-
Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathArraySemantic.cpp
904 lines (794 loc) · 33.6 KB
/
ArraySemantic.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
//===--- ArraySemantic.cpp - Wrapper around array semantic calls. ---------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#include "swift/SILOptimizer/Analysis/ArraySemantic.h"
#include "swift/SIL/DebugUtils.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILBuilder.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SILOptimizer/Analysis/DominanceAnalysis.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/ADT/StringSwitch.h"
using namespace swift;
/// Determine which kind of array semantics function this is.
ArrayCallKind swift::getArraySemanticsKind(SILFunction *f) {
ArrayCallKind Kind = ArrayCallKind::kNone;
for (auto &Attrs : f->getSemanticsAttrs()) {
auto Tmp =
llvm::StringSwitch<ArrayCallKind>(Attrs)
.Case("array.props.isNativeTypeChecked",
ArrayCallKind::kArrayPropsIsNativeTypeChecked)
.Case("array.init", ArrayCallKind::kArrayInit)
.Case("array.init.empty", ArrayCallKind::kArrayInitEmpty)
.Case("array.uninitialized", ArrayCallKind::kArrayUninitialized)
.Case("array.uninitialized_intrinsic", ArrayCallKind::kArrayUninitializedIntrinsic)
.Case("array.finalize_intrinsic", ArrayCallKind::kArrayFinalizeIntrinsic)
.Case("array.check_subscript", ArrayCallKind::kCheckSubscript)
.Case("array.check_index", ArrayCallKind::kCheckIndex)
.Case("array.get_count", ArrayCallKind::kGetCount)
.Case("array.get_capacity", ArrayCallKind::kGetCapacity)
.Case("array.get_element", ArrayCallKind::kGetElement)
.Case("array.make_mutable", ArrayCallKind::kMakeMutable)
.Case("array.end_mutation", ArrayCallKind::kEndMutation)
.Case("array.get_element_address",
ArrayCallKind::kGetElementAddress)
.Case("array.mutate_unknown", ArrayCallKind::kMutateUnknown)
.Case("array.reserve_capacity_for_append",
ArrayCallKind::kReserveCapacityForAppend)
.Case("array.withUnsafeMutableBufferPointer",
ArrayCallKind::kWithUnsafeMutableBufferPointer)
.Case("array.append_contentsOf", ArrayCallKind::kAppendContentsOf)
.Case("array.append_element", ArrayCallKind::kAppendElement)
.Default(ArrayCallKind::kNone);
if (Tmp != ArrayCallKind::kNone) {
assert(Kind == ArrayCallKind::kNone && "Multiple array semantic "
"strings?!");
Kind = Tmp;
}
}
return Kind;
}
static ParameterConvention
getSelfParameterConvention(ApplyInst *SemanticsCall) {
FunctionRefInst *FRI = cast<FunctionRefInst>(SemanticsCall->getCallee());
SILFunction *F = FRI->getReferencedFunction();
auto FnTy = F->getLoweredFunctionType();
return FnTy->getSelfParameter().getConvention();
}
/// Make sure that all parameters are passed with a reference count
/// neutral parameter convention except for self.
bool swift::ArraySemanticsCall::isValidSignature() {
assert(SemanticsCall && getKind() != ArrayCallKind::kNone &&
"Need an array semantic call");
FunctionRefInst *FRI = cast<FunctionRefInst>(SemanticsCall->getCallee());
SILFunction *F = FRI->getReferencedFunction();
auto FnTy = F->getLoweredFunctionType();
auto &Mod = F->getModule();
// Check whether we have a valid signature for semantic calls that we hoist.
switch (getKind()) {
// All other calls can be consider valid.
default: break;
case ArrayCallKind::kArrayPropsIsNativeTypeChecked: {
// @guaranteed/@owned Self
if (SemanticsCall->getNumArguments() != 1)
return false;
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Direct_Guaranteed ||
SelfConvention == ParameterConvention::Direct_Owned;
}
case ArrayCallKind::kCheckIndex: {
// Int, @guaranteed/@owned Self
if (SemanticsCall->getNumArguments() != 2 ||
!SemanticsCall->getArgument(0)->getType().isTrivial(*F))
return false;
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Direct_Guaranteed ||
SelfConvention == ParameterConvention::Direct_Owned;
}
case ArrayCallKind::kCheckSubscript: {
// Int, Bool, Self
unsigned numArgs = SemanticsCall->getNumArguments();
if (numArgs != 2 && numArgs != 3)
return false;
if (!SemanticsCall->getArgument(0)->getType().isTrivial(*F))
return false;
if (numArgs == 3 && !SemanticsCall->getArgument(1)->getType().isTrivial(*F))
return false;
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Direct_Guaranteed ||
SelfConvention == ParameterConvention::Direct_Owned;
}
case ArrayCallKind::kMakeMutable: {
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Indirect_Inout;
}
case ArrayCallKind::kArrayUninitialized: {
// Make sure that if we are a _adoptStorage call that our storage is
// uniquely referenced by us.
