-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathSILGenFunction.h
946 lines (772 loc) · 39.8 KB
/
SILGenFunction.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
//===--- SILGenFunction.h - Function Specific AST lower context -*- C++ -*-===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2015 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See http://swift.org/LICENSE.txt for license information
// See http://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
#ifndef SILGENFUNCTION_H
#define SILGENFUNCTION_H
#include "SILGen.h"
#include "Condition.h"
#include "JumpDest.h"
#include "swift/AST/AnyFunctionRef.h"
#include "llvm/ADT/PointerIntPair.h"
#include "swift/SIL/SILBuilder.h"
namespace swift {
namespace Lowering {
struct Materialize;
/// SGFContext - Internal context information for the SILGenFunction visitor.
///
/// In general, emission methods which take an SGFContext indicate
/// that they've initialized the emit-into buffer (if they have) by
/// returning a "isInContext()" ManagedValue of whatever type. Callers who
/// propagate down an SGFContext that might have a emit-into buffer must be
/// aware of this.
///
/// Clients of emission routines that take an SGFContext can also specify that
/// they are ok getting back an RValue at +0 instead of requiring it to be at
/// +1. The client is then responsible for checking the ManagedValue to see if
/// it got back a ManagedValue at +0 or +1.
class SGFContext {
llvm::PointerIntPair<Initialization *, 1, bool> state;
public:
SGFContext() = default;
enum AllowPlusZero_t {
AllowPlusZero
};
/// Creates an emitInto context that will store the result of the visited expr
/// into the given Initialization.
explicit SGFContext(Initialization *emitInto) : state(emitInto, false) {
}
/*implicit*/
SGFContext(AllowPlusZero_t) : state(nullptr, true) {
}
/// Returns a pointer to the Initialization that the current expression should
/// store its result to, or null if the expression should allocate temporary
/// storage for its result.
Initialization *getEmitInto() const {
return state.getPointer();
}
/// Return true if a ManagedValue producer is encouraged to return its value
/// at +0 instead of +1.
bool isPlusZeroOk() const {
return state.getInt();
}
};
class SwitchContext;
struct LValueWriteback;
/// SILGenFunction - an ASTVisitor for producing SIL from function bodies.
class LLVM_LIBRARY_VISIBILITY SILGenFunction
: public ASTVisitor<SILGenFunction>
{ // style violation because Xcode <rdar://problem/13065676>
public:
/// The SILGenModule this function belongs to.
SILGenModule &SGM;
/// The SILFunction being constructed.
SILFunction &F;
/// The name of the function currently being emitted, as presented to user
/// code by __FUNCTION__.
DeclName MagicFunctionName;
std::string MagicFunctionString;
ASTContext &getASTContext() const { return SGM.M.getASTContext(); }
/// This is used to keep track of all SILInstructions inserted by \c B.
SmallVector<SILInstruction*, 32> InsertedInstrs;
size_t LastInsnWithoutScope;
/// B - The SILBuilder used to construct the SILFunction. It is what maintains
/// the notion of the current block being emitted into.
SILBuilder B;
/// IndirectReturnAddress - For a function with an indirect return, holds a
/// value representing the address to initialize with the return value. Null
/// for a function that returns by value.
SILValue IndirectReturnAddress;
std::vector<JumpDest> BreakDestStack;
std::vector<JumpDest> ContinueDestStack;
std::vector<SwitchContext*> SwitchStack;
/// Keep track of our current nested scope.
std::vector<SILDebugScope*> DebugScopeStack;
/// The cleanup depth and BB for when the operand of a
/// BindOptionalExpr is a missing value.
SmallVector<JumpDest, 2> BindOptionalFailureDests;
/// The cleanup depth and epilog BB for "return" instructions.
JumpDest ReturnDest;
/// \brief True if a non-void return is required in this function.
bool NeedsReturn : 1;
/// FIXME: Hack to temporarily use dispatched delegation only for
/// complete object initializers.
bool IsCompleteObjectInit = false;
/// \brief The SIL location corresponding to the AST node being processed.
SILLocation CurrentSILLoc;
/// Cleanups - This records information about the currently active cleanups.
