-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathAccessSummaryAnalysis.cpp
685 lines (581 loc) · 24 KB
/
AccessSummaryAnalysis.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
//===--- AccessSummaryAnalysis.cpp - SIL Access Summary Analysis ----------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sil-access-summary-analysis"
#include "swift/SIL/InstructionUtils.h"
#include "swift/SIL/SILArgument.h"
#include "swift/SILOptimizer/Analysis/AccessSummaryAnalysis.h"
#include "swift/SILOptimizer/Analysis/FunctionOrder.h"
#include "swift/SILOptimizer/PassManager/PassManager.h"
#include "swift/SIL/DebugUtils.h"
using namespace swift;
void AccessSummaryAnalysis::processFunction(FunctionInfo *info,
FunctionOrder &order) {
// Does the summary need to be recomputed?
if (order.prepareForVisiting(info))
return;
// Compute function summary on a per-argument basis.
unsigned index = 0;
for (SILArgument *arg : info->getFunction()->getArguments()) {
FunctionSummary &functionSummary = info->getSummary();
ArgumentSummary &argSummary =
functionSummary.getAccessForArgument(index);
++index;
auto *functionArg = cast<SILFunctionArgument>(arg);
// Only summarize @inout_aliasable arguments.
SILArgumentConvention convention =
functionArg->getArgumentConvention().Value;
if (convention != SILArgumentConvention::Indirect_InoutAliasable)
continue;
processArgument(info, functionArg, argSummary, order);
}
}
/// Track uses of the arguments, recording in the summary any accesses
/// started by a begin_access and any flows of the arguments to other
/// functions.
void AccessSummaryAnalysis::processArgument(FunctionInfo *info,
SILFunctionArgument *argument,
ArgumentSummary &summary,
FunctionOrder &order) {
unsigned argumentIndex = argument->getIndex();
// Use a worklist to track argument uses to be processed.
llvm::SmallVector<Operand *, 32> worklist;
// Start by adding the immediate uses of the argument to the worklist.
worklist.append(argument->use_begin(), argument->use_end());
// Iterate to follow uses of the arguments.
while (!worklist.empty()) {
Operand *operand = worklist.pop_back_val();
SILInstruction *user = operand->getUser();
// Handle all types of full applies without switching over them.
// Ultimately, this analysis only considers calls with @inout_aliasable
// arguments because other argument conventions require an access on the
// caller side.
if (auto apply = FullApplySite::isa(user)) {
SILFunction *callee = apply.getCalleeFunction();
// We can't apply a summary for function whose body we can't see. Since
// user-provided closures are always in the same module as their callee
// This likely indicates a missing begin_access before an open-coded
// call.
if (!callee || callee->empty()) {
summary.mergeWith(SILAccessKind::Modify, apply.getLoc(),
apply.getModule().getIndexTrieRoot());
continue;
}
unsigned operandNumber = operand->getOperandNumber();
assert(operandNumber > 0 && "Summarizing apply for non-argument?");
unsigned calleeArgumentIndex = operandNumber - 1;
processCall(info, argumentIndex, callee, calleeArgumentIndex, order);
continue;
}
switch (user->getKind()) {
case SILInstructionKind::MarkUnresolvedNonCopyableValueInst: {
// Pass through to the address being checked.
auto inst = cast<MarkUnresolvedNonCopyableValueInst>(user);
worklist.append(inst->use_begin(), inst->use_end());
break;
}
case SILInstructionKind::BeginAccessInst: {
auto *BAI = cast<BeginAccessInst>(user);
if (BAI->getEnforcement() != SILAccessEnforcement::Unsafe) {
const IndexTrieNode *subPath = findSubPathAccessed(BAI);
summary.mergeWith(BAI->getAccessKind(), BAI->getLoc(), subPath);
// We don't add the users of the begin_access to the worklist because
// even if these users eventually begin an access to the address
// or a projection from it, that access can't begin more exclusive
// access than this access -- otherwise it will be diagnosed
// elsewhere.