SILValue Arg0 = SemanticsCall->getArgument(0);
if (Arg0->getType().isExistentialType()) {
auto *AllocBufferAI = dyn_cast<ApplyInst>(Arg0);
if (!AllocBufferAI)
return false;
auto *AllocFn = AllocBufferAI->getReferencedFunctionOrNull();
if (!AllocFn || AllocFn->getName() != "swift_bufferAllocate" ||
!hasOneNonDebugUse(AllocBufferAI))
return false;
}
return true;
}
case ArrayCallKind::kWithUnsafeMutableBufferPointer: {
SILFunctionConventions origConv(SemanticsCall->getOrigCalleeType(), Mod);
if (origConv.getNumIndirectSILResults() != 1
|| SemanticsCall->getNumArguments() != 3)
return false;
auto SelfConvention = FnTy->getSelfParameter().getConvention();
return SelfConvention == ParameterConvention::Indirect_Inout;
}
}
return true;
}
/// Match array semantic calls.
swift::ArraySemanticsCall::ArraySemanticsCall(SILValue V,
StringRef semanticName,
bool matchPartialName)
: SemanticsCall(nullptr) {
if (auto AI = dyn_cast<ApplyInst>(V))
initialize(AI, semanticName, matchPartialName);
}
/// Match array semantic calls.
swift::ArraySemanticsCall::ArraySemanticsCall(SILInstruction *I,
StringRef semanticName,
bool matchPartialName)
: SemanticsCall(nullptr) {
if (auto AI = dyn_cast<ApplyInst>(I))
initialize(AI, semanticName, matchPartialName);
}
/// Match array semantic calls.
swift::ArraySemanticsCall::ArraySemanticsCall(ApplyInst *AI,
StringRef semanticName,
bool matchPartialName)
: SemanticsCall(nullptr) {
initialize(AI, semanticName, matchPartialName);
}
void ArraySemanticsCall::initialize(ApplyInst *AI, StringRef semanticName,
bool matchPartialName) {
auto *fn = AI->getReferencedFunctionOrNull();
if (!fn)
return;
if (!(matchPartialName
? fn->hasSemanticsAttrThatStartsWith(semanticName)
: fn->hasSemanticsAttr(semanticName)))
return;
SemanticsCall = AI;
// Need a 'self' argument otherwise this is not a semantic call that
// we recognize.
if (getKind() < ArrayCallKind::kArrayInit && !hasSelf())
SemanticsCall = nullptr;
// A arguments must be passed reference count neutral except for self.
if (SemanticsCall && !isValidSignature())
SemanticsCall = nullptr;
}
/// Determine which kind of array semantics call this is.
ArrayCallKind swift::ArraySemanticsCall::getKind() const {
if (!SemanticsCall)
return ArrayCallKind::kNone;
auto F = cast<FunctionRefInst>(SemanticsCall->getCallee())
->getReferencedFunction();
return getArraySemanticsKind(F);
}
bool swift::ArraySemanticsCall::hasSelf() const {
assert(SemanticsCall && "Must have a semantics call");
// Array.init and Array.uninitialized return 'self' @owned.