CleanupManager Cleanups;
/// The stack of pending writebacks.
std::vector<LValueWriteback> *WritebackStack = 0;
std::vector<LValueWriteback> &getWritebackStack();
bool InWritebackScope = false;
bool InInOutConversionScope = false;
/// freeWritebackStack - Just deletes WritebackStack. Out of line to avoid
/// having to put the definition of LValueWriteback in this header.
void freeWritebackStack();
/// VarLoc - representation of an emitted local variable. Local variables can
/// either have a singular constant value that is always returned (in which
/// case VarLoc holds that value), or may be emitted into a box. If they are
/// emitted into a box, the retainable pointer is also stored.
struct VarLoc {
/// addressOrValue - the address at which the variable is stored, or the
/// value of the decl if it is a constant.
llvm::PointerIntPair<SILValue, 1, bool> addressOrValue;
public:
/// box - For a non-constant value, this is the retainable box for the
/// variable. It may be invalid if no box was made for the value (e.g.,
/// because it was an inout value, or constant).
SILValue box;
bool isConstant() const { return addressOrValue.getInt(); }
bool isAddress() const { return !isConstant(); }
SILValue getAddress() const {
assert(isAddress() && "Can't get the address of a constant");
return addressOrValue.getPointer();
}
SILValue getConstant() const {
assert(isConstant() && "Emit a load to get the value of an address");
return addressOrValue.getPointer();
}
static VarLoc getConstant(SILValue Val) {
VarLoc Result;
Result.addressOrValue.setPointerAndInt(Val, true);
return Result;
}
static VarLoc getAddress(SILValue Addr, SILValue Box = SILValue()) {
VarLoc Result;
Result.addressOrValue.setPointerAndInt(Addr, false);
Result.box = Box;
return Result;
}
};
/// VarLocs - Entries in this map are generated when a PatternBindingDecl is
/// emitted. The map is queried to produce the lvalue for a DeclRefExpr to
/// a local variable.
llvm::DenseMap<ValueDecl*, VarLoc> VarLocs;
/// LocalFunctions - Entries in this map are generated when a local function
/// declaration that requires local context, such as a func closure, is
/// emitted. This map is then queried to produce the value for a DeclRefExpr
/// to a local constant.
llvm::DenseMap<SILDeclRef, SILValue> LocalFunctions;
/// Mapping from active opaque value expressions to their values,
/// along with a bit for each indicating whether it has been consumed yet.
llvm::DenseMap<OpaqueValueExpr *, std::pair<SILValue, bool>> OpaqueValues;
/// RAII object that introduces a temporary binding for an opaque value.
///
/// Each time the opaque value expression is referenced, it will be
/// retained/released separately. When this RAII object goes out of
/// scope, the value will be destroyed if requested.
class OpaqueValueRAII {
SILGenFunction &Self;
OpaqueValueExpr *OpaqueValue;
bool Destroy;
OpaqueValueRAII(const OpaqueValueRAII &) = delete;
OpaqueValueRAII &operator=(const OpaqueValueRAII &) = delete;
public:
OpaqueValueRAII(SILGenFunction &self, OpaqueValueExpr *opaqueValue,
SILValue value, bool destroy)
: Self(self), OpaqueValue(opaqueValue), Destroy(destroy)
{
assert(Self.OpaqueValues.count(OpaqueValue) == 0 &&
"Opaque value already has a binding");
Self.OpaqueValues[OpaqueValue] = std::make_pair(value, false);
}
~OpaqueValueRAII();
};
/// True if 'return' without an operand or falling off the end of the current
/// function is valid.
bool allowsVoidReturn() const {
return ReturnDest.getBlock()->bbarg_empty();
}
/// This location, when set, is used as an override location for magic
/// identifier expansion (e.g. __FILE__). This allows default argument
/// expansion to report the location of the call, instead of the location
/// of the original expr.
SourceLoc overrideLocationForMagicIdentifiers;
SILGenFunction(SILGenModule &SGM, SILFunction &F);
~SILGenFunction();
/// Return a stable reference to the current cleanup.
