-
Notifications
You must be signed in to change notification settings - Fork 10.5k
/
Copy pathAliasAnalysis.cpp
766 lines (644 loc) · 27.7 KB
/
AliasAnalysis.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
//===--- AliasAnalysis.cpp - SIL Alias Analysis ---------------------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-aa"
#include "swift/SILOptimizer/Analysis/AliasAnalysis.h"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/Projection.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SIL/SILFunction.h"
#include "swift/SIL/SILInstruction.h"
#include "swift/SIL/SILModule.h"
#include "swift/SIL/SILValue.h"
#include "swift/SILOptimizer/Analysis/ValueTracking.h"
#include "swift/SILOptimizer/PassManager/PassManager.h"
#include "swift/SILOptimizer/Utils/InstOptUtils.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "swift/SILOptimizer/OptimizerBridging.h"
using namespace swift;
//===----------------------------------------------------------------------===//
// AA Debugging
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
namespace {
enum class AAKind : unsigned {
None=0,
BasicAA=1,
TypedAccessTBAA=2,
All=3,
};
} // end anonymous namespace
static llvm::cl::opt<AAKind>
DebugAAKinds("aa-kind", llvm::cl::desc("Alias Analysis Kinds:"),
llvm::cl::init(AAKind::All),
llvm::cl::values(clEnumValN(AAKind::None,
"none",
"Do not perform any AA"),
clEnumValN(AAKind::BasicAA,
"basic-aa",
"basic-aa"),
clEnumValN(AAKind::TypedAccessTBAA,
"typed-access-tb-aa",
"typed-access-tb-aa"),
clEnumValN(AAKind::All,
"all",
"all")));
static inline bool shouldRunAA() {
return unsigned(AAKind(DebugAAKinds));
}
static inline bool shouldRunTypedAccessTBAA() {
return unsigned(AAKind(DebugAAKinds)) & unsigned(AAKind::TypedAccessTBAA);
}
static inline bool shouldRunBasicAA() {
return unsigned(AAKind(DebugAAKinds)) & unsigned(AAKind::BasicAA);
}
#endif
//===----------------------------------------------------------------------===//
// Utilities
//===----------------------------------------------------------------------===//
using AliasResult = AliasAnalysis::AliasResult;
llvm::raw_ostream &swift::operator<<(llvm::raw_ostream &OS, AliasResult R) {
switch (R) {
case AliasResult::NoAlias: return OS << "NoAlias";
case AliasResult::MayAlias: return OS << "MayAlias";
case AliasResult::PartialAlias: return OS << "PartialAlias";
case AliasResult::MustAlias: return OS << "MustAlias";
}
llvm_unreachable("Unhandled AliasResult in switch.");
}
//===----------------------------------------------------------------------===//
// Unequal Base Object AA
//===----------------------------------------------------------------------===//
/// Return true if the given SILArgument is an argument to the first BB of a
/// function.
static bool isFunctionArgument(SILValue V) {
return isa<SILFunctionArgument>(V);
}
/// Return true if V is an object that at compile time can be uniquely
/// identified.
static bool isIdentifiableObject(SILValue V) {
if (isa<AllocationInst>(V) || isa<LiteralInst>(V))
return true;
if (isExclusiveArgument(V))
return true;
return false;
}
/// Return true if V1 and V2 are distinct objects that can be uniquely
/// identified at compile time.
static bool areDistinctIdentifiableObjects(SILValue V1, SILValue V2) {
// Do both values refer to the same global variable?
if (auto *GA1 = dyn_cast<GlobalAddrInst>(V1)) {
if (auto *GA2 = dyn_cast<GlobalAddrInst>(V2)) {
return GA1->getReferencedGlobal() != GA2->getReferencedGlobal();
}
}
if (isIdentifiableObject(V1) && isIdentifiableObject(V2))
return V1 != V2;
return false;
}
/// Returns true if both values are equal or yield the address of the same
/// global variable.
static bool isSameValueOrGlobal(SILValue V1, SILValue V2) {
if (V1 == V2)
return true;
// Do both values refer to the same global variable?
if (auto *GA1 = dyn_cast<GlobalAddrInst>(V1)) {
if (auto *GA2 = dyn_cast<GlobalAddrInst>(V2)) {
return GA1->getReferencedGlobal() == GA2->getReferencedGlobal();
}
}
return false;
}
/// Is this a literal which we know cannot refer to a global object?