return SemanticsCall->getOrigCalleeType()->hasSelfParam();
}
SILValue swift::ArraySemanticsCall::getSelf() const {
return SemanticsCall->getSelfArgument();
}
Operand &swift::ArraySemanticsCall::getSelfOperand() const {
return SemanticsCall->getSelfArgumentOperand();
}
bool swift::ArraySemanticsCall::hasGuaranteedSelf() const {
if (!hasSelf())
return false;
return getSelfParameterConvention(SemanticsCall) ==
ParameterConvention::Direct_Guaranteed;
}
bool swift::ArraySemanticsCall::hasGetElementDirectResult() const {
assert(getKind() == ArrayCallKind::kGetElement &&
"must be an array.get_element call");
bool DirectResult =
(SemanticsCall->getOrigCalleeConv().getNumIndirectSILResults() == 0);
assert((DirectResult && SemanticsCall->getNumArguments() == 4 ||
!DirectResult && SemanticsCall->getNumArguments() == 5) &&
"wrong number of array.get_element call arguments");
return DirectResult;
}
SILValue swift::ArraySemanticsCall::getTypeCheckedArgument() const {
return SemanticsCall->getArgument(hasGetElementDirectResult() ? 1 : 2);
}
SILValue swift::ArraySemanticsCall::getSubscriptCheckArgument() const {
return SemanticsCall->getArgument(hasGetElementDirectResult() ? 2 : 3);
}
SILValue swift::ArraySemanticsCall::getIndex() const {
assert(SemanticsCall && "Must have a semantics call");
assert(SemanticsCall->getNumArguments() && "Must have arguments");
assert(getKind() == ArrayCallKind::kCheckSubscript ||
getKind() == ArrayCallKind::kCheckIndex ||
getKind() == ArrayCallKind::kGetElement ||
getKind() == ArrayCallKind::kGetElementAddress);
if (getKind() == ArrayCallKind::kGetElement)
return SemanticsCall->getArgument(hasGetElementDirectResult() ? 0 : 1);
return SemanticsCall->getArgument(0);
}
llvm::Optional<int64_t> swift::ArraySemanticsCall::getConstantIndex() const {
auto *IndexStruct = dyn_cast<StructInst>(getIndex());
if (!IndexStruct)
return llvm::None;
auto StructOpds = IndexStruct->getElements();
if (StructOpds.size() != 1)
return llvm::None;
auto *Literal = dyn_cast<IntegerLiteralInst>(StructOpds[0]);
if (!Literal)
return llvm::None;
auto Val = Literal->getValue();
if (Val.getNumWords()>1)
return llvm::None;
return Val.getSExtValue();
}
static bool canHoistArrayArgument(ApplyInst *SemanticsCall, SILValue Arr,
SILInstruction *InsertBefore,
DominanceInfo *DT) {
// We only know how to hoist inout, owned or guaranteed parameters.
auto Convention = getSelfParameterConvention(SemanticsCall);
if (Convention != ParameterConvention::Indirect_Inout &&
Convention != ParameterConvention::Direct_Owned &&
Convention != ParameterConvention::Direct_Guaranteed)
return false;
ValueBase *SelfVal = Arr;
auto *SelfBB = SelfVal->getParentBlock();
if (DT->dominates(SelfBB, InsertBefore->getParent()))
return true;
if (auto *Copy = dyn_cast<CopyValueInst>(SelfVal)) {
// look through one level
SelfVal = Copy->getOperand();
}
if (auto LI = dyn_cast<LoadInst>(SelfVal)) {
// Are we loading a value from an address in a struct defined at a point
// dominating the hoist point.
auto Val = LI->getOperand();
bool DoesNotDominate;
StructElementAddrInst *SEI;
while ((DoesNotDominate = !DT->dominates(Val->getParentBlock(),
InsertBefore->getParent())) &&
(SEI = dyn_cast<StructElementAddrInst>(Val)))
Val = SEI->getOperand();
return !DoesNotDominate;
}
return false;
}
bool swift::ArraySemanticsCall::canHoist(SILInstruction *InsertBefore,
DominanceInfo *DT) const {
auto Kind = getKind();
switch (Kind) {
default:
break;
case ArrayCallKind::kCheckIndex:
case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
case ArrayCallKind::kGetElementAddress:
case ArrayCallKind::kGetCount:
case ArrayCallKind::kGetCapacity:
return canHoistArrayArgument(SemanticsCall, getSelf(), InsertBefore, DT);
case ArrayCallKind::kGetElement:
// Not implemented yet.
return false;
case ArrayCallKind::kCheckSubscript:
if (SILValue IsNativeArg = getArrayPropertyIsNativeTypeChecked()) {
ArraySemanticsCall IsNative(IsNativeArg,
"array.props.isNativeTypeChecked", true);
if (!IsNative) {
// Do we have a constant parameter?
auto *SI = dyn_cast<StructInst>(IsNativeArg);
if (!SI)
return false;
if (!isa<IntegerLiteralInst>(SI->getOperand(0)))
return false;
} else if (!IsNative.canHoist(InsertBefore, DT))
// Otherwise, we must be able to hoist the function call.
