-
Notifications
You must be signed in to change notification settings - Fork 10.4k
/
Copy pathTypeCheckNameLookup.cpp
744 lines (637 loc) · 27.5 KB
/
TypeCheckNameLookup.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
//===--- TypeCheckNameLookup.cpp - Type Checker Name Lookup ---------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2017 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements name lookup within the type checker, which can
// involve additional type-checking operations and the implicit
// declaration of members (such as constructors).
//
//===----------------------------------------------------------------------===//
#include "TypeChecker.h"
#include "TypoCorrection.h"
#include "swift/AST/ExistentialLayout.h"
#include "swift/AST/Initializer.h"
#include "swift/AST/NameLookup.h"
#include "swift/AST/NameLookupRequests.h"
#include "swift/AST/ProtocolConformance.h"
#include "swift/Basic/TopCollection.h"
#include <algorithm>
using namespace swift;
namespace {
/// Builder that helps construct a lookup result from the raw lookup
/// data.
class LookupResultBuilder {
LookupResult &Result;
DeclContext *DC;
NameLookupOptions Options;
/// The vector of found declarations.
SmallVector<ValueDecl *, 4> FoundDecls;
/// The vector of found declarations.
SmallVector<ValueDecl *, 4> FoundOuterDecls;
/// The set of known declarations.
llvm::SmallDenseMap<std::pair<ValueDecl *, DeclContext *>, bool, 4> Known;
public:
LookupResultBuilder(LookupResult &result, DeclContext *dc,
NameLookupOptions options)
: Result(result), DC(dc), Options(options) {
if (dc->getASTContext().isAccessControlDisabled())
Options |= NameLookupFlags::IgnoreAccessControl;
}
~LookupResultBuilder() {
// Remove any overridden declarations from the found-declarations set.
removeOverriddenDecls(FoundDecls);
removeOverriddenDecls(FoundOuterDecls);
// Remove any shadowed declarations from the found-declarations set.
removeShadowedDecls(FoundDecls, DC);
removeShadowedDecls(FoundOuterDecls, DC);
// Filter out those results that have been removed from the
// found-declarations set.
unsigned foundIdx = 0, foundSize = FoundDecls.size(),
foundOuterSize = FoundOuterDecls.size();
Result.filter([&](LookupResultEntry result, bool isOuter) -> bool {
unsigned idx = foundIdx;
unsigned limit = foundSize;
ArrayRef<ValueDecl *> decls = FoundDecls;
if (isOuter) {
idx = foundIdx - foundSize;
limit = foundOuterSize;
decls = FoundOuterDecls;
}
// If the current result matches the remaining found declaration,
// keep it and move to the next found declaration.
if (idx < limit && result.getValueDecl() == decls[idx]) {
++foundIdx;
return true;
}
// Otherwise, this result should be filtered out.
return false;
});
}
/// Add a new result.
///
/// \param found The declaration we found.
///
/// \param baseDC The declaration context through which we found the
/// declaration.
///
/// \param baseDecl The declaration that defines the base of the
/// call to `found`
///
/// \param foundInType The type through which we found the
/// declaration.
///
/// \param isOuter Whether this is an outer result (i.e. a result that isn't
/// from the innermost scope with results)
void add(ValueDecl *found, DeclContext *baseDC, ValueDecl *baseDecl,
Type foundInType, bool isOuter) {
DeclContext *foundDC = found->getDeclContext();
auto addResult = [&](ValueDecl *result) {
if (Known.insert({{result, baseDC}, false}).second) {
// HERE, need to look up base decl
Result.add(LookupResultEntry(baseDC, baseDecl, result), isOuter);
if (isOuter)
FoundOuterDecls.push_back(result);
else
FoundDecls.push_back(result);
}
};
// If this isn't a protocol member to be given special
// treatment, just add the result.
if (!isa<ProtocolDecl>(foundDC) ||
isa<GenericTypeParamDecl>(found) ||
isa<TypeAliasDecl>(found) ||
(isa<FuncDecl>(found) && cast<FuncDecl>(found)->isOperator())) {
addResult(found);
return;
}
assert(isa<ProtocolDecl>(foundDC));
// If we found something within the protocol itself, and our
// search began somewhere that is not in a protocol or extension
// thereof, remap this declaration to the witness.
auto conformingType = foundInType;
// When performing a lookup on a subclass existential, we might
// find a member of the class that witnesses a requirement on a
// protocol that the class conforms to.
