"
#include "IRGenModule.h"
#include "Linking.h"
#include "ProtocolInfo.h"
#include "ResilientTypeInfo.h"
#include "TypeInfo.h"
#include "WeakTypeInfo.h"
using namespace swift;
using namespace irgen;
llvm::Value *irgen::emitArchetypeTypeMetadataRef(IRGenFunction &IGF,
CanArchetypeType archetype) {
// Check for an existing cache entry.
auto localDataKind = LocalTypeDataKind::forTypeMetadata();
auto metadata = IGF.tryGetLocalTypeData(archetype, localDataKind);
// If that's not present, this must be an associated type.
if (!metadata) {
assert(!archetype->isPrimary() &&
"type metadata for primary archetype was not bound in context");
CanArchetypeType parent(archetype->getParent());
metadata = emitAssociatedTypeMetadataRef(IGF, parent,
archetype->getAssocType());
setTypeMetadataName(IGF.IGM, metadata, archetype);
IGF.setScopedLocalTypeData(archetype, localDataKind, metadata);
}
return metadata;
}
static bool declaresDirectConformance(AssociatedTypeDecl *associatedType,
ProtocolDecl *target) {
for (auto protocol : associatedType->getConformingProtocols(nullptr)) {
if (protocol == target)
return true;
}
return false;
}
static AssociatedTypeDecl *
findConformanceDeclaration(ArrayRef<ProtocolDecl*> conformsTo,
AssociatedTypeDecl *associatedType,
ProtocolDecl *target) {
// Fast path: this associated type declaration declares the
// desired conformance.
if (declaresDirectConformance(associatedType, target))
return associatedType;
// Otherwise, look at the conformance list.
for (auto source : conformsTo) {
// Do a lookup in this protocol.
auto results = source->lookupDirect(associatedType->getFullName());
for (auto lookupResult: results) {
if (auto sourceAssociatedType =
dyn_cast<AssociatedTypeDecl>(lookupResult)) {
if (declaresDirectConformance(sourceAssociatedType, target))
return sourceAssociatedType;
}
}
// Recurse into implied protocols.
if (auto result =
findConformanceDeclaration(source->getInheritedProtocols(nullptr),
associatedType, target)) {
return result;
}
}
// Give up.
return nullptr;
}
static IRGenFunction::ArchetypeAccessPath
findAccessPathDeclaringConformance(IRGenFunction &IGF,
CanArchetypeType archetype,
ProtocolDecl *protocol) {
// Consider all the associated type relationships we know about.
// Use the archetype's parent relationship first if possible.
if (!archetype->isPrimary()) {
auto parent = archetype.getParent();
auto association =
findConformanceDeclaration(parent->getConformsTo(),
archetype->getAssocType(), protocol);
if (association) return { parent, association };
}
for (auto accessPath : IGF.getArchetypeAccessPaths(archetype)) {
auto association =
findConformanceDeclaration(accessPath.BaseType->getConformsTo(),
accessPath.Association, protocol);
if (association) return { accessPath.BaseType, association };
}
llvm_unreachable("no relation found that declares conformance to target");
}
namespace {
/// Common type implementation details for all archetypes.
class ArchetypeTypeInfoBase {
protected:
unsigned NumStoredProtocols;
ProtocolEntry *StoredProtocolsBuffer;
ArchetypeTypeInfoBase(void *protocolsBuffer,
ArrayRef<ProtocolEntry> protocols)
: NumStoredProtocols(protocols.size()),
StoredProtocolsBuffer(reinterpret_cast<ProtocolEntry*>(protocolsBuffer))
{
for (unsigned i = 0, e = protocols.size(); i != e; ++i) {
::new (&StoredProtocolsBuffer[i]) ProtocolEntry(protocols[i]);
}
}
public:
unsigned getNumStoredProtocols() const {
return NumStoredProtocols;
}
ArrayRef<ProtocolEntry> getStoredProtocols() const {
return llvm::makeArrayRef(StoredProtocolsBuffer, getNumStoredProtocols());
}
/// Return the witness table that's been set for this type.