return false;
}
return canHoistArrayArgument(SemanticsCall, getSelf(), InsertBefore, DT);
case ArrayCallKind::kMakeMutable:
case ArrayCallKind::kEndMutation:
return canHoistArrayArgument(SemanticsCall, getSelf(), InsertBefore, DT);
} // End switch.
return false;
}
/// Copy the array self value to the insert point.
static SILValue copySelfValue(SILValue ArrayStructValue,
SILInstruction *InsertBefore, DominanceInfo *DT) {
auto *func = InsertBefore->getFunction();
if (DT->dominates(ArrayStructValue->getParentBlock(),
InsertBefore->getParent())) {
assert(!func->hasOwnership() ||
ArrayStructValue->getOwnershipKind() == OwnershipKind::Owned ||
ArrayStructValue->getOwnershipKind() == OwnershipKind::Guaranteed);
return ArrayStructValue;
}
assert(!func->hasOwnership() ||
ArrayStructValue->getOwnershipKind() == OwnershipKind::Owned);
SILValue Val;
if (auto *Load = dyn_cast<LoadInst>(ArrayStructValue)) {
Val = Load->getOperand();
} else {
auto *Copy = cast<CopyValueInst>(ArrayStructValue);
Val = cast<LoadInst>(Copy->getOperand())->getOperand();
}
auto *InsertPt = InsertBefore;
while (!DT->dominates(Val->getParentBlock(), InsertBefore->getParent())) {
auto *Inst = cast<StructElementAddrInst>(Val);
Inst->moveBefore(InsertPt);
Val = Inst->getOperand();
InsertPt = Inst;
}
if (!ArrayStructValue->getFunction()->hasOwnership()) {
return cast<LoadInst>(ArrayStructValue)->clone(InsertBefore);
}
if (auto *Load = dyn_cast<LoadInst>(ArrayStructValue)) {
return Load->clone(InsertBefore);
}
auto *Copy = cast<CopyValueInst>(ArrayStructValue);
auto Addr = cast<LoadInst>(Copy->getOperand())->getOperand();
return SILBuilderWithScope(InsertPt).createLoad(InsertPt->getLoc(), Addr,
LoadOwnershipQualifier::Copy);
}
static ApplyInst *hoistOrCopyCall(ApplyInst *AI, SILInstruction *InsertBefore,
bool LeaveOriginal, DominanceInfo *DT) {
if (!LeaveOriginal) {
AI->moveBefore(InsertBefore);
} else {
// Leave the original and 'hoist' a clone.
AI = cast<ApplyInst>(AI->clone(InsertBefore));
}
placeFuncRef(AI, DT);
return AI;
}
/// Hoist or copy the self argument of the semantics call.
/// Return the hoisted self argument.
static SILValue hoistOrCopySelf(ApplyInst *SemanticsCall,
SILInstruction *InsertBefore,
DominanceInfo *DT, bool LeaveOriginal) {
auto SelfConvention = getSelfParameterConvention(SemanticsCall);
assert((SelfConvention == ParameterConvention::Direct_Owned ||
SelfConvention == ParameterConvention::Direct_Guaranteed) &&
"Expect @owned or @guaranteed self");
auto Self = SemanticsCall->getSelfArgument();
bool IsOwnedSelf = SelfConvention == ParameterConvention::Direct_Owned;
auto *Func = SemanticsCall->getFunction();
// Emit matching release for owned self if we are moving the original call.
if (!LeaveOriginal && IsOwnedSelf) {
SILBuilderWithScope Builder(SemanticsCall);
Builder.emitDestroyValueOperation(SemanticsCall->getLoc(), Self);
}
auto NewArrayStructValue = copySelfValue(Self, InsertBefore, DT);
if (!Func->hasOwnership() && IsOwnedSelf) {
// Retain the array.