}
break;
}
case SILInstructionKind::EndUnpairedAccessInst:
// Don't diagnose unpaired access statically.
assert(cast<EndUnpairedAccessInst>(user)->getEnforcement() ==
SILAccessEnforcement::Dynamic);
break;
case SILInstructionKind::StructElementAddrInst:
case SILInstructionKind::TupleElementAddrInst: {
// Eventually we'll summarize individual struct elements separately.
// For now an access to a part of the struct is treated as an access
// to the whole struct.
auto inst = cast<SingleValueInstruction>(user);
worklist.append(inst->use_begin(), inst->use_end());
break;
}
case SILInstructionKind::AddressToPointerInst:
// Ignore these uses, they don't affect formal accesses.
break;
case SILInstructionKind::PartialApplyInst:
processPartialApply(info, argumentIndex, cast<PartialApplyInst>(user),
operand, order);
break;
case SILInstructionKind::DebugValueInst:
if (DebugValueInst::hasAddrVal(user))
break;
LLVM_FALLTHROUGH;
default:
// FIXME: These likely represent scenarios in which we're not generating
// begin access markers. Ignore these for now. But we really should
// add SIL verification to ensure all loads and stores have associated
// access markers. Once SIL verification is implemented, enable the
// following assert to verify that the cases handled above are
// comprehensive, which guarantees that exclusivity enforcement is
// complete.
// assert(false && "Unrecognized argument use");
break;
}
}
}
#ifndef NDEBUG
/// Sanity check to make sure that a noescape partial apply is only ultimately
/// used by directly calling it or passing it as argument, but not using it as a
/// partial_apply callee.
///
/// An error found in DiagnoseInvalidEscapingCaptures can indicate invalid SIL
/// that is detected here but not in normal SIL verification. When the
/// source-level closure captures an inout argument, it appears in SIL to be a
/// non-escaping closure. The following verification then fails because the
/// "nonescaping" closure actually escapes.
///
/// FIXME: This should be checked in the SILVerifier, with consideration for the
/// caveat above where an inout has been captured be an escaping closure.
static bool hasExpectedUsesOfNoEscapePartialApply(Operand *partialApplyUse) {
SILInstruction *user = partialApplyUse->getUser();
// Bypass this verification when a diagnostic error is present. See comments
// on DiagnoseInvalidEscapingCaptures above.
if (user->getModule().getASTContext().hadError())
return true;
if (isIncidentalUse(user))
return true;
// It is fine to call the partial apply
switch (user->getKind()) {
case SILInstructionKind::ApplyInst:
case SILInstructionKind::TryApplyInst:
case SILInstructionKind::BeginApplyInst:
// The partial_apply must be passed to a @noescape argument type, but that
// is already checked by the SIL verifier.
return true;
// partial_apply [stack] is terminated by a dealloc_stack.
case SILInstructionKind::DeallocStackInst:
return true;
case SILInstructionKind::ConvertFunctionInst:
return llvm::all_of(cast<ConvertFunctionInst>(user)->getUses(),
hasExpectedUsesOfNoEscapePartialApply);
case SILInstructionKind::ConvertEscapeToNoEscapeInst:
return llvm::all_of(cast<ConvertEscapeToNoEscapeInst>(user)->getUses(),
hasExpectedUsesOfNoEscapePartialApply);
case SILInstructionKind::PartialApplyInst:
if (partialApplyUse->get() == cast<PartialApplyInst>(user)->getCallee())
return false;
return llvm::all_of(cast<PartialApplyInst>(user)->getUses(),
hasExpectedUsesOfNoEscapePartialApply);
// Look through begin_borrow.
case SILInstructionKind::BeginBorrowInst:
return llvm::all_of(cast<BeginBorrowInst>(user)->getUses(),
hasExpectedUsesOfNoEscapePartialApply);
// Look through mark_dependence.