//
// Since subclass existentials don't normally conform to protocols,
// pull out the superclass instead, and use that below.
if (foundInType->isExistentialType()) {
auto layout = foundInType->getExistentialLayout();
if (auto superclass = layout.getSuperclass()) {
conformingType = superclass;
} else {
// Non-subclass existential: don't need to look for further
// conformance or witness.
addResult(found);
return;
}
}
// Dig out the protocol conformance.
auto *foundProto = cast<ProtocolDecl>(foundDC);
auto conformance = DC->getParentModule()->lookupConformance(
conformingType, foundProto);
if (conformance.isInvalid()) {
if (foundInType->isExistentialType()) {
// If there's no conformance, we have an existential
// and we found a member from one of the protocols, and
// not a class constraint if any.
addResult(found);
}
return;
}
if (conformance.isAbstract()) {
assert(foundInType->is<ArchetypeType>() ||
foundInType->isExistentialType());
addResult(found);
return;
}
// Dig out the witness.
ValueDecl *witness = nullptr;
auto concrete = conformance.getConcrete();
if (auto assocType = dyn_cast<AssociatedTypeDecl>(found)) {
witness = concrete->getTypeWitnessAndDecl(assocType).getWitnessDecl();
} else if (found->isProtocolRequirement()) {
witness = concrete->getWitnessDecl(found);
// It is possible that a requirement is visible to us, but
// not the witness. In this case, just return the requirement;
// we will perform virtual dispatch on the concrete type.
if (witness &&
!Options.contains(NameLookupFlags::IgnoreAccessControl) &&
!witness->isAccessibleFrom(DC)) {
addResult(found);
return;
}
} else if (isa<NominalTypeDecl>(found)) {
// Declaring nested types inside other types is currently
// not supported by lookup would still return such members
// so we have to account for that here as well.
addResult(found);
return;
}
// FIXME: the "isa<ProtocolDecl>()" check will be wrong for
// default implementations in protocols.
//
// If we have an imported conformance or the witness could
// not be deserialized, getWitnessDecl() will just return
// the requirement, so just drop the lookup result here.
if (witness && !isa<ProtocolDecl>(witness->getDeclContext()))
addResult(witness);
}
};
} // end anonymous namespace
static UnqualifiedLookupOptions
convertToUnqualifiedLookupOptions(NameLookupOptions options) {
UnqualifiedLookupOptions newOptions = UnqualifiedLookupFlags::AllowProtocolMembers;
if (options.contains(NameLookupFlags::IgnoreAccessControl))
newOptions |= UnqualifiedLookupFlags::IgnoreAccessControl;
if (options.contains(NameLookupFlags::IncludeOuterResults))
newOptions |= UnqualifiedLookupFlags::IncludeOuterResults;
if (options.contains(NameLookupFlags::IncludeUsableFromInline))
newOptions |= UnqualifiedLookupFlags::IncludeUsableFromInline;
return newOptions;
}
LookupResult TypeChecker::lookupUnqualified(DeclContext *dc, DeclNameRef name,
SourceLoc loc,
NameLookupOptions options) {
auto &ctx = dc->getASTContext();
// HACK: Qualified lookup cannot be allowed to synthesize CodingKeys because
// it would lead to a number of egregious cycles through
// QualifiedLookupRequest when we resolve the protocol conformance. Codable's
// magic has pushed its way so deeply into the compiler, we have to
// pessimistically force every nominal context above this one to synthesize
// it in the event the user needs it from e.g. a non-primary input.
// We can undo this if Codable's semantic content is divorced from its
// syntactic content - so we synthesize just enough to allow lookups to
// succeed, but don't force protocol conformances while we're doing it.
if (name.getBaseIdentifier() == ctx.Id_CodingKeys) {
for (auto typeCtx = dc->getInnermostTypeContext(); typeCtx != nullptr;
typeCtx = typeCtx->getParent()->getInnermostTypeContext()) {
if (auto *nominal = typeCtx->getSelfNominalTypeDecl()) {
nominal->synthesizeSemanticMembersIfNeeded(name.getFullName());
}
}
}
auto ulOptions = convertToUnqualifiedLookupOptions(options);
auto descriptor = UnqualifiedLookupDescriptor(name, dc, loc, ulOptions);
auto lookup = evaluateOrDefault(ctx.evaluator,
UnqualifiedLookupRequest{descriptor}, {});
LookupResult result;
LookupResultBuilder builder(result, dc, options);
for (auto idx : indices(lookup.allResults())) {
const auto &found = lookup[idx];
// Determine which type we looked through to find this result.