///
/// FIXME: function_ref?
static bool isLocalLiteral(SILValue V) {
switch (V->getKind()) {
case ValueKind::IntegerLiteralInst:
case ValueKind::FloatLiteralInst:
case ValueKind::StringLiteralInst:
return true;
default:
return false;
}
}
/// Is this a value that can be unambiguously identified as being defined at the
/// function level.
static bool isIdentifiedFunctionLocal(SILValue V) {
return isa<AllocationInst>(*V) || isExclusiveArgument(V) || isLocalLiteral(V);
}
/// Returns true if we can prove that the two input SILValues which do not equal
/// cannot alias.
static bool aliasUnequalObjects(SILValue O1, SILValue O2) {
assert(O1 != O2 && "This function should only be called on unequal values.");
// If O1 and O2 do not equal and they are both values that can be statically
// and uniquely identified, they cannot alias.
if (areDistinctIdentifiableObjects(O1, O2)) {
LLVM_DEBUG(llvm::dbgs() << " Found two unequal identified "
"objects.\n");
return true;
}
// Function arguments can't alias with things that are known to be
// unambiguously identified at the function level.
//
// Note that both function arguments must be identified. For example, an @in
// argument may be an interior pointer into a box that is passed separately as
// @owned. We must consider uses on the @in argument as potential uses of the
// @owned object.
if ((isFunctionArgument(O1) && isIdentifiedFunctionLocal(O2)) ||
(isFunctionArgument(O2) && isIdentifiedFunctionLocal(O1))) {
LLVM_DEBUG(llvm::dbgs() << " Found unequal function arg and "
"identified function local!\n");
return true;
}
// We failed to prove that the two objects are different.
return false;
}
//===----------------------------------------------------------------------===//
// Projection Address AA
//===----------------------------------------------------------------------===//
/// Uses a bunch of ad-hoc rules to disambiguate a GEP instruction against
/// another pointer. We know that V1 is a GEP, but we don't know anything about
/// V2. O1, O2 are getUnderlyingObject of V1, V2 respectively.
AliasResult AliasAnalysis::aliasAddressProjection(SILValue V1, SILValue V2,
SILValue O1, SILValue O2) {
// If V2 is also a gep instruction with a must-alias or not-aliasing base
// pointer, figure out if the indices of the GEPs tell us anything about the
// derived pointers.
if (!Projection::isAddressProjection(V2)) {
// Ok, V2 is not an address projection. See if V2 after stripping casts
// aliases O1. If so, then we know that V2 must partially alias V1 via a
// must alias relation on O1. This ensures that given an alloc_stack and a
// gep from that alloc_stack, we say that they partially alias.
if (isSameValueOrGlobal(O1, stripCasts(V2)))
return AliasResult::PartialAlias;
return AliasResult::MayAlias;
}
assert(!Projection::isAddressProjection(O1) &&
"underlying object may not be a projection");
assert(!Projection::isAddressProjection(O2) &&
"underlying object may not be a projection");
// Do the base pointers alias?
AliasResult BaseAlias = aliasInner(O1, O2);
// If the underlying objects are not aliased, the projected values are also
// not aliased.
if (BaseAlias == AliasResult::NoAlias)
return AliasResult::NoAlias;
// Let's do alias checking based on projections.
auto V1Path = ProjectionPath::getProjectionPath(O1, V1);
auto V2Path = ProjectionPath::getProjectionPath(O2, V2);
// getUnderlyingPath and findAddressProjectionPathBetweenValues disagree on
// what the base pointer of the two values are. Be conservative and return
// MayAlias.