case SILInstructionKind::MarkDependenceInst:
return llvm::all_of(cast<MarkDependenceInst>(user)->getUses(),
hasExpectedUsesOfNoEscapePartialApply);
case SILInstructionKind::CopyBlockWithoutEscapingInst:
return partialApplyUse->getOperandNumber() ==
CopyBlockWithoutEscapingInst::Closure;
case SILInstructionKind::CopyValueInst:
return llvm::all_of(cast<CopyValueInst>(user)->getUses(),
hasExpectedUsesOfNoEscapePartialApply);
case SILInstructionKind::MoveValueInst:
return llvm::all_of(cast<MoveValueInst>(user)->getUses(),
hasExpectedUsesOfNoEscapePartialApply);
case SILInstructionKind::IsEscapingClosureInst:
case SILInstructionKind::StoreInst:
case SILInstructionKind::DestroyValueInst:
// @block_storage is passed by storing it to the stack. We know this is
// still nonescaping simply because our original argument convention is
// @inout_aliasable. In this SIL, both store and destroy_value are users
// of %closure:
//
// %closure = partial_apply %f1(%arg)
// : $@convention(thin) (@inout_aliasable T) -> ()
// %storage = alloc_stack $@block_storage @callee_owned () -> ()
// %block_addr = project_block_storage %storage
// : $*@block_storage @callee_owned () -> ()
// store %closure to [init] %block_addr : $*@callee_owned () -> ()
// %block = init_block_storage_header %storage
// : $*@block_storage @callee_owned () -> (),
// invoke %f2 : $@convention(c)
// (@inout_aliasable @block_storage @callee_owned () -> ()) -> (),
// type $@convention(block) () -> ()
// %copy = copy_block %block : $@convention(block) () -> ()
// destroy_value %storage : $@callee_owned () -> ()
return true;
default:
return false;
}
}
#endif
void AccessSummaryAnalysis::processPartialApply(FunctionInfo *callerInfo,
unsigned callerArgumentIndex,
PartialApplyInst *apply,
Operand *applyArgumentOperand,
FunctionOrder &order) {
SILFunction *calleeFunction = apply->getCalleeFunction();
assert(calleeFunction && !calleeFunction->empty() &&
"Missing definition of noescape closure?");
// Make sure the partial_apply is not calling the result of another
// partial_apply.
assert(isa<FunctionRefBaseInst>(apply->getCallee())
&& "Noescape partial apply of non-functionref?");
assert(llvm::all_of(apply->getUses(),
hasExpectedUsesOfNoEscapePartialApply) &&
"noescape partial_apply has unexpected use!");
// The argument index in the called function.
ApplySite site(apply);
unsigned calleeArgumentIndex = site.getCalleeArgIndex(*applyArgumentOperand);
processCall(callerInfo, callerArgumentIndex, calleeFunction,
calleeArgumentIndex, order);
}
void AccessSummaryAnalysis::processCall(FunctionInfo *callerInfo,
unsigned callerArgumentIndex,
SILFunction *callee,
unsigned argumentIndex,
FunctionOrder &order) {
// Record the flow of an argument from the caller to the callee so that
// the interprocedural analysis can iterate to a fixpoint.
FunctionInfo *calleeInfo = getFunctionInfo(callee);
ArgumentFlow flow = {callerArgumentIndex, argumentIndex, calleeInfo};
callerInfo->recordFlow(flow);
if (!calleeInfo->isVisited()) {
processFunction(calleeInfo, order);
order.tryToSchedule(calleeInfo);
}
propagateFromCalleeToCaller(callerInfo, flow);
}
bool AccessSummaryAnalysis::ArgumentSummary::mergeWith(
SILAccessKind otherKind, SILLocation otherLoc,
const IndexTrieNode *otherSubPath) {
bool changed = false;
auto found =
SubAccesses.try_emplace(otherSubPath, otherKind, otherLoc, otherSubPath);
if (!found.second) {
// We already have an entry for otherSubPath, so merge with it.