Type foundInType;
if (auto *typeDC = found.getDeclContext()) {
if (!typeDC->isTypeContext()) {
// If we don't have a type context this is an implicit 'self' reference.
if (auto *CE = dyn_cast<ClosureExpr>(typeDC)) {
typeDC = typeDC->getInnermostTypeContext();
} else {
// Otherwise, we must have the method context.
typeDC = typeDC->getParent();
}
assert(typeDC->isTypeContext());
}
foundInType = dc->mapTypeIntoContext(
typeDC->getDeclaredInterfaceType());
assert(foundInType && "bogus base declaration?");
}
builder.add(found.getValueDecl(), found.getDeclContext(),
found.getBaseDecl(), foundInType,
/*isOuter=*/idx >= lookup.getIndexOfFirstOuterResult());
}
return result;
}
LookupResult
TypeChecker::lookupUnqualifiedType(DeclContext *dc, DeclNameRef name,
SourceLoc loc,
NameLookupOptions options) {
auto &ctx = dc->getASTContext();
auto ulOptions = convertToUnqualifiedLookupOptions(options) |
UnqualifiedLookupFlags::TypeLookup;
{
// Try lookup without ProtocolMembers first.
auto desc = UnqualifiedLookupDescriptor(
name, dc, loc,
ulOptions - UnqualifiedLookupFlags::AllowProtocolMembers);
auto lookup =
evaluateOrDefault(ctx.evaluator, UnqualifiedLookupRequest{desc}, {});
if (!lookup.allResults().empty())
return lookup;
}
{
// Try again, this time with protocol members.
//
// FIXME: Fix the problem where if NominalTypeDecl::getAllProtocols()
// is called too early, we start resolving extensions -- even those
// which do provide not conformances.
auto desc = UnqualifiedLookupDescriptor(
name, dc, loc,
ulOptions | UnqualifiedLookupFlags::AllowProtocolMembers);
return evaluateOrDefault(ctx.evaluator, UnqualifiedLookupRequest{desc}, {});
}
}
LookupResult TypeChecker::lookupMember(DeclContext *dc,
Type type, DeclNameRef name,
NameLookupOptions options) {
assert(type->mayHaveMembers());
LookupResult result;
NLOptions subOptions = (NL_QualifiedDefault | NL_ProtocolMembers);
if (options.contains(NameLookupFlags::IgnoreAccessControl))
subOptions |= NL_IgnoreAccessControl;
// We handle our own overriding/shadowing filtering.
subOptions &= ~NL_RemoveOverridden;
subOptions &= ~NL_RemoveNonVisible;
// Make sure we've resolved implicit members, if we need them.
namelookup::installSemanticMembersIfNeeded(type, name);
LookupResultBuilder builder(result, dc, options);
SmallVector<ValueDecl *, 4> lookupResults;
dc->lookupQualified(type, name, subOptions, lookupResults);
for (auto found : lookupResults)
builder.add(found, nullptr, /*baseDecl=*/nullptr, type, /*isOuter=*/false);
return result;
}
static bool doesTypeAliasFullyConstrainAllOuterGenericParams(
TypeAliasDecl *aliasDecl) {
auto parentSig = aliasDecl->getDeclContext()->getGenericSignatureOfContext();
auto genericSig = aliasDecl->getGenericSignature();
if (!parentSig || !genericSig)
return false;
for (auto *paramType : parentSig.getGenericParams()) {
if (!genericSig->isConcreteType(paramType))
return false;
}
return true;
}
TypeChecker::UnsupportedMemberTypeAccessKind
TypeChecker::isUnsupportedMemberTypeAccess(Type type, TypeDecl *typeDecl,
bool hasUnboundOpener,
bool isExtensionBinding) {
// We don't allow lookups of a non-generic typealias of an unbound
// generic type, because we have no way to model such a type in the
// AST.
//
// For generic typealiases, the typealias itself has an unbound
// generic form whose parent type can be another unbound generic
// type.
if (type->hasUnboundGenericType()) {
// Generic typealiases can be accessed with an unbound generic
// base, since we represent the member type as an unbound generic
// type.