//
// FIXME: The only way this should happen realistically is if there are
// casts in between two projection instructions. getUnderlyingObject will
// ignore that, while findAddressProjectionPathBetweenValues wont. The two
// solutions are to make address projections variadic (something on the wee
// horizon) or enable Projection to represent a cast as a special sort of
// projection.
if (!V1Path || !V2Path)
return AliasResult::MayAlias;
auto R = V1Path->computeSubSeqRelation(*V2Path);
// If all of the projections are equal (and they have the same base pointer),
// the two GEPs must be the same.
if (BaseAlias == AliasResult::MustAlias &&
R == SubSeqRelation_t::Equal)
return AliasResult::MustAlias;
// The two GEPs do not alias if they are accessing different fields, even if
// we don't know the base pointers. Different fields should not overlap.
//
// TODO: Replace this with a check on the computed subseq relation. See the
// TODO in computeSubSeqRelation.
if (V1Path->hasNonEmptySymmetricDifference(V2Path.value()))
return AliasResult::NoAlias;
// If one of the GEPs is a super path of the other then they partially
// alias.
if (BaseAlias == AliasResult::MustAlias &&
isStrictSubSeqRelation(R))
return AliasResult::PartialAlias;
// We failed to prove anything. Be conservative and return MayAlias.
return AliasResult::MayAlias;
}
//===----------------------------------------------------------------------===//
// TBAA
//===----------------------------------------------------------------------===//
/// Is this an instruction that can act as a type "oracle" allowing typed access
/// TBAA to know what the real types associated with the SILInstruction are.
static bool isTypedAccessOracle(SILInstruction *I) {
switch (I->getKind()) {
case SILInstructionKind::RefElementAddrInst:
case SILInstructionKind::RefTailAddrInst:
case SILInstructionKind::StructElementAddrInst:
case SILInstructionKind::TupleElementAddrInst:
case SILInstructionKind::UncheckedTakeEnumDataAddrInst:
case SILInstructionKind::LoadInst:
case SILInstructionKind::StoreInst:
case SILInstructionKind::AllocStackInst:
case SILInstructionKind::AllocBoxInst:
case SILInstructionKind::ProjectBoxInst:
case SILInstructionKind::DeallocStackInst:
case SILInstructionKind::DeallocBoxInst:
return true;
default:
return false;
}
}
/// Return true if the given value is an instruction or block argument that is
/// known to produce a nonaliasing address with respect to TBAA rules (i.e. the
/// pointer is not type punned). The only way to produce an aliasing typed
/// address is with pointer_to_address (via UnsafePointer) or
/// unchecked_addr_cast (via Builtin.reinterpretCast). Consequently, if the
/// given value is directly derived from a memory location, it cannot
/// alias. Call arguments also cannot alias because they must follow \@in, @out,
/// @inout, or \@in_guaranteed conventions.
static bool isAccessedAddressTBAASafe(SILValue V) {
if (!V->getType().isAddress())
return false;
SILValue accessedAddress = getTypedAccessAddress(V);
if (isa<SILFunctionArgument>(accessedAddress))
return true;
if (auto *PtrToAddr = dyn_cast<PointerToAddressInst>(accessedAddress))
return PtrToAddr->isStrict();
switch (accessedAddress->getKind()) {
default:
return false;
case ValueKind::AllocStackInst:
case ValueKind::ProjectBoxInst:
case ValueKind::RefElementAddrInst:
case ValueKind::RefTailAddrInst:
return true;
}
}
/// Look at the origin/user ValueBase of V to see if any of them are
/// TypedAccessOracle which enable one to ascertain via undefined behavior the
/// "true" type of the instruction.
static SILType findTypedAccessType(SILValue V) {
assert(V->getType().isAddress());
// First look at the origin of V and see if we have any instruction that is a
// typed oracle.