changed = found.first->second.mergeWith(otherKind, otherLoc, otherSubPath);
} else {
// We just added a new entry for otherSubPath.
changed = true;
}
return changed;
}
bool AccessSummaryAnalysis::ArgumentSummary::mergeWith(
const ArgumentSummary &other) {
bool changed = false;
const SubAccessMap &otherAccesses = other.SubAccesses;
for (auto it = otherAccesses.begin(), e = otherAccesses.end(); it != e;
++it) {
const SubAccessSummary &otherSubAccess = it->getSecond();
if (mergeWith(otherSubAccess.getAccessKind(), otherSubAccess.getAccessLoc(),
otherSubAccess.getSubPath())) {
changed = true;
}
}
return changed;
}
bool AccessSummaryAnalysis::SubAccessSummary::mergeWith(
SILAccessKind otherKind, SILLocation otherLoc,
const IndexTrieNode *otherSubPath) {
assert(otherSubPath == this->SubPath);
// In the lattice, a modification-like accesses subsume a read access or no
// access.
if (Kind == SILAccessKind::Read && otherKind != SILAccessKind::Read) {
Kind = otherKind;
AccessLoc = otherLoc;
return true;
}
return false;
}
bool AccessSummaryAnalysis::SubAccessSummary::mergeWith(
const SubAccessSummary &other) {
// We don't currently support merging accesses for different sub paths.
assert(SubPath == other.SubPath);
return mergeWith(other.Kind, other.AccessLoc, SubPath);
}
void AccessSummaryAnalysis::recompute(FunctionInfo *initial) {
allocNewUpdateID();
FunctionOrder order(getCurrentUpdateID());
// Summarize the function and its callees.
processFunction(initial, order);
// Build the bottom-up order.
order.tryToSchedule(initial);
order.finishScheduling();
// Iterate the interprocedural analysis to a fixed point.
bool needAnotherIteration;
do {
needAnotherIteration = false;
for (FunctionInfo *calleeInfo : order) {
for (const auto &callerEntry : calleeInfo->getCallers()) {
assert(callerEntry.isValid());
if (!order.wasRecomputedWithCurrentUpdateID(calleeInfo))
continue;
FunctionInfo *callerInfo = callerEntry.Caller;
// Propagate from callee to caller.
for (const auto &argumentFlow : callerInfo->getArgumentFlows()) {
if (argumentFlow.CalleeFunctionInfo != calleeInfo)
continue;
bool changed = propagateFromCalleeToCaller(callerInfo, argumentFlow);
if (changed && !callerInfo->isScheduledAfter(calleeInfo)) {
needAnotherIteration = true;
}
}
}
}
} while (needAnotherIteration);
}
std::string AccessSummaryAnalysis::SubAccessSummary::getDescription(
SILType BaseType, SILModule &M, TypeExpansionContext context) const {
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
os << AccessSummaryAnalysis::getSubPathDescription(BaseType, SubPath, M,
context);
if (!SubPath->isRoot())
os << " ";
os << getSILAccessKindName(getAccessKind());
return os.str();
}
void AccessSummaryAnalysis::ArgumentSummary::getSortedSubAccesses(
SmallVectorImpl<SubAccessSummary> &storage) const {
for (auto it = SubAccesses.begin(), e = SubAccesses.end(); it != e; ++it) {
storage.push_back(it->getSecond());
}
const auto &compare = [](const SubAccessSummary &lhs,
const SubAccessSummary &rhs) {
return compareSubPaths(lhs.getSubPath(), rhs.getSubPath());
};
std::sort(storage.begin(), storage.end(), compare);
assert(storage.size() == SubAccesses.size());
}
std::string AccessSummaryAnalysis::ArgumentSummary::getDescription(
SILType BaseType, SILModule &M, TypeExpansionContext context) const {
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
os << "[";
unsigned index = 0;
SmallVector<AccessSummaryAnalysis::SubAccessSummary, 8> Sorted;
Sorted.reserve(SubAccesses.size());
getSortedSubAccesses(Sorted);
for (auto &subAccess : Sorted) {
if (index > 0) {
os << ", ";
}
os << subAccess.getDescription(BaseType, M, context);
++index;
}
os << "]";
return os.str();
}
bool AccessSummaryAnalysis::propagateFromCalleeToCaller(
FunctionInfo *callerInfo, ArgumentFlow flow) {
// For a given flow from a caller's argument to a callee's argument,
// propagate the argument summary information to the caller.