SILBuilderWithScope Builder(InsertBefore, SemanticsCall);
Builder.createRetainValue(SemanticsCall->getLoc(), NewArrayStructValue,
Builder.getDefaultAtomicity());
}
return NewArrayStructValue;
}
ApplyInst *swift::ArraySemanticsCall::hoistOrCopy(SILInstruction *InsertBefore,
DominanceInfo *DT,
bool LeaveOriginal) {
assert(canHoist(InsertBefore, DT) &&
"Must be able to hoist the semantics call");
auto Kind = getKind();
switch (Kind) {
case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
case ArrayCallKind::kGetCount:
case ArrayCallKind::kGetCapacity: {
assert(SemanticsCall->getNumArguments() == 1 &&
"Expect 'self' parameter only");
auto HoistedSelf =
hoistOrCopySelf(SemanticsCall, InsertBefore, DT, LeaveOriginal);
auto *Call =
hoistOrCopyCall(SemanticsCall, InsertBefore, LeaveOriginal, DT);
Call->setSelfArgument(HoistedSelf);
return Call;
}
case ArrayCallKind::kCheckSubscript:
case ArrayCallKind::kCheckIndex: {
auto HoistedSelf =
hoistOrCopySelf(SemanticsCall, InsertBefore, DT, LeaveOriginal);
SILValue NewArrayProps;
if (SILValue IsNativeArg = getArrayPropertyIsNativeTypeChecked()) {
// Copy the array.props argument call.
ArraySemanticsCall IsNative(IsNativeArg,
"array.props.isNativeTypeChecked", true);
if (!IsNative) {
// Do we have a constant parameter?
auto *SI = dyn_cast<StructInst>(IsNativeArg);
assert(SI && isa<IntegerLiteralInst>(SI->getOperand(0)) &&
"Must have a constant parameter or an array.props.isNative call "
"as argument");
SI->moveBefore(&*DT->findNearestCommonDominator(
InsertBefore->getParent(), SI->getParent())
->begin());
auto *IL = cast<IntegerLiteralInst>(SI->getOperand(0));
IL->moveBefore(&*DT->findNearestCommonDominator(
InsertBefore->getParent(), IL->getParent())
->begin());
} else {
NewArrayProps = IsNative.copyTo(InsertBefore, DT);
}
// Replace all uses of the check subscript call by a use of the empty
// dependence. The check subscript call is no longer associated with
// another operation.
auto EmptyDep = SILBuilderWithScope(SemanticsCall)
.createStruct(SemanticsCall->getLoc(),
SemanticsCall->getType(), {});
SemanticsCall->replaceAllUsesWith(EmptyDep);
}
// Hoist the call.
auto Call = hoistOrCopyCall(SemanticsCall, InsertBefore, LeaveOriginal, DT);
Call->setSelfArgument(HoistedSelf);
if (NewArrayProps) {
// Set the array.props argument.
Call->setArgument(1, NewArrayProps);
}
return Call;
}
case ArrayCallKind::kMakeMutable:
case ArrayCallKind::kEndMutation: {
// Hoist the call.
auto Call = hoistOrCopyCall(SemanticsCall, InsertBefore, LeaveOriginal, DT);
return Call;
}
default:
llvm_unreachable("Don't know how to hoist this instruction");
break;
} // End switch.
}
void swift::ArraySemanticsCall::removeCall() {
if (getSelfParameterConvention(SemanticsCall) ==
ParameterConvention::Direct_Owned) {
SILBuilderWithScope Builder(SemanticsCall);
Builder.emitDestroyValueOperation(SemanticsCall->getLoc(), getSelf());
}
switch (getKind()) {
default: break;
case ArrayCallKind::kCheckSubscript:
if (!SemanticsCall->getType().isVoid()){
// Remove all uses with the empty tuple ().
auto EmptyDep = SILBuilderWithScope(SemanticsCall)
.createStruct(SemanticsCall->getLoc(),
SemanticsCall->getType(), {});
SemanticsCall->replaceAllUsesWith(EmptyDep);
}
break;
case ArrayCallKind::kGetElement: {
// Remove the matching isNativeTypeChecked and check_subscript call.
ArraySemanticsCall IsNative(getTypeCheckedArgument(),
"array.props.isNativeTypeChecked");
ArraySemanticsCall SubscriptCheck(getSubscriptCheckArgument(),
"array.check_subscript");
if (SubscriptCheck)
SubscriptCheck.removeCall();
// array.isNativeTypeChecked might be shared among several get_element
// calls. The last user should delete it.