// TODO: MultiValueInstruction
if (auto *I = dyn_cast<SingleValueInstruction>(V))
if (isTypedAccessOracle(I))
return V->getType();
// Then look at any uses of V that potentially could act as a typed access
// oracle.
for (auto Use : V->getUses())
if (isTypedAccessOracle(Use->getUser()))
return V->getType();
// Otherwise return an empty SILType
return SILType();
}
SILType swift::computeTBAAType(SILValue V) {
if (isAccessedAddressTBAASafe(V))
return findTypedAccessType(V);
// FIXME: add ref_element_addr check here. TBAA says that objects cannot be
// type punned.
return SILType();
}
static bool typedAccessTBAABuiltinTypesMayAlias(SILType LTy, SILType RTy) {
assert(LTy != RTy && "LTy should have already been shown to not equal RTy to "
"call this function.");
// If either of our types are raw pointers, they may alias any builtin.
if (LTy.is<BuiltinRawPointerType>() || RTy.is<BuiltinRawPointerType>())
return true;
// At this point, we have 3 possibilities:
//
// 1. (Pointer, Scalar): A pointer to a pointer can never alias a scalar.
//
// 2. (Pointer, Pointer): If we have two pointers to pointers, since we know
// that the two values do not equal due to previous AA calculations, one must
// be a native object and the other is an unknown object type (i.e. an objc
// object) which cannot alias.
//
// 3. (Scalar, Scalar): If we have two scalar pointers, since we know that the
// types are already not equal, we know that they cannot alias. For those
// unfamiliar even though BuiltinIntegerType/BuiltinFloatType are single
// classes, the AST represents each integer/float of different bit widths as
// different types, so equality of SILTypes allows us to know that they have
// different bit widths.
//
// Thus we can just return false since in none of the aforementioned cases we
// cannot alias, so return false.
return false;
}
/// return True if the types \p LTy and \p RTy may alias.
///
/// Currently this only implements typed access based TBAA. See the TBAA section
/// in the SIL reference manual.
static bool typedAccessTBAAMayAlias(SILType LTy, SILType RTy,
const SILFunction &F) {
#ifndef NDEBUG
if (!shouldRunTypedAccessTBAA())
return true;
#endif
// If the two types are the same they may alias.
if (LTy == RTy)
return true;
// Typed access based TBAA only occurs on pointers. If we reach this point and
// do not have a pointer, be conservative and return that the two types may
// alias.
if (!LTy.isAddress() || !RTy.isAddress())
return true;
// If the types have unbound generic arguments then we don't know
// the possible range of the type. A type such as $Array<Int> may
// alias $Array<T>. Right now we are conservative and we assume
// that $UnsafeMutablePointer<T> and $Int may alias.
if (LTy.hasArchetype() || RTy.hasArchetype())
return true;
// If either type is a protocol type, we don't know the underlying type so
// return may alias.
//
// FIXME: We could be significantly smarter here by using the protocol
// hierarchy.
if (LTy.isAnyExistentialType() || RTy.isAnyExistentialType())
return true;
// If either type is an address only type, bail so we are conservative.
if (LTy.isAddressOnly(F) || RTy.isAddressOnly(F))
return true;
// If both types are builtin types, handle them separately.
if (LTy.is<BuiltinType>() && RTy.is<BuiltinType>())
return typedAccessTBAABuiltinTypesMayAlias(LTy, RTy);
// Otherwise, we know that at least one of our types is not a builtin
// type. If we have a builtin type, canonicalize it on the right.
if (LTy.is<BuiltinType>())
std::swap(LTy, RTy);
// If RTy is a builtin raw pointer type, it can alias anything.
if (RTy.is<BuiltinRawPointerType>())
return true;
ClassDecl *LTyClass = LTy.getClassOrBoundGenericClass();
// The Builtin reference types can alias any class instance.
if (LTyClass) {
if (RTy.is<BuiltinNativeObjectType>() ||
RTy.is<BuiltinBridgeObjectType>()) {
return true;
}
}
auto &Mod = F.getModule();
// If one type is an aggregate and it contains the other type then the record
// reference may alias the aggregate reference.
if (LTy.aggregateContainsRecord(RTy, Mod, F.getTypeExpansionContext()) ||
RTy.aggregateContainsRecord(LTy, Mod, F.getTypeExpansionContext()))
return true;
// FIXME: All the code following could be made significantly more aggressive
// by saying that aggregates of the same type that do not contain each other
// cannot alias.