CleanupsDepth getCleanupsDepth() const {
return Cleanups.getCleanupsDepth();
}
CleanupHandle getTopCleanup() const {
return Cleanups.getTopCleanup();
}
SILFunction &getFunction() { return F; }
SILBuilder &getBuilder() { return B; }
const TypeLowering &getTypeLowering(AbstractionPattern orig, Type subst,
unsigned uncurryLevel = 0) {
return SGM.Types.getTypeLowering(orig, subst, uncurryLevel);
}
const TypeLowering &getTypeLowering(Type t, unsigned uncurryLevel = 0) {
return SGM.Types.getTypeLowering(t, uncurryLevel);
}
SILType getLoweredType(AbstractionPattern orig, Type subst,
unsigned uncurryLevel = 0) {
return SGM.Types.getLoweredType(orig, subst, uncurryLevel);
}
SILType getLoweredType(Type t, unsigned uncurryLevel = 0) {
return SGM.Types.getLoweredType(t, uncurryLevel);
}
SILType getLoweredLoadableType(Type t, unsigned uncurryLevel = 0) {
return SGM.Types.getLoweredLoadableType(t, uncurryLevel);
}
const TypeLowering &getTypeLowering(SILType type) {
return SGM.Types.getTypeLowering(type);
}
SILConstantInfo getConstantInfo(SILDeclRef constant) {
return SGM.Types.getConstantInfo(constant);
}
SourceManager &getSourceManager() { return SGM.M.getASTContext().SourceMgr; }
/// enterDebugScope - Push a new debug scope and set its parent pointer.
void enterDebugScope(SILDebugScope *DS) {
if (DebugScopeStack.size())
DS->setParent(DebugScopeStack.back());
else
DS->setParent(F.getDebugScope());
DebugScopeStack.push_back(DS);
setDebugScopeForInsertedInstrs(DS->Parent);
}
/// enterDebugScope - return to the previous debug scope.
void leaveDebugScope() {
assert(DebugScopeStack.size());
setDebugScopeForInsertedInstrs(DebugScopeStack.back());
DebugScopeStack.pop_back();
}
/// Set the debug scope for all SILInstructions that where emitted
/// from when we entered the last scope up to the current one.
void setDebugScopeForInsertedInstrs(SILDebugScope *DS) {
while (LastInsnWithoutScope < InsertedInstrs.size()) {
InsertedInstrs[LastInsnWithoutScope++]->setDebugScope(DS);
}
}
//===--------------------------------------------------------------------===//
// Entry points for codegen
//===--------------------------------------------------------------------===//
/// \brief Generates code for a FuncDecl.
void emitFunction(FuncDecl *fd);
/// \brief Emits code for a ClosureExpr.
void emitClosure(AbstractClosureExpr *ce);
/// Generates code for a class destroying destructor. This
/// emits the body code from the DestructorDecl, calls the base class
/// destructor, then implicitly releases the elements of the class.
void emitDestroyingDestructor(DestructorDecl *dd);
/// Generates code for a class deallocating destructor. This
/// calls the destroying destructor and then deallocates 'self'.
void emitDeallocatingDestructor(DestructorDecl *dd);
/// Generates code for a struct constructor.
/// This allocates the new 'self' value, emits the
/// body code, then returns the final initialized 'self'.
void emitValueConstructor(ConstructorDecl *ctor);
/// Generates code for an enum case constructor.
/// This allocates the new 'self' value, injects the enum case,
/// then returns the final initialized 'self'.
void emitEnumConstructor(EnumElementDecl *element);
/// Generates code for a class constructor's
/// allocating entry point. This allocates the new 'self' value, passes it to
/// the initializer entry point, then returns the initialized 'self'.
void emitClassConstructorAllocator(ConstructorDecl *ctor);
/// Generates code for a class constructor's
/// initializing entry point. This takes 'self' and the constructor arguments
/// as parameters and executes the constructor body to initialize 'self'.
void emitClassConstructorInitializer(ConstructorDecl *ctor);
/// Generates code to initialize instance variables from their
/// initializers.
///
/// \param selfDecl The 'self' declaration within the current function.
/// \param nominal The type whose members are being initialized.
void emitMemberInitializers(VarDecl *selfDecl, NominalTypeDecl *nominal);
/// Emit a method that initializes the ivars of a class.
void emitIVarInitializer(SILDeclRef ivarInitializer);
/// Emit a method that destroys the ivars of a class.
void emitIVarDestroyer(SILDeclRef ivarDestroyer);
/// Generates code to destroy the instance variables of a class.
///
/// \param selfValue The 'self' value.
