-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathEpilogueARCAnalysis.cpp
187 lines (170 loc) · 6.64 KB
/
EpilogueARCAnalysis.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
//===--- EpilogueARCAnalysis.cpp ------------------------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Analysis/EpilogueARCAnalysis.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SIL/SILInstruction.h"
#include "llvm/Support/CommandLine.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// Epilogue ARC Utilities
//===----------------------------------------------------------------------===//
void EpilogueARCContext::initializeDataflow() {
for (auto *BB : PO->getPostOrder()) {
// Find the exit blocks.
if (isInterestedFunctionExitingBlock(BB)) {
ExitBlocks.insert(BB);
}
// Allocate state for this block.
IndexToStateMap.emplace_back();
}
// Split the SILArgument into local arguments to each specific basic block.
llvm::SmallVector<SILValue, 4> ToProcess;
llvm::DenseSet<SILValue> Processed;
ToProcess.push_back(Arg);
while (!ToProcess.empty()) {
SILValue CArg = ToProcess.pop_back_val();
if (!CArg)
continue;
if (Processed.contains(CArg))
continue;
Processed.insert(CArg);
if (auto *A = dyn_cast<SILPhiArgument>(CArg)) {
// Find predecessor and break the SILArgument to predecessors.
for (auto *X : A->getParent()->getPredecessorBlocks()) {
// Try to find the predecessor edge-value.
SILValue IA = A->getIncomingPhiValue(X);
auto state = getState(X);
if (state.has_value())
state.value()->LocalArg = IA;
// Maybe the edge value is another SILArgument.
ToProcess.push_back(IA);
}
}
}
}
bool EpilogueARCContext::convergeDataflow() {
// Keep iterating until Changed is false.
bool Changed = false;
do {
Changed = false;
// Iterate until the data flow converges.
for (SILBasicBlock *B : PO->getPostOrder()) {
// Since the basic block is in PO, it is reachable and will always have a
// state
auto *BS = getState(B).value();
// Merge in all the successors.
bool BBSetOut = false;
if (!B->succ_empty()) {
auto Iter = B->succ_begin();
// Since the basic block is reachable, its successors are reachable, and
// will always have a state.
BBSetOut = getState(*Iter).value()->BBSetIn;
Iter = std::next(Iter);
for (auto E = B->succ_end(); Iter != E; ++Iter) {
BBSetOut &= getState(*Iter).value()->BBSetIn;
}
} else if (isExitBlock(B)) {
// We set the BBSetOut for exit blocks.
BBSetOut = true;
}
// If an epilogue ARC instruction or blocking operating has been identified
// then there is no point visiting every instruction in this block.
if (BBSetOut) {
// Iterate over all instructions in the basic block and find the
// interested ARC instruction in the block.
for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
// This is a transition from 1 to 0 due to an interested instruction.
if (isInterestedInstruction(&*I)) {
BBSetOut = false;
break;
}
// This is a transition from 1 to 0 due to a blocking instruction.
// at this point, its OK to abort the data flow as we have one path
// which we did not find an epilogue retain before getting blocked.
if (mayBlockEpilogueARC(&*I, RCFI->getRCIdentityRoot(Arg))) {
return false;
}
}
}
// Update BBSetIn.
Changed |= (BS->BBSetIn != BBSetOut);
BS->BBSetIn = BBSetOut;
}
} while (Changed);
return true;
}
bool EpilogueARCContext::computeEpilogueARC() {
// At this point the data flow should have converged. Find the epilogue
// releases.
for (SILBasicBlock *B : PO->getPostOrder()) {
bool BBSetOut = false;
// Merge in all the successors.
if (!B->succ_empty()) {
// Make sure we've either found no ARC instructions in all the successors
// or we've found ARC instructions in all successors.
//
// In case we've found ARC instructions in some and not all successors,
// that means from this point to the end of the function, some paths will
// not have an epilogue ARC instruction, which means the data flow has
// failed.
auto Iter = B->succ_begin();
// Since basic block B is in PO, its successors will be reachable and will
// always have a state
auto Base = getState(*Iter).value()->BBSetIn;
Iter = std::next(Iter);
for (auto E = B->succ_end(); Iter != E; ++Iter) {
if (getState(*Iter).value()->BBSetIn != Base)
return false;
}
BBSetOut = Base;
} else if (isExitBlock(B)) {
// We set the BBSetOut for exit blocks.
BBSetOut = true;
}
// If an epilogue ARC instruction or blocking operating has been identified
// then there is no point visiting every instruction in this block.
if (!BBSetOut) {
continue;
}
// An epilogue ARC instruction has not been identified, maybe its in this block.
//
// Iterate over all instructions in the basic block and find the interested ARC
// instruction in the block.
for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
// This is a transition from 1 to 0 due to an interested instruction.
if (isInterestedInstruction(&*I)) {
EpilogueARCInsts.insert(&*I);
break;
}
// This is a transition from 1 to 0 due to a blocking instruction.
if (mayBlockEpilogueARC(&*I, RCFI->getRCIdentityRoot(Arg))) {
break;
}
}
}
return true;
}
//===----------------------------------------------------------------------===//
// Main Entry Point
//===----------------------------------------------------------------------===//
void EpilogueARCAnalysis::initialize(SILPassManager *PM) {
passManager = PM;
PO = PM->getAnalysis<PostOrderAnalysis>();
RC = PM->getAnalysis<RCIdentityAnalysis>();
}
std::unique_ptr<EpilogueARCFunctionInfo>
EpilogueARCAnalysis::newFunctionAnalysis(SILFunction *F) {
return std::make_unique<EpilogueARCFunctionInfo>(F, PO, passManager, RC);
}
SILAnalysis *swift::createEpilogueARCAnalysis(SILModule *M) {
return new EpilogueARCAnalysis(M);
}