// Tuples do not alias non-tuples.
bool LTyTT = LTy.is<TupleType>();
bool RTyTT = RTy.is<TupleType>();
if (LTyTT != RTyTT)
return false;
// Structs do not alias non-structs.
StructDecl *LTyStruct = LTy.getStructOrBoundGenericStruct();
StructDecl *RTyStruct = RTy.getStructOrBoundGenericStruct();
if ((LTyStruct != nullptr) != (RTyStruct != nullptr))
return false;
// Enums do not alias non-enums.
EnumDecl *LTyEnum = LTy.getEnumOrBoundGenericEnum();
EnumDecl *RTyEnum = RTy.getEnumOrBoundGenericEnum();
if ((LTyEnum != nullptr) != (RTyEnum != nullptr))
return false;
// Classes do not alias non-classes.
ClassDecl *RTyClass = RTy.getClassOrBoundGenericClass();
if ((LTyClass != nullptr) != (RTyClass != nullptr))
return false;
// Classes with separate class hierarchies do not alias.
if (!LTy.isBindableToSuperclassOf(RTy) && !RTy.isBindableToSuperclassOf(LTy))
return false;
// Otherwise be conservative and return that the two types may alias.
return true;
}
bool AliasAnalysis::typesMayAlias(SILType T1, SILType T2,
const SILFunction &F) {
// Both types need to be valid.
if (!T2 || !T1)
return true;
// Check if we've already computed the TBAA relation.
auto Key = std::make_pair(T1, T2);
auto Res = TypesMayAliasCache.find(Key);
if (Res != TypesMayAliasCache.end()) {
return Res->second;
}
bool MA = typedAccessTBAAMayAlias(T1, T2, F);
TypesMayAliasCache[Key] = MA;
return MA;
}
//===----------------------------------------------------------------------===//
// Entry Points
//===----------------------------------------------------------------------===//
// Bridging functions.
static BridgedAliasAnalysis::GetMemEffectFn getMemEffectsFunction = nullptr;
static BridgedAliasAnalysis::Escaping2InstFn isObjReleasedFunction = nullptr;
static BridgedAliasAnalysis::Escaping2ValIntFn isAddrVisibleFromObjFunction = nullptr;
static BridgedAliasAnalysis::Escaping2ValFn canReferenceSameFieldFunction = nullptr;
AliasAnalysis::~AliasAnalysis() {
}
/// The main AA entry point. Performs various analyses on V1, V2 in an attempt
/// to disambiguate the two values.
AliasResult AliasAnalysis::alias(SILValue V1, SILValue V2,
SILType TBAAType1, SILType TBAAType2) {
AliasCacheKey Key = {V1, V2, TBAAType1.getOpaqueValue(),
TBAAType2.getOpaqueValue()};
// Check if we've already computed this result.
auto It = AliasCache.find(Key);
if (It != AliasCache.end()) {
return It->second;
}
// Calculate the aliasing result and store it in the cache.
auto Result = aliasInner(V1, V2, TBAAType1, TBAAType2);
AliasCache[Key] = Result;
return Result;
}
/// Get the underlying object, looking through init_enum_data_addr and
/// init_existential_addr.
static SILValue stripInitEnumAndExistentialAddr(SILValue v) {
while (isa<InitEnumDataAddrInst>(v) || isa<InitExistentialAddrInst>(v)) {
v = getUnderlyingObject(cast<SingleValueInstruction>(v)->getOperand(0));
}
return v;
}
/// The main AA entry point. Performs various analyses on V1, V2 in an attempt
/// to disambiguate the two values.