/// \param cd The class declaration whose members are being destroyed.
void emitClassMemberDestruction(SILValue selfValue, ClassDecl *cd,
RegularLocation loc,
CleanupLocation cleanupLoc);
/// Generates code for a curry thunk from one uncurry level
/// of a function to another.
void emitCurryThunk(FuncDecl *fd, SILDeclRef fromLevel, SILDeclRef toLevel);
/// Generates a thunk from a foreign function to the native Swift conventions.
void emitForeignThunk(SILDeclRef thunk);
// Generate a nullary function that returns the given value.
void emitGeneratorFunction(SILDeclRef function, Expr *value);
/// Generate an ObjC-compatible thunk for a method.
void emitObjCMethodThunk(SILDeclRef thunk);
/// Generate an ObjC-compatible getter for a property or subscript.
void emitObjCGetter(SILDeclRef getter);
/// Generate an ObjC-compatible setter for a property or subscript.
void emitObjCSetter(SILDeclRef setter);
/// Generate an ObjC-compatible destructor (-dealloc).
void emitObjCDestructor(SILDeclRef dtor);
/// Generate a lazy global initializer.
void emitLazyGlobalInitializer(PatternBindingDecl *binding);
/// Generate a global accessor, using the given initializer token and
/// function
void emitGlobalAccessor(VarDecl *global,
FuncDecl *builtinOnceDecl,
SILGlobalVariable *onceToken,
SILFunction *onceFunc);
/// Generate a protocol witness entry point, invoking 'witness' at the
/// abstraction level of 'requirement'.
void emitProtocolWitness(ProtocolConformance *conformance,
SILDeclRef requirement,
SILDeclRef witness,
ArrayRef<Substitution> witnessSubs,
IsFreeFunctionWitness_t isFree,
HasInOutSelfAbstractionDifference_t inOutSelf);
//===--------------------------------------------------------------------===//
// Control flow
//===--------------------------------------------------------------------===//
/// emitCondition - Emit a boolean expression as a control-flow condition.
///
/// \param E - The expression to be evaluated as a condition.
/// \param hasFalseCode - true if the false branch doesn't just lead
/// to the fallthrough.
/// \param invertValue - true if this routine should invert the value before
/// testing true/false.
/// \param contArgs - the types of the arguments to the continuation BB.
/// Matching argument values must be passed to exitTrue and exitFalse
/// of the resulting Condition object.
Condition emitCondition(Expr *E,
bool hasFalseCode = true, bool invertValue = false,
ArrayRef<SILType> contArgs = {});
Condition emitCondition(SILValue V, SILLocation Loc,
bool hasFalseCode = true, bool invertValue = false,
ArrayRef<SILType> contArgs = {});
SILBasicBlock *createBasicBlock() {
return new (F.getModule()) SILBasicBlock(&F);
}
//===--------------------------------------------------------------------===//
// Memory management
//===--------------------------------------------------------------------===//
/// emitProlog - Generates prolog code to allocate and clean up mutable
/// storage for closure captures and local arguments.
void emitProlog(AnyFunctionRef TheClosure, ArrayRef<Pattern*> paramPatterns,
Type resultType);
void emitProlog(ArrayRef<Pattern*> paramPatterns,
Type resultType, DeclContext *DeclCtx);
/// \brief Create (but do not emit) the epilog branch, and save the
/// current cleanups depth as the destination for return statement branches.
///
/// \param returnType If non-null, the epilog block will be created with an
/// argument of this type to receive the return value for
/// the function.
/// \param L The SILLocation which should be accosocated with
/// cleanup instructions.
void prepareEpilog(Type returnType, CleanupLocation L);
/// \brief Branch to and emit the epilog basic block. This will fuse
/// the epilog to the current basic block if the epilog bb has no predecessor.
/// The insertion point will be moved into the epilog block if it is
/// reachable.
///
/// \param TopLevelLoc The location of the top level AST node for which we are
/// constructing the epilog, such as a AbstractClosureExpr.
/// \returns Nothing if the epilog block is unreachable. Otherwise, returns
/// the epilog block's return value argument, or a null SILValue if
/// the epilog doesn't take a return value. Also returns the location
/// of the return instrcution if the epilog block is supposed to host
/// the ReturnLocation (This happens in case the predecessor block is
/// merged with the epilog block.)
std::pair<Optional<SILValue>, SILLocation>
emitEpilogBB(SILLocation TopLevelLoc);
/// \brief Emits a standard epilog which runs top-level cleanups then returns
/// the function return value, if any.
///
/// \param TopLevelLoc The location of the top-level expression during whose
/// evaluation the epilog is being produced, for example, the
/// AbstractClosureExpr.
/// \param IsAutoGen Flags if the prolog is auto-generated.
void emitEpilog(SILLocation TopLevelLoc, bool IsAutoGen = false);
/// emitSelfDecl - Emit a SILArgument for 'self', register it in varlocs, set
/// up debug info, etc. This returns the 'self' value.
