-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathFulfillment.cpp
346 lines (296 loc) · 12.7 KB
/
Fulfillment.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
//===--- Fulfillment.cpp - Static metadata search ------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements routines for searching for ways to find metadata
// from other metadata.
//
//===----------------------------------------------------------------------===//
#include "Fulfillment.h"
#include "IRGenModule.h"
#include "swift/AST/Decl.h"
#include "swift/SIL/TypeLowering.h"
#include "GenericRequirement.h"
using namespace swift;
using namespace irgen;
/// Is metadata for the given type kind a "leaf", or does it possibly
/// store any other type metadata that we can statically extract?
///
/// It's okay to conservatively answer "no". It's more important for this
/// to be quick than for it to be accurate; don't recurse.
static bool isLeafTypeMetadata(CanType type) {
switch (type->getKind()) {
#define SUGARED_TYPE(ID, SUPER) \
case TypeKind::ID:
#define UNCHECKED_TYPE(ID, SUPER) \
case TypeKind::ID:
#define TYPE(ID, SUPER)
#include "swift/AST/TypeNodes.def"
llvm_unreachable("kind is invalid for a canonical type");
#define ARTIFICIAL_TYPE(ID, SUPER) \
case TypeKind::ID:
#define TYPE(ID, SUPER)
#include "swift/AST/TypeNodes.def"
case TypeKind::LValue:
case TypeKind::InOut:
case TypeKind::DynamicSelf:
llvm_unreachable("these types do not have metadata");
// All the builtin types are leaves.
#define BUILTIN_TYPE(ID, SUPER) \
case TypeKind::ID:
#define TYPE(ID, SUPER)
#include "swift/AST/TypeNodes.def"
case TypeKind::Module:
return true;
// Type parameters are statically opaque.
case TypeKind::Archetype:
case TypeKind::GenericTypeParam:
case TypeKind::DependentMember:
return true;
// Only the empty tuple is a leaf.
case TypeKind::Tuple:
return cast<TupleType>(type)->getNumElements() == 0;
// Nominal types might have parents.
case TypeKind::Class:
case TypeKind::Enum:
case TypeKind::Protocol:
case TypeKind::Struct:
return !cast<NominalType>(type)->getParent();
// Bound generic types have type arguments.
case TypeKind::BoundGenericClass:
case TypeKind::BoundGenericEnum:
case TypeKind::BoundGenericStruct:
return false;
// Functions have component types.
case TypeKind::Function:
case TypeKind::PolymorphicFunction:
case TypeKind::GenericFunction: // included for future-proofing
return false;
// Protocol compositions have component types.
case TypeKind::ProtocolComposition:
return false;
// Metatypes have instance types.
case TypeKind::Metatype:
case TypeKind::ExistentialMetatype:
return false;
}
llvm_unreachable("bad type kind");
}
/// Given that we have a source for metadata of the given type, check
/// to see if it fulfills anything.
///
/// \param isExact - true if the metadata is known to be exactly the
/// metadata for the given type, false if it might be a subtype
bool FulfillmentMap::searchTypeMetadata(IRGenModule &IGM, CanType type,
IsExact_t isExact,
unsigned source, MetadataPath &&path,
const InterestingKeysCallback &keys) {
// If this is an exact source, and it's an interesting type, add this
// as a fulfillment.
if (isExact && keys.isInterestingType(type)) {
// If the type isn't a leaf type, also check it as an inexact match.
bool hadFulfillment = false;
if (!isLeafTypeMetadata(type)) {
hadFulfillment |= searchTypeMetadata(IGM, type, IsInexact, source,
MetadataPath(path), keys);
}
// Add the fulfillment.
hadFulfillment |= addFulfillment({type, nullptr}, source, std::move(path));
return hadFulfillment;
}
// Inexact metadata will be a problem if we ever try to use this
// to remember that we already have the metadata for something.
if (auto nomTy = dyn_cast<NominalType>(type)) {
return searchNominalTypeMetadata(IGM, nomTy, source, std::move(path), keys);
}
if (auto boundTy = dyn_cast<BoundGenericType>(type)) {
return searchBoundGenericTypeMetadata(IGM, boundTy, source,
std::move(path), keys);
}
// TODO: tuples
// TODO: functions
// TODO: metatypes
return false;
}
/// Given that we have a source for a witness table that the given type
/// conforms to the given protocol, check to see if it fulfills anything.
bool FulfillmentMap::searchWitnessTable(IRGenModule &IGM,
CanType type, ProtocolDecl *protocol,
unsigned source, MetadataPath &&path,
const InterestingKeysCallback &keys) {
llvm::SmallPtrSet<ProtocolDecl*, 4> interestingConformancesBuffer;
llvm::SmallPtrSetImpl<ProtocolDecl*> *interestingConformances = nullptr;
// If the interesting-keys set is limiting the set of interesting
// conformances, collect that filter.
if (keys.isInterestingType(type) &&
keys.hasLimitedInterestingConformances(type)) {
// Bail out immediately if the set is empty.