AliasResult AliasAnalysis::aliasInner(SILValue V1, SILValue V2,
SILType TBAAType1,
SILType TBAAType2) {
#ifndef NDEBUG
// If alias analysis is disabled, always return may alias.
if (!shouldRunAA())
return AliasResult::MayAlias;
#endif
// If the two values equal, quickly return must alias.
if (isSameValueOrGlobal(V1, V2))
return AliasResult::MustAlias;
LLVM_DEBUG(llvm::dbgs() << "ALIAS ANALYSIS:\n V1: " << *V1
<< " V2: " << *V2);
// If this is SILUndef, return may alias.
if (!V1->getFunction())
return AliasResult::MayAlias;
// Pass in both the TBAA types so we can perform typed access TBAA and the
// actual types of V1, V2 so we can perform class based TBAA.
if (!typesMayAlias(TBAAType1, TBAAType2, *V1->getFunction()))
return AliasResult::NoAlias;
#ifndef NDEBUG
if (!shouldRunBasicAA())
return AliasResult::MayAlias;
#endif
// Strip off any casts on V1, V2.
V1 = stripCasts(V1);
V2 = stripCasts(V2);
LLVM_DEBUG(llvm::dbgs() << " After Cast Stripping V1:" << *V1);
LLVM_DEBUG(llvm::dbgs() << " After Cast Stripping V2:" << *V2);
// Ok, we need to actually compute an Alias Analysis result for V1, V2. Begin
// by finding the "base" of V1, V2 by stripping off all casts and GEPs.
SILValue O1 = getUnderlyingObject(V1);
SILValue O2 = getUnderlyingObject(V2);
LLVM_DEBUG(llvm::dbgs() << " Underlying V1:" << *O1);
LLVM_DEBUG(llvm::dbgs() << " Underlying V2:" << *O2);
// If the underlying objects are not equal, see if we can prove that they
// cannot be the same object. If we can, return No Alias.
// For this we even look through init_enum_data_addr and init_existential_addr.
SILValue StrippedO1 = stripInitEnumAndExistentialAddr(O1);
SILValue StrippedO2 = stripInitEnumAndExistentialAddr(O2);
if (StrippedO1 != StrippedO2 && aliasUnequalObjects(StrippedO1, StrippedO2))
return AliasResult::NoAlias;
// Ok, either O1, O2 are the same or we could not prove anything based off of
// their inequality.
// Next: ask escape analysis. This catches cases where we compare e.g. a
// non-escaping pointer with another (maybe escaping) pointer. Escape analysis
// uses the connection graph to check if the pointers may point to the same
// content.
if (!canReferenceSameField(V1, V2)) {
LLVM_DEBUG(llvm::dbgs() << " Found not-aliased objects based on "
"escape analysis\n");
return AliasResult::NoAlias;
}
// Now we climb up use-def chains and attempt to do tricks based off of GEPs.
// First if one instruction is a gep and the other is not, canonicalize our
// inputs so that V1 always is the instruction containing the GEP.
if (!Projection::isAddressProjection(V1) &&
Projection::isAddressProjection(V2)) {
std::swap(V1, V2);
std::swap(O1, O2);
}
// If V1 is an address projection, attempt to use information from the
// aggregate type tree to disambiguate it from V2.
if (Projection::isAddressProjection(V1)) {
AliasResult Result = aliasAddressProjection(V1, V2, O1, O2);
if (Result != AliasResult::MayAlias)
return Result;
}
// We could not prove anything. Be conservative and return that V1, V2 may
// alias.
return AliasResult::MayAlias;
}
bool AliasAnalysis::canApplyDecrementRefCount(FullApplySite FAS, SILValue Ptr) {
// Treat applications of no-return functions as decrementing ref counts. This
// causes the apply to become a sink barrier for ref count increments.
if (FAS.isCalleeNoReturn())
return true;
/// If the pointer cannot escape to the function we are done.