SILValue emitSelfDecl(VarDecl *selfDecl);
/// Emits a temporary allocation that will be deallocated automatically at the
/// end of the current scope. Returns the address of the allocation.
SILValue emitTemporaryAllocation(SILLocation loc, SILType ty);
/// Prepares a buffer to receive the result of an expression, either using the
/// 'emit into' initialization buffer if available, or allocating a temporary
/// allocation if not.
///
/// The caller should call manageBufferForExprResult at the instant
/// that the buffer has been initialized.
SILValue getBufferForExprResult(SILLocation loc, SILType ty, SGFContext C);
/// Flag that the buffer for an expression result has been properly
/// initialized.
///
/// Returns an empty value if the buffer was taken from the context.
ManagedValue manageBufferForExprResult(SILValue buffer,
const TypeLowering &bufferTL,
SGFContext C);
//===--------------------------------------------------------------------===//
// Recursive entry points
//===--------------------------------------------------------------------===//
using ASTVisitorType::visit;
//===--------------------------------------------------------------------===//
// Statements
//===--------------------------------------------------------------------===//
void visitBraceStmt(BraceStmt *S);
void visitReturnStmt(ReturnStmt *S);
void visitIfStmt(IfStmt *S);
void visitIfConfigStmt(IfConfigStmt *S);
void visitWhileStmt(WhileStmt *S);
void visitDoWhileStmt(DoWhileStmt *S);
void visitForStmt(ForStmt *S);
void visitForEachStmt(ForEachStmt *S);
void visitBreakStmt(BreakStmt *S);
void visitContinueStmt(ContinueStmt *S);
void visitFallthroughStmt(FallthroughStmt *S);
void visitSwitchStmt(SwitchStmt *S);
void visitCaseStmt(CaseStmt *S);
//===--------------------------------------------------------------------===//
// Patterns
//===--------------------------------------------------------------------===//
void emitSwitchStmt(SwitchStmt *S);
void emitSwitchFallthrough(FallthroughStmt *S);
//===--------------------------------------------------------------------===//
// Expressions
//===--------------------------------------------------------------------===//
RValue visit(Expr *E) = delete;
/// Generate SIL for the given expression, storing the final result into the
/// specified Initialization buffer(s). This avoids an allocation and copy if
/// the result would be allocated into temporary memory normally.
void emitExprInto(Expr *E, Initialization *I);
/// Emit the given expression as an r-value.
RValue emitRValue(Expr *E, SGFContext C = SGFContext());
/// Emit the given expression as an r-value, then (if it is a tuple), combine
/// it together into a single ManagedValue.
ManagedValue emitRValueAsSingleValue(Expr *E, SGFContext C = SGFContext());
ManagedValue emitArrayInjectionCall(ManagedValue ObjectPtr,
SILValue BasePtr,
SILValue Length,
Expr *ArrayInjectionFunction,
SILLocation Loc);
SILValue emitConversionToSemanticRValue(SILLocation loc, SILValue value,
const TypeLowering &valueTL);
/// Emit the empty tuple value by emitting
SILValue emitEmptyTuple(SILLocation loc);
/// "Emit" an RValue representing an empty tuple.
RValue emitEmptyTupleRValue(SILLocation loc);
/// Returns a reference to a constant in global context. For local func decls
/// this returns the function constant with unapplied closure context.
SILValue emitGlobalFunctionRef(SILLocation loc, SILDeclRef constant) {
return emitGlobalFunctionRef(loc, constant, getConstantInfo(constant));
}
SILValue emitGlobalFunctionRef(SILLocation loc, SILDeclRef constant,
SILConstantInfo constantInfo);
/// Returns a reference to a constant in local context. This will return a
/// closure object reference if the constant refers to a local func decl.
/// In rvalue contexts, emitFunctionRef should be used instead, which retains
/// a local constant and returns a ManagedValue with a cleanup.
SILValue emitUnmanagedFunctionRef(SILLocation loc, SILDeclRef constant);
/// Returns a reference to a constant in local context. This will return a
/// retained closure object reference if the constant refers to a local func
/// decl.
ManagedValue emitFunctionRef(SILLocation loc, SILDeclRef constant);
ManagedValue emitFunctionRef(SILLocation loc, SILDeclRef constant,
SILConstantInfo constantInfo);
/// Emit the specified VarDecl as an LValue if possible, otherwise return
/// null.