FunctionInfo *calleeInfo = flow.CalleeFunctionInfo;
const auto &calleeArgument =
calleeInfo->getSummary().getAccessForArgument(flow.CalleeArgumentIndex);
auto &callerArgument =
callerInfo->getSummary().getAccessForArgument(flow.CallerArgumentIndex);
bool changed = callerArgument.mergeWith(calleeArgument);
return changed;
}
AccessSummaryAnalysis::FunctionInfo *
AccessSummaryAnalysis::getFunctionInfo(SILFunction *F) {
FunctionInfo *&FInfo = FunctionInfos[F];
if (!FInfo) {
FInfo = new (Allocator.Allocate()) FunctionInfo(F);
}
return FInfo;
}
const AccessSummaryAnalysis::FunctionSummary &
AccessSummaryAnalysis::getOrCreateSummary(SILFunction *fn) {
FunctionInfo *info = getFunctionInfo(fn);
if (!info->isValid())
recompute(info);
return info->getSummary();
}
void AccessSummaryAnalysis::AccessSummaryAnalysis::invalidate() {
FunctionInfos.clear();
Allocator.DestroyAll();
}
void AccessSummaryAnalysis::invalidate(SILFunction *F, InvalidationKind K) {
FunctionInfos.erase(F);
}
SILAnalysis *swift::createAccessSummaryAnalysis(SILModule *M) {
return new AccessSummaryAnalysis();
}
/// If the instruction is a field or tuple projection and it has a single
/// user return a pair of the single user and the projection index.
/// Otherwise, return a pair with the component nullptr and the second
/// unspecified.
static std::pair<SingleValueInstruction *, unsigned>
getSingleAddressProjectionUser(SingleValueInstruction *I) {
SingleValueInstruction *SingleUser = nullptr;
unsigned ProjectionIndex = 0;
for (Operand *Use : I->getUses()) {
SILInstruction *User = Use->getUser();
if (isa<BeginAccessInst>(I) && isa<EndAccessInst>(User))
continue;
// Ignore sanitizer instrumentation when looking for a single projection
// user. This ensures that we're able to find a single projection subpath
// even when sanitization is enabled.
if (isSanitizerInstrumentation(User))
continue;
// We have more than a single user so bail.
if (SingleUser)
return std::make_pair(nullptr, 0);
switch (User->getKind()) {
case SILInstructionKind::StructElementAddrInst: {
auto inst = cast<StructElementAddrInst>(User);
ProjectionIndex = inst->getFieldIndex();
SingleUser = inst;
break;
}
case SILInstructionKind::TupleElementAddrInst: {
auto inst = cast<TupleElementAddrInst>(User);
ProjectionIndex = inst->getFieldIndex();
SingleUser = inst;
break;
}
default:
return std::make_pair(nullptr, 0);
}
}
return std::make_pair(SingleUser, ProjectionIndex);
}
const IndexTrieNode *
AccessSummaryAnalysis::findSubPathAccessed(BeginAccessInst *BAI) {
IndexTrieNode *SubPath = BAI->getModule().getIndexTrieRoot();
// For each single-user projection of BAI, construct or get a node
// from the trie representing the index of the field or tuple element
// accessed by that projection.
