-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathValueTracking.cpp
396 lines (350 loc) · 12.7 KB
/
ValueTracking.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
//===--- ValueTracking.cpp - SIL Value Tracking Analysis ------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-value-tracking"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/NodeBits.h"
#include "swift/SIL/PatternMatch.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILValue.h"
#include "swift/SILOptimizer/Analysis/SimplifyInstruction.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/Support/Debug.h"
using namespace swift;
using namespace swift::PatternMatch;
bool swift::isExclusiveArgument(SILValue V) {
auto *Arg = dyn_cast<SILFunctionArgument>(V);
if (!Arg)
return false;
SILArgumentConvention Conv = Arg->getArgumentConvention();
return Conv.isExclusiveIndirectParameter();
}
/// Check if the parameter \V is based on a local object, e.g. it is an
/// allocation instruction or a struct/tuple constructed from the local objects.
/// Returns a found local object. If a local object was not found, returns an
/// empty SILValue.
static bool isLocalObject(SILValue Obj) {
// Check for SILUndef.
if (!Obj->getFunction())
return false;
// Set of values to be checked for their locality.
SmallVector<SILValue, 8> WorkList;
// Set of processed values.
ValueSet Processed(Obj->getFunction());
WorkList.push_back(Obj);
while (!WorkList.empty()) {
auto V = WorkList.pop_back_val();
if (!V || isa<SILUndef>(V))
return false;
if (!Processed.insert(V))
continue;
// It should be a local object.
V = getUnderlyingObject(V);
if (isa<AllocationInst>(V))
continue;
if (isa<StructInst>(V) || isa<TupleInst>(V) || isa<EnumInst>(V)) {
// A compound value is local, if all of its components are local.
for (auto &Op : cast<SingleValueInstruction>(V)->getAllOperands()) {
WorkList.push_back(Op.get());
}
continue;
}
if (auto *Arg = dyn_cast<SILPhiArgument>(V)) {
// A BB argument is local if all of its
// incoming values are local.
SmallVector<SILValue, 4> IncomingValues;
if (Arg->getSingleTerminatorOperands(IncomingValues)) {
for (auto InValue : IncomingValues) {
WorkList.push_back(InValue);
}
continue;
}
}
// Everything else is considered to be non-local.
return false;
}
return true;
}
bool swift::pointsToLocalObject(SILValue V) {
return isLocalObject(getUnderlyingObject(V));
}
/// Check if the value \p Value is known to be zero, non-zero or unknown.
IsZeroKind swift::isZeroValue(SILValue Value) {
// Inspect integer literals.
if (auto *L = dyn_cast<IntegerLiteralInst>(Value)) {
if (!L->getValue())
return IsZeroKind::Zero;
return IsZeroKind::NotZero;
}
// Inspect Structs.
switch (Value->getKind()) {
// Bitcast of zero is zero.
case ValueKind::UncheckedTrivialBitCastInst:
// Extracting from a zero class returns a zero.
case ValueKind::StructExtractInst:
return isZeroValue(cast<SingleValueInstruction>(Value)->getOperand(0));
default:
break;
}
// Inspect casts.
if (auto *BI = dyn_cast<BuiltinInst>(Value)) {
switch (BI->getBuiltinInfo().ID) {
case BuiltinValueKind::IntToPtr:
case BuiltinValueKind::PtrToInt:
case BuiltinValueKind::ZExt:
return isZeroValue(BI->getArguments()[0]);
case BuiltinValueKind::UDiv:
case BuiltinValueKind::SDiv: {
if (IsZeroKind::Zero == isZeroValue(BI->getArguments()[0]))
return IsZeroKind::Zero;
return IsZeroKind::Unknown;
}
case BuiltinValueKind::Mul:
case BuiltinValueKind::SMulOver:
case BuiltinValueKind::UMulOver: {
IsZeroKind LHS = isZeroValue(BI->getArguments()[0]);
IsZeroKind RHS = isZeroValue(BI->getArguments()[1]);
if (LHS == IsZeroKind::Zero || RHS == IsZeroKind::Zero)
return IsZeroKind::Zero;
return IsZeroKind::Unknown;
}
default:
return IsZeroKind::Unknown;
}
}
// Handle results of XXX_with_overflow arithmetic.