//
// Non-generic type aliases can only be accessed if the
// underlying type is not dependent.
if (auto *aliasDecl = dyn_cast<TypeAliasDecl>(typeDecl)) {
if (!aliasDecl->isGeneric() &&
aliasDecl->getUnderlyingType()->hasTypeParameter() &&
!doesTypeAliasFullyConstrainAllOuterGenericParams(aliasDecl)) {
return UnsupportedMemberTypeAccessKind::TypeAliasOfUnboundGeneric;
}
}
if (isa<AssociatedTypeDecl>(typeDecl))
return UnsupportedMemberTypeAccessKind::AssociatedTypeOfUnboundGeneric;
if (isa<NominalTypeDecl>(typeDecl))
if (!hasUnboundOpener && !isExtensionBinding)
return UnsupportedMemberTypeAccessKind::NominalTypeOfUnboundGeneric;
}
if (type->isExistentialType() &&
typeDecl->getDeclContext()->getSelfProtocolDecl()) {
// Allow typealias member access on existential types if the underlying
// type does not have any type parameters.
if (auto *aliasDecl = dyn_cast<TypeAliasDecl>(typeDecl)) {
if (aliasDecl->getUnderlyingType()->getCanonicalType()
->hasTypeParameter())
return UnsupportedMemberTypeAccessKind::TypeAliasOfExistential;
} else if (isa<AssociatedTypeDecl>(typeDecl)) {
return UnsupportedMemberTypeAccessKind::AssociatedTypeOfExistential;
}
}
return UnsupportedMemberTypeAccessKind::None;
}
LookupTypeResult TypeChecker::lookupMemberType(DeclContext *dc,
Type type, DeclNameRef name,
NameLookupOptions options) {
LookupTypeResult result;
// Look for members with the given name.
SmallVector<ValueDecl *, 4> decls;
NLOptions subOptions = (NL_QualifiedDefault | NL_OnlyTypes | NL_ProtocolMembers);
if (options.contains(NameLookupFlags::IgnoreAccessControl))
subOptions |= NL_IgnoreAccessControl;
if (options.contains(NameLookupFlags::IncludeUsableFromInline))
subOptions |= NL_IncludeUsableFromInline;
// Make sure we've resolved implicit members, if we need them.
namelookup::installSemanticMembersIfNeeded(type, name);
if (!dc->lookupQualified(type, name, subOptions, decls))
return result;
// Look through the declarations, keeping only the unique type declarations.
llvm::SmallPtrSet<CanType, 4> types;
SmallVector<AssociatedTypeDecl *, 4> inferredAssociatedTypes;
for (auto decl : decls) {
auto *typeDecl = cast<TypeDecl>(decl);
// HACK: Lookups rooted at a typealias are trying to look for its underlying
// type so they shouldn't also find that same typealias.
if (decl == dyn_cast<TypeAliasDecl>(dc)) {
continue;
}
if (isUnsupportedMemberTypeAccess(type, typeDecl, true)
!= TypeChecker::UnsupportedMemberTypeAccessKind::None) {
auto memberType = typeDecl->getDeclaredInterfaceType();
// Add the type to the result set, so that we can diagnose the
// reference instead of just saying the member does not exist.
if (types.insert(memberType->getCanonicalType()).second)
result.addResult({typeDecl, memberType, nullptr});
continue;
}
// If we're looking up an associated type of a concrete type,
// record it later for conformance checking; we might find a more
// direct typealias with the same name later.
if (typeDecl->getDeclContext()->getSelfProtocolDecl()) {
if (auto assocType = dyn_cast<AssociatedTypeDecl>(typeDecl)) {
if (!type->is<ArchetypeType>() &&
!type->isTypeParameter()) {
inferredAssociatedTypes.push_back(assocType);
continue;
}
}
// Nominal type members of protocols cannot be accessed with an
// archetype base, because we have no way to recover the correct
// substitutions.
if (type->is<ArchetypeType>() &&
isa<NominalTypeDecl>(typeDecl)) {
continue;
}
}
// Substitute the base into the member's type.
auto memberType = substMemberTypeWithBase(dc->getParentModule(),
typeDecl, type);
// If we haven't seen this type result yet, add it to the result set.
if (types.insert(memberType->getCanonicalType()).second)
result.addResult({typeDecl, memberType, nullptr});
}
if (!result) {
// We couldn't find any normal declarations. Let's try inferring
// associated types.