if (IsNative && getSingleNonDebugUser((ApplyInst *)IsNative) ==
SemanticsCall) {
deleteAllDebugUses(IsNative);
(*IsNative).replaceAllUsesWithUndef();
IsNative.removeCall();
}
}
break;
}
SemanticsCall->eraseFromParent();
SemanticsCall = nullptr;
}
SILValue
swift::ArraySemanticsCall::getArrayPropertyIsNativeTypeChecked() const {
switch (getKind()) {
case ArrayCallKind::kCheckSubscript:
if (SemanticsCall->getNumArguments() == 3)
return SemanticsCall->getArgument(1);
return SILValue();
case ArrayCallKind::kGetElement:
return getTypeCheckedArgument();
default:
return SILValue();
}
}
bool swift::ArraySemanticsCall::doesNotChangeArray() const {
switch (getKind()) {
default: return false;
case ArrayCallKind::kArrayPropsIsNativeTypeChecked:
case ArrayCallKind::kCheckSubscript:
case ArrayCallKind::kCheckIndex:
case ArrayCallKind::kGetCount:
case ArrayCallKind::kGetCapacity:
case ArrayCallKind::kGetElement:
case ArrayCallKind::kEndMutation:
return true;
}
}
bool swift::ArraySemanticsCall::mayHaveBridgedObjectElementType() const {
assert(hasSelf() && "Need self parameter");
auto Ty = getSelf()->getType();
if (auto BGT = Ty.getAs<BoundGenericStructType>()) {
// Check the array element type parameter.
bool isClass = true;
for (auto EltTy : BGT->getGenericArgs()) {
if (EltTy->isBridgeableObjectType())
return true;
isClass = false;
}
return isClass;
}
return true;
}
bool swift::ArraySemanticsCall::canInlineEarly() const {
switch (getKind()) {
default:
return false;
case ArrayCallKind::kAppendContentsOf:
case ArrayCallKind::kReserveCapacityForAppend:
case ArrayCallKind::kAppendElement:
case ArrayCallKind::kArrayUninitializedIntrinsic:
// append(Element) calls other semantics functions. Therefore it's
// important that it's inlined by the early inliner (which is before all
// the array optimizations). Also, this semantics is only used to lookup
// Array.append(Element), so inlining it does not prevent any other
// optimization.
//
// Early inlining array.uninitialized_intrinsic semantic call helps in
// stack promotion.
return true;
}
}
SILValue swift::ArraySemanticsCall::getInitializationCount() const {
if (getKind() == ArrayCallKind::kArrayUninitialized) {
// Can be either a call to _adoptStorage or _allocateUninitialized.
// A call to _adoptStorage has the buffer as AnyObject as the first
// argument. The count is the second argument.
// A call to _allocateUninitialized has the count as first argument.
SILValue Arg0 = SemanticsCall->getArgument(0);
if (Arg0->getType().isExistentialType() ||
Arg0->getType().hasReferenceSemantics())
return SemanticsCall->getArgument(1);
else return SemanticsCall->getArgument(0);
}
if (getKind() == ArrayCallKind::kArrayInit &&
SemanticsCall->getNumArguments() == 3)
// Repeated-value array initializer. Arguments are the value to
// repeat, the count, and the value's type.
return SemanticsCall->getArgument(1);
return SILValue();
}
/// Given an array semantic call \c arrayCall, if it is an "array.uninitialized"
/// initializer, which returns a two-element tuple, return the element of the
/// tuple at \c tupleElementIndex. Return a null SILValue if the
/// array call is not an "array.uninitialized" initializer or if the extraction
/// of the result tuple fails.
static SILValue getArrayUninitializedInitResult(ArraySemanticsCall arrayCall,
unsigned tupleElementIndex) {
assert(tupleElementIndex <= 1 && "tupleElementIndex must be 0 or 1");
ArrayCallKind arrayCallKind = arrayCall.getKind();
if (arrayCallKind != ArrayCallKind::kArrayUninitialized &&
arrayCallKind != ArrayCallKind::kArrayUninitializedIntrinsic)
return SILValue();
// In OSSA, the call result will be extracted through a destructure_tuple
// instruction.
ApplyInst *callInst = arrayCall;
if (callInst->getFunction()->hasOwnership()) {
Operand *singleUse = callInst->getSingleUse();
if (!singleUse)
return SILValue();
if (DestructureTupleInst *destructTuple =
dyn_cast<DestructureTupleInst>(singleUse->getUser())) {
return destructTuple->getResult(tupleElementIndex);
}
return SILValue();
}
// In non-OSSA, look for a tuple_extract instruction of the call result with
// the requested tupleElementIndex.