if (auto *T = dyn_cast<TupleExtractInst>(Value)) {
// Make sure we are extracting the number value and not
// the overflow flag.
if (T->getFieldIndex() != 0)
return IsZeroKind::Unknown;
auto *BI = dyn_cast<BuiltinInst>(T->getOperand());
if (!BI)
return IsZeroKind::Unknown;
return isZeroValue(BI);
}
//Inspect allocations and pointer literals.
if (isa<StringLiteralInst>(Value) ||
isa<AllocationInst>(Value) ||
isa<GlobalAddrInst>(Value))
return IsZeroKind::NotZero;
return IsZeroKind::Unknown;
}
/// Check if the sign bit of the value \p V is known to be:
/// set (true), not set (false) or unknown (None).
llvm::Optional<bool> swift::computeSignBit(SILValue V) {
SILValue Value = V;
while (true) {
ValueBase *Def = Value;
// Inspect integer literals.
if (auto *L = dyn_cast<IntegerLiteralInst>(Def)) {
if (L->getValue().isNonNegative())
return false;
return true;
}
switch (Def->getKind()) {
// Bitcast of non-negative is non-negative
case ValueKind::UncheckedTrivialBitCastInst:
Value = cast<UncheckedTrivialBitCastInst>(Def)->getOperand();
continue;
default:
break;
}
if (auto *BI = dyn_cast<BuiltinInst>(Def)) {
switch (BI->getBuiltinInfo().ID) {
// Sizeof always returns non-negative results.
case BuiltinValueKind::Sizeof:
return false;
// Strideof always returns non-negative results.
case BuiltinValueKind::Strideof:
return false;
// Alignof always returns non-negative results.
case BuiltinValueKind::Alignof:
return false;
// Both operands to AND must have the top bit set for V to.
case BuiltinValueKind::And: {
// Compute the sign bit of the LHS and RHS.
auto Left = computeSignBit(BI->getArguments()[0]);
auto Right = computeSignBit(BI->getArguments()[1]);
// We don't know either's sign bit so we can't
// say anything about the result.
if (!Left && !Right) {
return llvm::None;
}
// Now we know that we were able to determine the sign bit
// for at least one of Left/Right. Canonicalize the determined
// sign bit on the left.
if (Right) {
std::swap(Left, Right);
}
// We know we must have at least one result and it must be on
// the Left. If Right is still not None, then get both values
// and AND them together.
if (Right) {
return Left.value() && Right.value();
}
// Now we know that Right is None and Left has a value. If
// Left's value is true, then we return None as the final
// sign bit depends on the unknown Right value.
if (Left.value()) {
return llvm::None;
}
// Otherwise, Left must be false and false AND'd with anything
// else yields false.
return false;
}
// At least one operand to OR must have the top bit set.
case BuiltinValueKind::Or: {
// Compute the sign bit of the LHS and RHS.
auto Left = computeSignBit(BI->getArguments()[0]);
auto Right = computeSignBit(BI->getArguments()[1]);
// We don't know either's sign bit so we can't
// say anything about the result.
if (!Left && !Right) {
return llvm::None;
}
// Now we know that we were able to determine the sign bit
// for at least one of Left/Right. Canonicalize the determined
// sign bit on the left.
if (Right) {
std::swap(Left, Right);
}
// We know we must have at least one result and it must be on
// the Left. If Right is still not None, then get both values
// and OR them together.
if (Right) {
return Left.value() || Right.value();
}
// Now we know that Right is None and Left has a value. If
// Left's value is false, then we return None as the final
// sign bit depends on the unknown Right value.