for (AssociatedTypeDecl *assocType : inferredAssociatedTypes) {
// If the type does not actually conform to the protocol, skip this
// member entirely.
auto *protocol = cast<ProtocolDecl>(assocType->getDeclContext());
auto conformance = dc->getParentModule()->lookupConformance(type, protocol);
if (!conformance) {
// FIXME: This is an error path. Should we try to recover?
continue;
}
// Use the type witness.
auto concrete = conformance.getConcrete();
// This is the only case where NormalProtocolConformance::
// getTypeWitnessAndDecl() returns a null type.
if (concrete->getState() ==
ProtocolConformanceState::CheckingTypeWitnesses)
continue;
auto *typeDecl =
concrete->getTypeWitnessAndDecl(assocType).getWitnessDecl();
// Circularity.
if (!typeDecl)
continue;
auto memberType =
substMemberTypeWithBase(dc->getParentModule(), typeDecl, type);
if (types.insert(memberType->getCanonicalType()).second)
result.addResult({typeDecl, memberType, assocType});
}
}
return result;
}
unsigned TypeChecker::getCallEditDistance(DeclNameRef writtenName,
DeclName correctedName,
unsigned maxEditDistance) {
// TODO: consider arguments.
// TODO: maybe ignore certain kinds of missing / present labels for the
// first argument label?
// TODO: word-based rather than character-based?
if (writtenName.getBaseName().getKind() !=
correctedName.getBaseName().getKind()) {
return UnreasonableCallEditDistance;
}
if (writtenName.getBaseName().getKind() != DeclBaseName::Kind::Normal) {
return 0;
}
StringRef writtenBase = writtenName.getBaseName().userFacingName();
StringRef correctedBase = correctedName.getBaseName().userFacingName();
// Don't typo-correct to a name with a leading underscore unless the typed
// name also begins with an underscore.
if (correctedBase.startswith("_") && !writtenBase.startswith("_")) {
return UnreasonableCallEditDistance;
}
unsigned distance = writtenBase.edit_distance(correctedBase, maxEditDistance);
// Bound the distance to UnreasonableCallEditDistance.
if (distance >= maxEditDistance ||
distance > (correctedBase.size() + 2) / 3) {
return UnreasonableCallEditDistance;
}
return distance;
}
static bool isPlausibleTypo(DeclRefKind refKind, DeclNameRef typedName,
ValueDecl *candidate) {
// Ignore anonymous declarations.
if (!candidate->hasName())
return false;
// An operator / identifier mismatch is never a plausible typo.
auto fn = dyn_cast<FuncDecl>(candidate);
if (typedName.isOperator() != (fn && fn->isOperator()))
return false;
if (!typedName.isOperator())
return true;
// TODO: honor ref kind? This is trickier than it sounds because we
// may not have processed attributes and types on the candidate yet.
return true;
}
void TypeChecker::performTypoCorrection(DeclContext *DC, DeclRefKind refKind,
Type baseTypeOrNull,
NameLookupOptions lookupOptions,
TypoCorrectionResults &corrections,
GenericSignature genericSig,
unsigned maxResults) {
// Disable typo-correction if we won't show the diagnostic anyway or if
// we've hit our typo correction limit.
auto &Ctx = DC->getASTContext();
if (!Ctx.shouldPerformTypoCorrection() ||
(Ctx.Diags.hasFatalErrorOccurred() &&
!Ctx.Diags.getShowDiagnosticsAfterFatalError()))
return;
// Fill in a collection of the most reasonable entries.
TopCollection<unsigned, ValueDecl *> entries(maxResults);
auto consumer = makeDeclConsumer([&](ValueDecl *decl,
DeclVisibilityKind reason) {
// Never match an operator with an identifier or vice-versa; this is
// not a plausible typo.
if (!isPlausibleTypo(refKind, corrections.WrittenName, decl))
return;
const auto candidateName = decl->getName();
// Don't waste time computing edit distances that are more than
// the worst in our collection.
unsigned maxDistance =
entries.getMinUninterestingScore(UnreasonableCallEditDistance);
unsigned distance =
getCallEditDistance(corrections.WrittenName, candidateName,
maxDistance);
// Ignore values that are further than a reasonable distance.