SingleValueInstruction *Iter = BAI;
while (true) {
std::pair<SingleValueInstruction *, unsigned> ProjectionUser =
getSingleAddressProjectionUser(Iter);
if (!ProjectionUser.first)
break;
SubPath = SubPath->getChild(ProjectionUser.second);
Iter = ProjectionUser.first;
}
return SubPath;
}
SILType AccessSummaryAnalysis::getSubPathType(SILType baseType,
const IndexTrieNode *subPath,
SILModule &mod,
TypeExpansionContext context) {
// Walk the trie to the root to collect the sequence (in reverse order).
llvm::SmallVector<unsigned, 4> reversedIndices;
const IndexTrieNode *indexTrieNode = subPath;
while (!indexTrieNode->isRoot()) {
reversedIndices.push_back(indexTrieNode->getIndex());
indexTrieNode = indexTrieNode->getParent();
}
SILType iterType = baseType;
for (unsigned index : llvm::reverse(reversedIndices)) {
if (StructDecl *decl = iterType.getStructOrBoundGenericStruct()) {
VarDecl *var = decl->getStoredProperties()[index];
iterType = iterType.getFieldType(var, mod, context);
continue;
}
if (auto tupleTy = iterType.getAs<TupleType>()) {
iterType = iterType.getTupleElementType(index);
continue;
}
llvm_unreachable("unexpected type in projection subpath!");
}
return iterType;
}
/// Returns a string representation of the SubPath
/// suitable for use in diagnostic text. Only supports the Projections
/// that stored-property relaxation supports: struct stored properties
/// and tuple elements.
std::string AccessSummaryAnalysis::getSubPathDescription(
SILType baseType, const IndexTrieNode *subPath, SILModule &M,
TypeExpansionContext context) {
// Walk the trie to the root to collect the sequence (in reverse order).
llvm::SmallVector<unsigned, 4> reversedIndices;
const IndexTrieNode *I = subPath;
while (!I->isRoot()) {
reversedIndices.push_back(I->getIndex());
I = I->getParent();
}
std::string sbuf;
llvm::raw_string_ostream os(sbuf);
SILType containingType = baseType;
for (unsigned index : llvm::reverse(reversedIndices)) {
os << ".";
if (StructDecl *D = containingType.getStructOrBoundGenericStruct()) {
VarDecl *var = D->getStoredProperties()[index];
os << var->getBaseName();
containingType = containingType.getFieldType(var, M, context);
continue;
}
if (auto tupleTy = containingType.getAs<TupleType>()) {
Identifier elementName = tupleTy->getElement(index).getName();
if (elementName.empty())
os << index;
else
os << elementName;
containingType = containingType.getTupleElementType(index);
continue;
}
llvm_unreachable("Unexpected type in projection SubPath!");
}
return os.str();
}
static unsigned subPathLength(const IndexTrieNode *subPath) {
unsigned length = 0;
const IndexTrieNode *iter = subPath;
while (iter) {
++length;
iter = iter->getParent();
}
return length;
}
bool AccessSummaryAnalysis::compareSubPaths(const IndexTrieNode *lhs,
const IndexTrieNode *rhs) {
unsigned lhsLength = subPathLength(lhs);
unsigned rhsLength = subPathLength(rhs);
if (lhsLength != rhsLength)
return lhsLength < rhsLength;
while (lhs) {
if (lhs->getIndex() != rhs->getIndex())
return lhs->getIndex() < rhs->getIndex();
lhs = lhs->getParent();
rhs = rhs->getParent();
}
assert(!rhs && "Equal paths with different lengths?");
// The two paths are equal.
return false;
}
void AccessSummaryAnalysis::FunctionSummary::print(raw_ostream &os,
SILFunction *fn) const {
unsigned argCount = getArgumentCount();
os << "(";
for (unsigned i = 0; i < argCount; ++i) {
if (i > 0) {
os << ", ";
}
SILArgument *arg = fn->getArgument(i);
SILModule &m = fn->getModule();
os << getAccessForArgument(i).getDescription(arg->getType(), m,
TypeExpansionContext(*fn));
}
os << ")";
}
void AccessSummaryAnalysis::FunctionSummary::dump(SILFunction *fn) const {
print(llvm::errs(), fn);
llvm::errs() << '\n';
}