if (!Left.value()) {
return llvm::None;
}
// Otherwise, Left must be true and true OR'd with anything
// else yields true.
return true;
}
// Only one of the operands to XOR must have the top bit set.
case BuiltinValueKind::Xor: {
// Compute the sign bit of the LHS and RHS.
auto Left = computeSignBit(BI->getArguments()[0]);
auto Right = computeSignBit(BI->getArguments()[1]);
// If either Left or Right is unknown then we can't say
// anything about the sign of the final result since
// XOR does not short-circuit.
if (!Left || !Right) {
return llvm::None;
}
// Now we know that both Left and Right must have a value.
// For the sign of the final result to be set, only one
// of Left or Right should be true.
return Left.value() != Right.value();
}
case BuiltinValueKind::LShr: {
// If count is provably >= 1, then top bit is not set.
auto *ILShiftCount = dyn_cast<IntegerLiteralInst>(BI->getArguments()[1]);
if (ILShiftCount) {
if (ILShiftCount->getValue().isStrictlyPositive()) {
return false;
}
}
// May be top bit is not set in the value being shifted.
Value = BI->getArguments()[0];
continue;
}
// Sign bit of the operand is promoted.
case BuiltinValueKind::SExt:
Value = BI->getArguments()[0];
continue;
// Source type is always smaller than the target type.
// Therefore the sign bit of a result is always 0.
case BuiltinValueKind::ZExt:
return false;
// Sign bit of the operand is promoted.
case BuiltinValueKind::SExtOrBitCast:
Value = BI->getArguments()[0];
continue;
// TODO: If source type size is smaller than the target type
// the result will be always false.
case BuiltinValueKind::ZExtOrBitCast:
Value = BI->getArguments()[0];
continue;
// Inspect casts.
case BuiltinValueKind::IntToPtr:
case BuiltinValueKind::PtrToInt:
Value = BI->getArguments()[0];
continue;
default:
return llvm::None;
}
}
return llvm::None;
}
}
/// Check if a checked trunc instruction can overflow.
/// Returns false if it can be proven that no overflow can happen.
/// Otherwise returns true.
static bool checkTruncOverflow(BuiltinInst *BI) {
SILValue Left, Right;
if (match(BI, m_CheckedTrunc(m_And(m_SILValue(Left),
m_SILValue(Right))))) {
// [US]ToSCheckedTrunc(And(x, mask)) cannot overflow
// if mask has the following properties:
// Only the first (N-1) bits are allowed to be set, where N is the width
// of the trunc result type.
//
// [US]ToUCheckedTrunc(And(x, mask)) cannot overflow
// if mask has the following properties:
// Only the first N bits are allowed to be set, where N is the width
// of the trunc result type.
if (auto BITy = BI->getType().
getTupleElementType(0).
getAs<BuiltinIntegerType>()) {
unsigned Width = BITy->getFixedWidth();
switch (BI->getBuiltinInfo().ID) {
case BuiltinValueKind::SToSCheckedTrunc:
case BuiltinValueKind::UToSCheckedTrunc:
// If it is a trunc to a signed value
// then sign bit should not be set to avoid overflows.
--Width;
break;
default:
break;
}
if (auto *ILLeft = dyn_cast<IntegerLiteralInst>(Left)) {
APInt Value = ILLeft->getValue();
if (Value.isIntN(Width)) {
return false;
}
}
if (auto *ILRight = dyn_cast<IntegerLiteralInst>(Right)) {
APInt Value = ILRight->getValue();
if (Value.isIntN(Width)) {
return false;
}
}
}
}
return true;
}
/// Check if execution of a given Apply instruction can result in overflows.
/// Returns true if an overflow can happen. Otherwise returns false.
bool swift::canOverflow(BuiltinInst *BI) {
if (simplifyOverflowBuiltinInstruction(BI) != SILValue())
return false;
if (!checkTruncOverflow(BI))
return false;
// Conservatively assume that an overflow can happen
return true;
}