llvm::Value *getWitnessTable(IRGenFunction &IGF,
CanArchetypeType archetype,
unsigned which) const {
assert(which < getNumStoredProtocols());
auto protocol = archetype->getConformsTo()[which];
auto localDataKind =
LocalTypeDataKind::forAbstractProtocolWitnessTable(protocol);
// Check for an existing cache entry.
auto wtable = IGF.tryGetLocalTypeData(archetype, localDataKind);
if (wtable) return wtable;
// It can happen with class constraints that Sema will consider a
// constraint to be abstract, but the minimized signature will
// eliminate it as concrete. Handle this by performing a concrete
// lookup.
// TODO: maybe Sema shouldn't ever do this?
if (Type classBound = archetype->getSuperclass()) {
auto conformance =
IGF.IGM.getSwiftModule()->lookupConformance(classBound, protocol,
nullptr);
if (conformance && conformance->isConcrete()) {
return emitWitnessTableRef(IGF, archetype, *conformance);
}
}
// If that's not present, this conformance must be implied by some
// associated-type relationship.
auto accessPath =
findAccessPathDeclaringConformance(IGF, archetype, protocol);
// To do this, we need the metadata for the associated type.
auto associatedMetadata = emitArchetypeTypeMetadataRef(IGF, archetype);
CanArchetypeType parent = accessPath.BaseType;
AssociatedTypeDecl *association = accessPath.Association;
wtable = emitAssociatedTypeWitnessTableRef(IGF, parent, association,
associatedMetadata,
protocol);
setProtocolWitnessTableName(IGF.IGM, wtable, archetype, protocol);
IGF.setScopedLocalTypeData(archetype, localDataKind, wtable);
return wtable;
}
};
/// A type implementation for an ArchetypeType, otherwise known as a
/// type variable: for example, Self in a protocol declaration, or T
/// in a generic declaration like foo<T>(x : T) -> T. The critical
/// thing here is that performing an operation involving archetypes
/// is dependent on the witness binding we can see.
class OpaqueArchetypeTypeInfo
: public ResilientTypeInfo<OpaqueArchetypeTypeInfo>,
public ArchetypeTypeInfoBase
{
OpaqueArchetypeTypeInfo(llvm::Type *type,
ArrayRef<ProtocolEntry> protocols)
: ResilientTypeInfo(type),
ArchetypeTypeInfoBase(this + 1, protocols)
{}
public:
static const OpaqueArchetypeTypeInfo *create(llvm::Type *type,
ArrayRef<ProtocolEntry> protocols) {
void *buffer = operator new(sizeof(OpaqueArchetypeTypeInfo)
+ protocols.size() * sizeof(ProtocolEntry));
return ::new (buffer) OpaqueArchetypeTypeInfo(type, protocols);
}
};
/// A type implementation for a class archetype, that is, an archetype
/// bounded by a class protocol constraint. These archetypes can be
/// represented by a refcounted pointer instead of an opaque value buffer.
/// If ObjC interop is disabled, we can use Swift refcounting entry
/// points, otherwise we have to use the unknown ones.
class ClassArchetypeTypeInfo
: public HeapTypeInfo<ClassArchetypeTypeInfo>,
public ArchetypeTypeInfoBase
{
ReferenceCounting RefCount;
ClassArchetypeTypeInfo(llvm::PointerType *storageType,
Size size, const SpareBitVector &spareBits,
Alignment align,
ArrayRef<ProtocolEntry> protocols,
ReferenceCounting refCount)
: HeapTypeInfo(storageType, size, spareBits, align),
ArchetypeTypeInfoBase(this + 1, protocols),
RefCount(refCount)
{}
public:
static const ClassArchetypeTypeInfo *create(llvm::PointerType *storageType,
Size size, const SpareBitVector &spareBits,
Alignment align,
ArrayRef<ProtocolEntry> protocols,
ReferenceCounting refCount) {
void *buffer = operator new(sizeof(ClassArchetypeTypeInfo)
+ protocols.size() * sizeof(ProtocolEntry));
return ::new (buffer)
ClassArchetypeTypeInfo(storageType, size, spareBits, align,
protocols, refCount);
}
ReferenceCounting getReferenceCounting() const {
return RefCount;
}
};
} // end anonymous namespace
/// Return the ArchetypeTypeInfoBase information from the TypeInfo for any
/// archetype.