ManagedValue emitLValueForDecl(SILLocation loc, VarDecl *var,
bool isDirectPropertyAccess = false);
/// Produce a singular RValue for a reference to the specified declaration,
/// with the given type and in response to the specified epxression. Try to
/// emit into the specified SGFContext to avoid copies (when provided).
ManagedValue emitRValueForDecl(SILLocation loc, ConcreteDeclRef decl, Type ty,
SGFContext C = SGFContext());
/// Produce a singular RValue for a load from the specified property.
ManagedValue emitRValueForPropertyLoad(SILLocation loc, ManagedValue base,
bool isSuper, VarDecl *property,
ArrayRef<Substitution> substitutions,
bool isDirectPropertyAccess,
Type propTy, SGFContext C);
ManagedValue emitClosureValue(SILLocation loc,
SILDeclRef function,
ArrayRef<Substitution> forwardSubs,
AnyFunctionRef TheClosure);
Materialize emitMaterialize(SILLocation loc, ManagedValue v);
RValueSource prepareAccessorBaseArg(SILLocation loc, ManagedValue base,
AbstractFunctionDecl *decl);
ManagedValue emitGetAccessor(SILLocation loc, AbstractStorageDecl *decl,
ArrayRef<Substitution> substitutions,
RValueSource &&optionalSelfValue,
bool isSuper,
RValue &&optionalSubscripts, SGFContext C);
void emitSetAccessor(SILLocation loc, AbstractStorageDecl *decl,
ArrayRef<Substitution> substitutions,
RValueSource &&optionalSelfValue,
bool isSuper,
RValue &&optionalSubscripts, RValue &&value);
ManagedValue emitApplyConversionFunction(SILLocation loc,
Expr *funcExpr,
Type resultType,
RValue &&operand);
ManagedValue emitManagedRetain(SILLocation loc, SILValue v);
ManagedValue emitManagedRetain(SILLocation loc, SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedRValueWithCleanup(SILValue v);
ManagedValue emitManagedRValueWithCleanup(SILValue v,
const TypeLowering &lowering);
ManagedValue emitManagedBufferWithCleanup(SILValue addr);
ManagedValue emitManagedBufferWithCleanup(SILValue addr,
const TypeLowering &lowering);
void emitSemanticLoadInto(SILLocation loc, SILValue src,
const TypeLowering &srcLowering,
SILValue dest,
const TypeLowering &destLowering,
IsTake_t isTake, IsInitialization_t isInit);
SILValue emitSemanticLoad(SILLocation loc, SILValue src,
const TypeLowering &srcLowering,
const TypeLowering &rvalueLowering,
IsTake_t isTake);
void emitSemanticStore(SILLocation loc, SILValue value,
SILValue dest, const TypeLowering &destTL,
IsInitialization_t isInit);
SILValue emitConversionFromSemanticValue(SILLocation loc,
SILValue semanticValue,
SILType storageType);
ManagedValue emitLoad(SILLocation loc, SILValue addr,
const TypeLowering &rvalueTL,
SGFContext C, IsTake_t isTake);
void emitAssignToLValue(SILLocation loc, RValue &&src,
const LValue &dest);
void emitAssignLValueToLValue(SILLocation loc,
const LValue &src, const LValue &dest);
void emitCopyLValueInto(SILLocation loc, const LValue &src,
Initialization *dest);
ManagedValue emitAddressOfLValue(SILLocation loc, const LValue &src);
ManagedValue emitLoadOfLValue(SILLocation loc, const LValue &src,
SGFContext C);
/// Emit a reference to a method from within another method of the type, and
/// gather all the substitutions necessary to invoke it, without
/// dynamic dispatch.
std::tuple<ManagedValue, SILType, ArrayRef<Substitution>>
emitSiblingMethodRef(SILLocation loc,
SILValue selfValue,
SILDeclRef methodConstant,
ArrayRef<Substitution> innerSubstitutions);
SILValue emitMetatypeOfValue(SILLocation loc, SILValue base);
void emitReturnExpr(SILLocation loc, Expr *ret);
/// Convert a value with the abstraction patterns of the original type
/// to a value with the abstraction patterns of the substituted type.
ManagedValue emitOrigToSubstValue(SILLocation loc, ManagedValue input,
AbstractionPattern origType,
CanType substType,
SGFContext ctx = SGFContext());
/// Convert a value with the abstraction patterns of the substituted
/// type to a value with the abstraction patterns of the original type.