// This only makes sense because we're not trying to fulfill
// associated types this way.
auto requiredConformances = keys.getInterestingConformances(type);
if (requiredConformances.empty()) return false;
interestingConformancesBuffer.insert(requiredConformances.begin(),
requiredConformances.end());
interestingConformances = &interestingConformancesBuffer;
}
return searchWitnessTable(IGM, type, protocol, source, std::move(path), keys,
interestingConformances);
}
bool FulfillmentMap::searchWitnessTable(IRGenModule &IGM,
CanType type, ProtocolDecl *protocol,
unsigned source, MetadataPath &&path,
const InterestingKeysCallback &keys,
const llvm::SmallPtrSetImpl<ProtocolDecl*> *
interestingConformances) {
assert(Lowering::TypeConverter::protocolRequiresWitnessTable(protocol));
bool hadFulfillment = false;
auto nextInheritedIndex = 0;
for (auto inherited : protocol->getInheritedProtocols(nullptr)) {
auto index = nextInheritedIndex++;
// Ignore protocols that don't have witness tables.
if (!Lowering::TypeConverter::protocolRequiresWitnessTable(inherited))
continue;
MetadataPath inheritedPath = path;
inheritedPath.addInheritedProtocolComponent(index);
hadFulfillment |= searchWitnessTable(IGM, type, inherited,
source, std::move(inheritedPath),
keys, interestingConformances);
}
// If we're not limited the set of interesting conformances, or if
// this is an interesting conformance, record it.
if (!interestingConformances || interestingConformances->count(protocol)) {
hadFulfillment |= addFulfillment({type, protocol}, source, std::move(path));
}
return hadFulfillment;
}
bool FulfillmentMap::searchParentTypeMetadata(IRGenModule &IGM,
NominalTypeDecl *decl,
CanType parent,
unsigned source,
MetadataPath &&path,
const InterestingKeysCallback &keys) {
// We might not have a parent type.
if (!parent) return false;
// If we do, it has to be nominal one way or another.
path.addNominalParentComponent();
return searchTypeMetadata(IGM, parent, IsExact, source, std::move(path),keys);
}
bool FulfillmentMap::searchNominalTypeMetadata(IRGenModule &IGM,
CanNominalType type,
unsigned source,
MetadataPath &&path,
const InterestingKeysCallback &keys) {
// Nominal types add no generic arguments themselves, but they
// may have the arguments of their parents.
return searchParentTypeMetadata(IGM, type->getDecl(), type.getParent(),
source, std::move(path), keys);
}
bool FulfillmentMap::searchBoundGenericTypeMetadata(IRGenModule &IGM,
CanBoundGenericType type,
unsigned source,
MetadataPath &&path,
const InterestingKeysCallback &keys) {
// Objective-C generics don't preserve their generic parameters at runtime,
// so they aren't able to fulfill type metadata requirements.
if (type->getDecl()->hasClangNode()) {
return false;
}
bool hadFulfillment = false;
GenericTypeRequirements requirements(IGM, type->getDecl());
requirements.enumerateFulfillments(
IGM, type->gatherAllSubstitutions(IGM.getSwiftModule(), nullptr),
[&](unsigned reqtIndex, CanType arg,
Optional<ProtocolConformanceRef> conf) {
// Skip uninteresting type arguments.
if (!keys.hasInterestingType(arg))
return;
// If the fulfilled value is type metadata, refine the path.
if (!conf) {
MetadataPath argPath = path;
argPath.addNominalTypeArgumentComponent(reqtIndex);
hadFulfillment |=
searchTypeMetadata(IGM, arg, IsExact, source, std::move(argPath), keys);
return;
}
// Otherwise, it's a conformance.
// Ignore it unless the type itself is interesting.
if (!keys.isInterestingType(arg))
return;
// Refine the path.
MetadataPath argPath = path;
argPath.addNominalTypeArgumentConformanceComponent(reqtIndex);
llvm::SmallPtrSet<ProtocolDecl*, 4> interestingConformancesBuffer;
llvm::SmallPtrSetImpl<ProtocolDecl*> *interestingConformances = nullptr;
// If the interesting-keys set is limiting the set of interesting
// conformances, collect that filter.
if (keys.hasLimitedInterestingConformances(arg)) {
// Bail out immediately if the set is empty.
auto requiredConformances = keys.getInterestingConformances(arg);
if (requiredConformances.empty()) return;
interestingConformancesBuffer.insert(requiredConformances.begin(),
requiredConformances.end());
interestingConformances = &interestingConformancesBuffer;
}
hadFulfillment |=
searchWitnessTable(IGM, arg, conf->getRequirement(), source,
std::move(argPath), keys, interestingConformances);
});
// Also match against the parent. The polymorphic type
// will start with any arguments from the parent.
hadFulfillment |= searchParentTypeMetadata(IGM, type->getDecl(),
type.getParent(),
source, std::move(path), keys);
return hadFulfillment;
}
/// Testify that there's a fulfillment at the given path.
bool FulfillmentMap::addFulfillment(FulfillmentKey key,
unsigned source, MetadataPath &&path) {
// Only add a fulfillment if we don't have any previous
// fulfillment for that value or if it 's cheaper than the existing
// fulfillment.
auto it = Fulfillments.find(key);
if (it != Fulfillments.end()) {
if (path.cost() >= it->second.Path.cost()) {
return false;
}
it->second.SourceIndex = source;
it->second.Path = std::move(path);
return true;
} else {
Fulfillments.insert({ key, Fulfillment(source, std::move(path)) });
return true;
}
}
bool FulfillmentMap::Everything::isInterestingType(CanType type) const {
return true;
}
bool FulfillmentMap::Everything::hasInterestingType(CanType type) const {
return true;
}
bool FulfillmentMap::Everything
::hasLimitedInterestingConformances(CanType type) const {
return false;
}
GenericSignature::ConformsToArray
FulfillmentMap::Everything::getInterestingConformances(CanType type) const{
return {};
}
void FulfillmentMap::dump() const {
auto &out = llvm::errs();
for (auto &entry : Fulfillments) {
out << "(" << entry.first.first;
if (auto proto = entry.first.second) {
out << ", " << proto->getNameStr();
}
out << ") => sources[" << entry.second.SourceIndex
<< "]." << entry.second.Path << "\n";
}
}