static const ArchetypeTypeInfoBase &
getArchetypeInfo(IRGenFunction &IGF, CanArchetypeType t, const TypeInfo &ti) {
if (t->requiresClass())
return ti.as<ClassArchetypeTypeInfo>();
return ti.as<OpaqueArchetypeTypeInfo>();
}
/// Emit a single protocol witness table reference.
llvm::Value *irgen::emitArchetypeWitnessTableRef(IRGenFunction &IGF,
CanArchetypeType archetype,
ProtocolDecl *proto) {
assert(Lowering::TypeConverter::protocolRequiresWitnessTable(proto) &&
"looking up witness table for protocol that doesn't have one");
// The following approach assumes that a protocol will only appear in
// an archetype's conformsTo array if the archetype is either explicitly
// constrained to conform to that protocol (in which case we should have
// a cache entry for it) or there's an associated type declaration with
// that protocol listed as a direct requirement.
// Check immediately for an existing cache entry.
auto wtable = IGF.tryGetLocalTypeData(archetype,
LocalTypeDataKind::forAbstractProtocolWitnessTable(proto));
if (wtable) return wtable;
// Otherwise, find the best path from one of the protocols directly
// conformed to by the protocol, then get that conformance.
// TODO: this isn't necessarily optimal if the direct conformance isn't
// concretely available; we really ought to be comparing the full paths
// to this conformance from concrete sources.
auto &archTI = getArchetypeInfo(IGF, archetype,
IGF.getTypeInfoForLowered(archetype));
wtable = emitImpliedWitnessTableRef(IGF, archTI.getStoredProtocols(), proto,
[&](unsigned originIndex) -> llvm::Value* {
return archTI.getWitnessTable(IGF, archetype, originIndex);
});
return wtable;
}
llvm::Value *irgen::emitAssociatedTypeMetadataRef(IRGenFunction &IGF,
CanArchetypeType origin,
AssociatedTypeDecl *associate) {
// Find the conformance of the origin to the associated type's protocol.
llvm::Value *wtable = emitArchetypeWitnessTableRef(IGF, origin,
associate->getProtocol());
// Find the origin's type metadata.
llvm::Value *originMetadata = emitArchetypeTypeMetadataRef(IGF, origin);
return emitAssociatedTypeMetadataRef(IGF, originMetadata, wtable, associate);
}
llvm::Value *
irgen::emitAssociatedTypeWitnessTableRef(IRGenFunction &IGF,
CanArchetypeType origin,
AssociatedTypeDecl *associate,
llvm::Value *associateMetadata,
ProtocolDecl *associateProtocol) {
// We might really be asking for information associated with a more refined
// associated type declaration.
associate = findConformanceDeclaration(origin->getConformsTo(),
associate,
associateProtocol);
assert(associate &&
"didn't find any associatedtype declaration declaring "
"direct conformance to target protocol");
// Find the conformance of the origin to the associated type's protocol.
llvm::Value *wtable = emitArchetypeWitnessTableRef(IGF, origin,
associate->getProtocol());
// Find the origin's type metadata.
llvm::Value *originMetadata = emitArchetypeTypeMetadataRef(IGF, origin);
// FIXME: will this ever be an indirect requirement?
return emitAssociatedTypeWitnessTableRef(IGF, originMetadata, wtable,
associate, associateMetadata,
associateProtocol);
}
const TypeInfo *TypeConverter::convertArchetypeType(ArchetypeType *archetype) {
assert(isExemplarArchetype(archetype) && "lowering non-exemplary archetype");
// Compute layouts for the protocols we ascribe to.