TupleExtractInst *tupleExtractInst = nullptr;
for (auto *op : callInst->getUses()) {
auto *tupleElt = dyn_cast<TupleExtractInst>(op->getUser());
if (!tupleElt)
return SILValue();
if (tupleElt->getFieldIndex() != tupleElementIndex)
continue;
tupleExtractInst = tupleElt;
break;
}
return SILValue(tupleExtractInst);
}
SILValue swift::ArraySemanticsCall::getArrayValue() const {
ArrayCallKind arrayCallKind = getKind();
if (arrayCallKind == ArrayCallKind::kArrayInit
|| arrayCallKind == ArrayCallKind::kArrayInitEmpty) {
return SILValue(SemanticsCall);
}
return getArrayUninitializedInitResult(*this, 0);
}
SILValue swift::ArraySemanticsCall::getArrayElementStoragePointer() const {
return getArrayUninitializedInitResult(*this, 1);
}
bool swift::ArraySemanticsCall::replaceByValue(SILValue V) {
assert(getKind() == ArrayCallKind::kGetElement &&
"Must be a get_element call");
// We only handle loadable types.
if (!V->getType().isLoadable(*SemanticsCall->getFunction()))
return false;
if (!hasGetElementDirectResult())
return false;
// Expect a check_subscript call or the empty dependence.
auto SubscriptCheck = getSubscriptCheckArgument();
ArraySemanticsCall Check(SubscriptCheck, "array.check_subscript");
auto *EmptyDep = dyn_cast<StructInst>(SubscriptCheck);
if (!Check && (!EmptyDep || !EmptyDep->getElements().empty()))
return false;
// In OSSA, the InsertPt is after V's definition and not before SemanticsCall
// Because we are creating copy_value in ossa, and the source may have been
// taken previously. So our insert point for copy_value is immediately after
// V, where we can be sure it is live.
auto InsertPt = V->getFunction()->hasOwnership()
? getInsertAfterPoint(V)
: SemanticsCall->getIterator();
assert(InsertPt.has_value());
SILValue CopiedVal = SILBuilderWithScope(InsertPt.value())
.emitCopyValueOperation(SemanticsCall->getLoc(), V);
SemanticsCall->replaceAllUsesWith(CopiedVal);
removeCall();
return true;
}
bool swift::ArraySemanticsCall::replaceByAppendingValues(
SILFunction *AppendFn, SILFunction *ReserveFn,
const SmallVectorImpl<SILValue> &Vals, SubstitutionMap Subs) {
assert(getKind() == ArrayCallKind::kAppendContentsOf &&
"Must be an append_contentsOf call");
assert(AppendFn && "Must provide an append SILFunction");
auto *F = SemanticsCall->getFunction();
// We only handle loadable types.
if (any_of(Vals, [F](SILValue V) -> bool {
return !V->getType().isLoadable(*F);
}))
return false;
CanSILFunctionType AppendFnTy = AppendFn->getLoweredFunctionType();
SILValue ArrRef = SemanticsCall->getArgument(1);
SILBuilderWithScope Builder(SemanticsCall);
auto Loc = SemanticsCall->getLoc();
auto *FnRef = Builder.createFunctionRefFor(Loc, AppendFn);
if (Vals.size() > 1) {
// Create a call to reserveCapacityForAppend() to reserve space for multiple
// elements.
FunctionRefBaseInst *ReserveFnRef =
Builder.createFunctionRefFor(Loc, ReserveFn);
SILFunctionType *ReserveFnTy =
ReserveFnRef->getType().castTo<SILFunctionType>();
assert(ReserveFnTy->getNumParameters() == 2);
StructType *IntType =
ReserveFnTy->getParameters()[0]
.getArgumentType(F->getModule(), ReserveFnTy,
Builder.getTypeExpansionContext())
->castTo<StructType>();
StructDecl *IntDecl = IntType->getDecl();
VarDecl *field = IntDecl->getStoredProperties()[0];
SILType BuiltinIntTy =SILType::getPrimitiveObjectType(
field->getInterfaceType()->getCanonicalType());
IntegerLiteralInst *CapacityLiteral =
Builder.createIntegerLiteral(Loc, BuiltinIntTy, Vals.size());
StructInst *Capacity = Builder.createStruct(Loc,
SILType::getPrimitiveObjectType(CanType(IntType)), {CapacityLiteral});
Builder.createApply(Loc, ReserveFnRef, Subs, {Capacity, ArrRef});
}
for (SILValue V : Vals) {
auto SubTy = V->getType();
auto &ValLowering = Builder.getTypeLowering(SubTy);
// In OSSA, the InsertPt is after V's definition and not before
// SemanticsCall. Because we are creating copy_value in ossa, and the source
// may have been taken previously. So our insert point for copy_value is
// immediately after V, where we can be sure it is live.