if (distance >= UnreasonableCallEditDistance)
return;
entries.insert(distance, std::move(decl));
});
if (baseTypeOrNull) {
lookupVisibleMemberDecls(consumer, baseTypeOrNull, DC,
/*includeInstanceMembers*/true,
/*includeDerivedRequirements*/false,
/*includeProtocolExtensionMembers*/true,
genericSig);
} else {
lookupVisibleDecls(consumer, DC, /*top level*/ true,
corrections.Loc.getBaseNameLoc());
}
// Impose a maximum distance from the best score.
entries.filterMaxScoreRange(MaxCallEditDistanceFromBestCandidate);
for (auto &entry : entries)
corrections.Candidates.push_back(entry.Value);
}
void
TypoCorrectionResults::addAllCandidatesToLookup(LookupResult &lookup) const {
for (auto candidate : Candidates)
lookup.add(LookupResultEntry(candidate), /*isOuter=*/false);
}
static Decl *findExplicitParentForImplicitDecl(ValueDecl *decl) {
if (!decl->getLoc().isValid() && decl->getDeclContext()->isTypeContext()) {
Decl *parentDecl = dyn_cast<ExtensionDecl>(decl->getDeclContext());
if (!parentDecl) parentDecl = cast<NominalTypeDecl>(decl->getDeclContext());
if (parentDecl->getLoc().isValid())
return parentDecl;
}
return nullptr;
}
static InFlightDiagnostic
noteTypoCorrection(DeclNameLoc loc, ValueDecl *decl,
bool wasClaimed) {
if (auto var = dyn_cast<VarDecl>(decl)) {
// Suggest 'self' at the use point instead of pointing at the start
// of the function.
if (var->isSelfParameter()) {
if (wasClaimed) {
// We don't need an extra note for this case because the programmer
// knows what 'self' refers to.
return InFlightDiagnostic();
}
auto &Diags = decl->getASTContext().Diags;
return Diags.diagnose(loc.getBaseNameLoc(), diag::note_typo_candidate,
var->getName().str());
}
}
if (Decl *parentDecl = findExplicitParentForImplicitDecl(decl)) {
StringRef kind = (isa<VarDecl>(decl) ? "property" :
isa<ConstructorDecl>(decl) ? "initializer" :
isa<FuncDecl>(decl) ? "method" :
"member");
return parentDecl->diagnose(
wasClaimed ? diag::implicit_member_declared_here
: diag::note_typo_candidate_implicit_member,
decl->getBaseName().userFacingName(), kind);
}
if (wasClaimed) {
return decl->diagnose(diag::decl_declared_here, decl->getBaseName());
} else {
return decl->diagnose(diag::note_typo_candidate,
decl->getBaseName().userFacingName());
}
}
void TypoCorrectionResults::noteAllCandidates() const {
for (auto candidate : Candidates) {
auto &&diagnostic =
noteTypoCorrection(Loc, candidate, ClaimedCorrection);
// Don't add fix-its if we claimed the correction for the primary
// diagnostic.
if (!ClaimedCorrection) {
SyntacticTypoCorrection correction(WrittenName, Loc,
candidate->getName());
correction.addFixits(diagnostic);
}
}
}
void SyntacticTypoCorrection::addFixits(InFlightDiagnostic &diagnostic) const {
if (WrittenName.getBaseName() != CorrectedName.getBaseName())
diagnostic.fixItReplace(Loc.getBaseNameLoc(),
CorrectedName.getBaseName().userFacingName());
// TODO: add fix-its for typo'ed argument labels. This is trickier
// because of the reordering rules.
}
Optional<SyntacticTypoCorrection>
TypoCorrectionResults::claimUniqueCorrection() {
// Look for a unique base name. We ignore the rest of the name for now
// because we don't actually typo-correct any of that.
DeclBaseName uniqueCorrectedName;
for (auto candidate : Candidates) {
auto candidateName = candidate->getBaseName();
// If this is the first name, record it.
if (uniqueCorrectedName.empty())
uniqueCorrectedName = candidateName;
// If this is a different name from the last candidate, we don't have
// a unique correction.
else if (uniqueCorrectedName != candidateName)
return None;
}
// If we didn't find any candidates, we're done.
if (uniqueCorrectedName.empty())
return None;
// If the corrected name doesn't differ from the written name in its base
// name, it's not simple enough for this (for now).
if (WrittenName.getBaseName() == uniqueCorrectedName)
return None;
// Flag that we've claimed the correction.
ClaimedCorrection = true;
return SyntacticTypoCorrection(WrittenName, Loc, uniqueCorrectedName);
}