bool result = isObjectReleasedByInst(Ptr, FAS.getInstruction());
return result;
}
bool AliasAnalysis::canBuiltinDecrementRefCount(BuiltinInst *BI, SILValue Ptr) {
return isObjectReleasedByInst(Ptr, BI);
}
namespace {
class AliasAnalysisContainer : public FunctionAnalysisBase<AliasAnalysis> {
SILPassManager *PM = nullptr;
public:
AliasAnalysisContainer() : FunctionAnalysisBase(SILAnalysisKind::Alias) {}
virtual bool shouldInvalidate(SILAnalysis::InvalidationKind K) override {
return K & InvalidationKind::Instructions;
}
virtual void invalidate(SILFunction *f,
SILAnalysis::InvalidationKind k) override {
if (k & InvalidationKind::Effects) {
FunctionAnalysisBase::invalidate();
} else {
FunctionAnalysisBase::invalidate(f, k);
}
}
// Computes loop information for the given function using dominance
// information.
virtual std::unique_ptr<AliasAnalysis>
newFunctionAnalysis(SILFunction *F) override {
assert(PM && "dependent analysis not initialized");
return std::make_unique<AliasAnalysis>(PM);
}
virtual void initialize(SILPassManager *PM) override {
this->PM = PM;
}
};
} // end anonymous namespace
SILAnalysis *swift::createAliasAnalysis(SILModule *M) {
return new AliasAnalysisContainer();
}
//===----------------------------------------------------------------------===//
// Swift Bridging
//===----------------------------------------------------------------------===//
void BridgedAliasAnalysis::registerAnalysis(GetMemEffectFn getMemEffectsFn,
Escaping2InstFn isObjReleasedFn,
Escaping2ValIntFn isAddrVisibleFromObjFn,
Escaping2ValFn canReferenceSameFieldFn) {
getMemEffectsFunction = getMemEffectsFn;
isObjReleasedFunction = isObjReleasedFn;
isAddrVisibleFromObjFunction = isAddrVisibleFromObjFn;
canReferenceSameFieldFunction = canReferenceSameFieldFn;
}
MemoryBehavior AliasAnalysis::getMemoryEffectOnEscapedAddress(
SILValue addr, SILInstruction *toInst) {
if (getMemEffectsFunction) {
return (MemoryBehavior)getMemEffectsFunction({PM->getSwiftPassInvocation()}, {addr},
{toInst->asSILNode()},
getComplexityBudget(addr));
}
return MemoryBehavior::MayHaveSideEffects;
}
bool AliasAnalysis::isObjectReleasedByInst(SILValue obj, SILInstruction *inst) {
if (isObjReleasedFunction) {
return isObjReleasedFunction({PM->getSwiftPassInvocation()}, {obj}, {inst->asSILNode()}) != 0;
}
return true;
}
bool AliasAnalysis::isAddrVisibleFromObject(SILValue addr, SILValue obj) {
if (isAddrVisibleFromObjFunction) {
return isAddrVisibleFromObjFunction({PM->getSwiftPassInvocation()}, {addr}, {obj},
getComplexityBudget(addr)) != 0;
}
return true;
}
bool AliasAnalysis::canReferenceSameField(SILValue lhs, SILValue rhs) {
if (canReferenceSameFieldFunction) {
return canReferenceSameFieldFunction({PM->getSwiftPassInvocation()}, {lhs}, {rhs}) != 0;
}
return true;
}
// To avoid quadratic complexity for large functions, we limit the amount
// of work what the EscapeUtils are allowed to to.
// This keeps the complexity linear.
//
// This arbitrary limit is good enough for almost all functions. It lets
// the EscapeUtils do several hundred up/down walks which is much more than
// needed in most cases.
int AliasAnalysis::getComplexityBudget(SILValue valueInFunction) {
if (estimatedFunctionSize < 0) {
int numInsts = 0;
SILFunction *f = valueInFunction->getFunction();
for (SILBasicBlock &block : *f) {
numInsts += std::distance(block.begin(), block.end());
}
estimatedFunctionSize = numInsts;
}
return 1000000 / estimatedFunctionSize;
}