ManagedValue emitSubstToOrigValue(SILLocation loc, ManagedValue input,
AbstractionPattern origType,
CanType substType,
SGFContext ctx = SGFContext());
/// Convert a value with a specialized representation (such as a thin function
/// reference, or a function reference with a foreign calling convention) to
/// the generalized representation of its Swift type, which can then be stored
/// to a variable or passed as an argument or return value.
ManagedValue emitGeneralizedValue(SILLocation loc, ManagedValue input,
AbstractionPattern origType,
CanType substType,
SGFContext ctxt = SGFContext());
ManagedValue emitGeneralizedFunctionValue(SILLocation loc,
ManagedValue input,
AbstractionPattern origType,
CanAnyFunctionType resultType);
/// Convert a native Swift value to a value that can be passed as an argument
/// to or returned as the result of a function with the given calling
/// convention.
ManagedValue emitNativeToBridgedValue(SILLocation loc, ManagedValue v,
AbstractCC destCC,
CanType origNativeTy,
CanType substNativeTy,
CanType bridgedTy);
/// Convert a value received as the result or argument of a function with
/// the given calling convention to a native Swift value of the given type.
ManagedValue emitBridgedToNativeValue(SILLocation loc, ManagedValue v,
AbstractCC srcCC,
CanType nativeTy);
//
// Helpers for emitting ApplyExpr chains.
//
RValue emitApplyExpr(ApplyExpr *e, SGFContext c);
/// A convenience method for emitApply that just handles monomorphic
/// applications.
ManagedValue emitMonomorphicApply(SILLocation loc,
ManagedValue fn,
ArrayRef<ManagedValue> args,
CanType resultType,
bool forceInline = false);
ManagedValue emitApplyOfLibraryIntrinsic(SILLocation loc,
FuncDecl *fn,
ArrayRef<Substitution> subs,
ArrayRef<ManagedValue> args,
SGFContext ctx);
/// Emit a dynamic member reference.
RValue emitDynamicMemberRefExpr(DynamicMemberRefExpr *e, SGFContext c);
/// Emit a dynamic subscript.
RValue emitDynamicSubscriptExpr(DynamicSubscriptExpr *e, SGFContext c);
/// \brief Emit an unconditional checked cast, including any necessary
/// abstraction difference between the original and destination types.
///
/// \param loc The AST location associated with the operation.
/// \param original The value to cast.
/// \param origTy The original AST-level type.
/// \param castTy The destination type.
/// \param kind The semantics of the cast.
///
/// \returns the cast value, at its natural abstraction level.
SILValue emitUnconditionalCheckedCast(SILLocation loc,
SILValue original,
Type origTy,
Type castTy,
CheckedCastKind kind);
/// \brief Emits the abstraction change needed, if any, to perform casts from
/// the type represented by \c origTL to each of the types represented by
/// \c castTLs.
///
/// \param loc The AST location associated with the operation.
/// \param original The value to cast.
/// \param origTL The original type.
/// \param castTLs The types to which to cast.
///
/// \returns The value shifted to the highest abstraction level necessary
/// for the casts, or a null SILValue if no abstraction changes are needed.
SILValue emitCheckedCastAbstractionChange(SILLocation loc,
SILValue original,
const TypeLowering &origTL,
ArrayRef<const TypeLowering *> castTLs);
/// \brief Emit a conditional checked cast branch. Does not re-abstract the
/// argument to the success branch. Terminates the current BB.
///
/// \param loc The AST location associated with the operation.
/// \param original The value to cast.
/// \param originalAbstracted
/// The result of \c emitCheckedCastAbstractionChange
/// applied to the original value.
/// \param origTL The original AST-level type.
/// \param castTL The destination type.
/// \param kind The semantics of the cast.
///
/// \returns a pair of SILBasicBlocks, representing the success and failure
/// branches of the cast. The argument to the success block is not adjusted
/// to its natural abstraction level.
std::pair<SILBasicBlock*, SILBasicBlock*>
emitCheckedCastBranch(SILLocation loc,
SILValue original,
SILValue originalAbstracted,
const TypeLowering &origTL,
const TypeLowering &castTL,
CheckedCastKind kind);
/// Initialize a memory location with an optional value.
///
/// \param loc The location to use for the resulting optional.
/// \param value The value to inject into an optional.
/// \param dest The uninitialized memory in which to store the result value.