SmallVector<ProtocolEntry, 4> protocols;
for (auto protocol : archetype->getConformsTo()) {
const ProtocolInfo &impl = IGM.getProtocolInfo(protocol);
protocols.push_back(ProtocolEntry(protocol, impl));
}
// If the archetype is class-constrained, use a class pointer
// representation.
if (archetype->requiresClass()) {
ReferenceCounting refcount;
llvm::PointerType *reprTy;
if (!IGM.ObjCInterop) {
refcount = ReferenceCounting::Native;
reprTy = IGM.RefCountedPtrTy;
} else {
refcount = ReferenceCounting::Unknown;
reprTy = IGM.UnknownRefCountedPtrTy;
}
// If the archetype has a superclass constraint, it has at least the
// retain semantics of its superclass, and it can be represented with
// the supertype's pointer type.
if (Type super = archetype->getSuperclass()) {
ClassDecl *superClass = super->getClassOrBoundGenericClass();
refcount = getReferenceCountingForClass(IGM, superClass);
auto &superTI = IGM.getTypeInfoForUnlowered(super);
reprTy = cast<llvm::PointerType>(superTI.StorageType);
}
// As a hack, assume class archetypes never have spare bits. There's a
// corresponding hack in MultiPayloadEnumImplStrategy::completeEnumTypeLayout
// to ignore spare bits of dependent-typed payloads.
auto spareBits =
SpareBitVector::getConstant(IGM.getPointerSize().getValueInBits(), false);
return ClassArchetypeTypeInfo::create(reprTy,
IGM.getPointerSize(),
spareBits,
IGM.getPointerAlignment(),
protocols, refcount);
}
// Otherwise, for now, always use an opaque indirect type.
llvm::Type *storageType = IGM.OpaquePtrTy->getElementType();
return OpaqueArchetypeTypeInfo::create(storageType, protocols);
}
static void setMetadataRef(IRGenFunction &IGF,
ArchetypeType *archetype,
llvm::Value *metadata) {
assert(metadata->getType() == IGF.IGM.TypeMetadataPtrTy);
IGF.setUnscopedLocalTypeData(CanType(archetype),
LocalTypeDataKind::forTypeMetadata(),
metadata);
}
static void setWitnessTable(IRGenFunction &IGF,
ArchetypeType *archetype,
unsigned protocolIndex,
llvm::Value *wtable) {
assert(wtable->getType() == IGF.IGM.WitnessTablePtrTy);
assert(protocolIndex < archetype->getConformsTo().size());
auto protocol = archetype->getConformsTo()[protocolIndex];
IGF.setUnscopedLocalTypeData(CanType(archetype),
LocalTypeDataKind::forAbstractProtocolWitnessTable(protocol),
wtable);
}
/// Inform IRGenFunction that the given archetype has the given value
/// witness value within this scope.
void IRGenFunction::bindArchetype(ArchetypeType *archetype,
llvm::Value *metadata,
ArrayRef<llvm::Value*> wtables) {
// Set the metadata pointer.
setTypeMetadataName(IGM, metadata, CanType(archetype));
setMetadataRef(*this, archetype, metadata);
// Set the protocol witness tables.
unsigned wtableI = 0;
for (unsigned i = 0, e = archetype->getConformsTo().size(); i != e; ++i) {
auto proto = archetype->getConformsTo()[i];
if (!Lowering::TypeConverter::protocolRequiresWitnessTable(proto))
continue;
auto wtable = wtables[wtableI++];
setProtocolWitnessTableName(IGM, wtable, CanType(archetype), proto);
setWitnessTable(*this, archetype, i, wtable);
}
assert(wtableI == wtables.size());
}
llvm::Value *irgen::emitDynamicTypeOfOpaqueArchetype(IRGenFunction &IGF,
Address addr,
SILType type) {
auto archetype = type.castTo<ArchetypeType>();
// Acquire the archetype's static metadata.
llvm::Value *metadata = emitArchetypeTypeMetadataRef(IGF, archetype);
return IGF.Builder.CreateCall(IGF.IGM.getGetDynamicTypeFn(),
{addr.getAddress(), metadata});
}