auto InsertPt = F->hasOwnership() ? getInsertAfterPoint(V)
: SemanticsCall->getIterator();
assert(InsertPt.has_value());
SILValue CopiedVal = SILBuilderWithScope(InsertPt.value())
.emitCopyValueOperation(V.getLoc(), V);
auto *AllocStackInst = Builder.createAllocStack(Loc, SubTy);
ValLowering.emitStoreOfCopy(Builder, Loc, CopiedVal, AllocStackInst,
IsInitialization_t::IsInitialization);
SILValue Args[] = {AllocStackInst, ArrRef};
Builder.createApply(Loc, FnRef, Subs, Args);
Builder.createDeallocStack(Loc, AllocStackInst);
if (!isConsumedParameter(AppendFnTy->getParameters()[0].getConvention())) {
ValLowering.emitDestroyValue(Builder, Loc, CopiedVal);
}
}
CanSILFunctionType AppendContentsOfFnTy =
SemanticsCall->getReferencedFunctionOrNull()->getLoweredFunctionType();
if (AppendContentsOfFnTy->getParameters()[0].getConvention() ==
ParameterConvention::Direct_Owned) {
SILValue SrcArray = SemanticsCall->getArgument(0);
Builder.emitDestroyValueOperation(SemanticsCall->getLoc(), SrcArray);
}
removeCall();
return true;
}
bool swift::ArraySemanticsCall::mapInitializationStores(
llvm::DenseMap<uint64_t, StoreInst *> &ElementValueMap) {
if (getKind() != ArrayCallKind::kArrayUninitialized &&
getKind() != ArrayCallKind::kArrayUninitializedIntrinsic)
return false;
SILValue ElementBuffer = getArrayElementStoragePointer();
if (!ElementBuffer)
return false;
// Match initialization stores into ElementBuffer. E.g.
// %83 = struct_extract %element_buffer : $UnsafeMutablePointer<Int>
// %84 = pointer_to_address %83 : $Builtin.RawPointer to strict $*Int
// store %85 to %84 : $*Int
// %87 = integer_literal $Builtin.Word, 1
// %88 = index_addr %84 : $*Int, %87 : $Builtin.Word
// store %some_value to %88 : $*Int
// If this an ArrayUninitializedIntrinsic then the ElementBuffer is a
// builtin.RawPointer. Otherwise, it is an UnsafeMutablePointer, which would
// be struct-extracted to obtain a builtin.RawPointer.
SILValue UnsafeMutablePointerExtract =
(getKind() == ArrayCallKind::kArrayUninitialized)
? dyn_cast_or_null<StructExtractInst>(
getSingleNonDebugUser(ElementBuffer))
: ElementBuffer;
if (!UnsafeMutablePointerExtract)
return false;
auto *PointerToAddress = dyn_cast_or_null<PointerToAddressInst>(
getSingleNonDebugUser(UnsafeMutablePointerExtract));
if (!PointerToAddress)
return false;
// Match the stores. We can have either a store directly to the address or
// to an index_addr projection.
for (auto *Op : PointerToAddress->getUses()) {
auto *Inst = Op->getUser();
// Store to the base.
auto *SI = dyn_cast<StoreInst>(Inst);
if (SI && SI->getDest() == PointerToAddress) {
// We have already seen an entry for this index bail.
if (ElementValueMap.count(0))
return false;
ElementValueMap[0] = SI;
continue;
} else if (SI)
return false;
// Store to an index_addr projection.
auto *IndexAddr = dyn_cast<IndexAddrInst>(Inst);
if (!IndexAddr)
return false;
SI = dyn_cast_or_null<StoreInst>(getSingleNonDebugUser(IndexAddr));
if (!SI || SI->getDest() != IndexAddr)
return false;
auto *Index = dyn_cast<IntegerLiteralInst>(IndexAddr->getIndex());
if (!Index)
return false;
auto IndexVal = Index->getValue();
// Let's not blow up our map.
if (IndexVal.getActiveBits() > 16)
return false;
// Already saw an entry.
if (ElementValueMap.count(IndexVal.getZExtValue()))
return false;
ElementValueMap[IndexVal.getZExtValue()] = SI;
}
return !ElementValueMap.empty();
}