/// \param optTL Type lowering information for the optional to create.
void emitInjectOptionalValueInto(SILLocation loc,
RValueSource &&value,
SILValue dest,
const TypeLowering &optTL);
/// Initialize a memory location with an optional "nothing"
/// value.
///
/// \param loc The location to use for the resulting optional.
/// \param dest The uninitialized memory in which to store the result value.
/// \param optTL Type lowering information for the optional to create.
void emitInjectOptionalNothingInto(SILLocation loc,
SILValue dest,
const TypeLowering &optTL);
/// \brief Emit a call to the library intrinsic _doesOptionalHaveValue.
///
/// The result is a Builtin.Int1.
SILValue emitDoesOptionalHaveValue(SILLocation loc, SILValue addr);
/// \brief Emit a call to the library intrinsic _getOptionalValue
/// given the address of the optional.
ManagedValue emitGetOptionalValueFrom(SILLocation loc, ManagedValue addr,
const TypeLowering &optTL,
SGFContext C);
typedef std::function<ManagedValue(SILGenFunction &gen,
SILLocation loc,
ManagedValue input,
SILType loweredResultTy)> ValueTransform;
/// Emit a transformation on the value of an optional type.
ManagedValue emitOptionalToOptional(SILLocation loc,
ManagedValue input,
SILType loweredResultTy,
const ValueTransform &transform);
//===--------------------------------------------------------------------===//
// Declarations
//===--------------------------------------------------------------------===//
void visitDecl(Decl *D) {
llvm_unreachable("Not yet implemented");
}
void visitNominalTypeDecl(NominalTypeDecl *D);
void visitFuncDecl(FuncDecl *D);
void visitPatternBindingDecl(PatternBindingDecl *D);
std::unique_ptr<Initialization> emitPatternBindingInitialization(Pattern *P);
void visitTypeAliasDecl(TypeAliasDecl *D) {
// No lowering support needed.
}
void visitGenericTypeParamDecl(GenericTypeParamDecl *D) {
// No lowering support needed.
}
void visitAssociatedTypeDecl(AssociatedTypeDecl *D) {
// No lowering support needed.
}
void visitVarDecl(VarDecl *D) {
// We handle these in pattern binding.
}
/// Emit an Initialization for a 'var' or 'let' decl in a pattern.
std::unique_ptr<Initialization> emitInitializationForVarDecl(VarDecl *vd,
bool isArgument,
Type patternType);
/// Emit the allocation for a local variable. Returns the address of the
/// value. Does not register a cleanup.
void emitLocalVariable(VarDecl *D);
/// Emit the allocation for a local variable, provides an Initialization
/// that can be used to initialize it, and registers cleanups in the active
/// scope.
std::unique_ptr<Initialization> emitLocalVariableWithCleanup(VarDecl *D);
/// Emit the allocation for a local temporary, provides an
/// Initialization that can be used to initialize it, and registers
/// cleanups in the active scope.
///
/// The initialization is guaranteed to be a single buffer.
std::unique_ptr<TemporaryInitialization>
emitTemporary(SILLocation loc, const TypeLowering &tempTL);
/// Enter a currently-dormant cleanup to destroy the value in the
/// given address.
CleanupHandle enterDormantTemporaryCleanup(SILValue temp,
const TypeLowering &tempTL);
/// Destroy and deallocate an initialized local variable.
void destroyLocalVariable(SILLocation L, VarDecl *D);
/// Deallocate an uninitialized local variable.
void deallocateUninitializedLocalVariable(SILLocation L, VarDecl *D);
/// Enter a cleanup to deallocate a stack variable.
CleanupHandle enterDeallocStackCleanup(SILValue address);
/// Enter a cleanup to emit a ReleaseValue/destroyAddr of the specified value.
CleanupHandle enterDestroyCleanup(SILValue valueOrAddr);
/// Evaluate an Expr as an lvalue.
LValue emitLValue(Expr *E);
/// Emit an lvalue that directly refers to the given instance
/// variable (without going through getters or setters).
LValue emitDirectIVarLValue(SILLocation loc, ManagedValue base, VarDecl *var);
/// Build an identity substitution map for the given generic parameter list.
ArrayRef<Substitution>
buildForwardingSubstitutions(GenericParamList *params);
/// Return forwarding substitutions for the archetypes in the current
/// function.
ArrayRef<Substitution> getForwardingSubstitutions();
};
} // end namespace Lowering
} // end namespace swift
#endif